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Abstract— This paper proposes a Lyapunov approach to fre-
quency analysis for general systems. The notion of frequency
response is extended to general systems through a connection
in linear systems. Lyapunov approaches to the characterization
of frequency response are established for linear systems,
homogeneous systems and nonlinear systems, respectively.
In particular, we show that for linear systems, quadratic
Lyapunov functions are sufficient for the characterization; for
homogeneous systems, homogeneous Lyapunov functions are
sufficient; and for general nonlinear systems, locally Lipschitz
Lyapunov functions will be used. We also develop a Lyapunov
approach for the characterization of the peak of the output.
This approach is demonstrated to be effective on linear
systems. An LMI based method for performing frequency
analysis on linear differential inclusions is developed. Through
a numerical example, an interesting phenomenon is observed
about the relation between the frequency response and theL2

gain of linear differential inclusions.

Keywords: Frequency analysis, transient analysis, Lyapunov
functions, differential inclusions, LMI.

Basic Definitions
- |x|: Euclidean norm ofx.
- ‖u‖: Lm

∞-norm of an essentially bounded functionu :
R≥0 → Rm.

- A function α : R≥0 → R≥0 is said to belong to
classK (α ∈ K) if it is continuous, zero at zero, and
strictly increasing. It is said to belong to classK∞ if,
in addition, it is unbounded.

- A function β : R≥0 × R≥0 → R≥0 is said to belong
to classKL if, for eacht ≥ 0, β(·, t) is nondecreasing
and lims→0+ β(s, t) = 0, and for eachs ≥ 0, β(s, ·)
is nonincreasing andlimt→∞ β(s, t) = 0.

I. I NTRODUCTION

A. Background

Frequency domain analysis and time domain analysis are
equally important for linear systems. They provide different
insights into systems characteristics and they complement
each other in the development of linear systems theory
[8]. For nonlinear systems, frequency analysis is also an
important problem and has been attempted since 1950s (see,
e.g., [4], [5], [6], [9], [14], [15] and [2] for a review of
the early developments). Some of the early papers used
the describing function method to obtain an approximate
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characterization of the frequency response [5], [6], [14],
[15] and others used individual systems to demonstrate
specific nonlinear phenomena such as jump phenomena,
subharmonic oscillations and frequency entrainment. This
paper attempts to establish a systematic frequency analysis
approach for the study of the input-output properties of
nonlinear systems. In particular, we would like to determine
both the asymptotic behavior and the transient behavior of
the output under the excitation of an input signal which has
one or more frequency components.

Consider nonlinear systems of the form

ẋ = f(x, u), y = h(x) (1)

where f : Rn × Rm → Rn and h : Rn → Rq

are both locally Lipschitz continuous. Several notions of
output stability for such systems were introduced in [11]
and a Lyapunov approach was developed in [12] for the
characterization of these output stability properties. Given
an initial statex◦ ∈ Rn and an inputu, let x(·, x◦, u)
be the solution of the system and lety(·, x◦, u) be the
corresponding output. Assume that for everyx◦ andu, the
solutionx(t, x◦, u) is defined for allt ≥ 0. Then the system
is said to be input to output stable if there exist aKL-
function β and aK-function γ such that

|y(t, x◦, u)| ≤ β(|x◦|, t) + γ(‖u‖), ∀t > 0. (2)

Now suppose that the system is input to output stable. One
interesting problem is to find a functionγ that characterizes
the asymptotic bound of the output as sharply as possible.
For linear systems, the problem of minimizing the asymp-
totic bound can be approached through reachable sets with
unit-peak inputs, which are estimated with ellipsoids under
the LMI framework (see page 82, [3]). In the literature,
attempts have also been made to minimize the gain function
γ for special classes of nonlinear systems (e.g., see [7],
[10] for systems with saturation nonlinearities). Most often,
the input u is not an arbitrary signal and more detailed
information about it may be exploited to obtain a weaker
stability condition or a sharper bound on the output. For
instance, the bound on the derivatives of the input was used
in [1] to obtain a weaker condition of stability.

In many situations, the input can be modeled as the
output of an autonomous system. For instance, in rotating
machinery, a disturbance/inputu usually takes the form of
a simple sinusoidal signal, a signal with several sinusoidal
components, a periodic signal, a signal with a certain
frequency band, or some output of an oscillator. If we ignore
such frequency information and treat the signal as arbitrary,
we may end up with an overly conservative gain function
γ. In other words, using the frequency information properly



has a potential to result in a better estimate of the asymptotic
gain from the input to the output. This brings us back to
the topic of frequency analysis for nonlinear systems.

B. Motivation and problem formulation

1) Modeling the input:Consider the system (1). An input
u whose components have the same frequencyφ can be
modeled as

u = Γw =
[
Im 0m

]
w, ẇ =

[
0 −φIm

φIm 0

]
w. (3)

The magnitudes and the phases of all the components ofu
are determined by the initial condition ofw. Moreover, the
norm of u in the frequency domain equals the Euclidean
norm of the initial condition,|w◦|. If u has several fre-
quency components, we can model it as

u = Γw, ẇ = Sw, (4)

with w ∈ R` andS + ST = 0. A more general situation is
that u is the output of an oscillator:

u = Γw, ẇ = g(w), (5)

wherew ∈ R` and 〈w, g〉 = 0. In all the above cases, we
have|w(t)| ≡ |w◦|.

Now we have the combined autonomous system

ẋ = f(x,Γw), y = h(x), (6)

ẇ = g(w). (7)

Since the original inputu is completely determined by
the initial condition w◦, we would like to characterize
the relationship between the output andw◦. Under the
traditional frequency analysis framework, this relationship
is described by the term “frequency response”.

2) Frequency analysis for linear systems: time domain
interpretation: Consider a linear system

ẋ = Ax + Bu, y = Cx, x(0) = x◦, (8)

wherex ∈ Rn, u ∈ Rm and y ∈ Rq. Assume thatA is
Hurwitz. Let u be an input whose elements have the same
frequencyφ, i.e., ui(t) = ūi cos(φt + θi). Thenu can be
described with (3). Note that|ū| = |w◦|. Let y∞ be the
asymptotic component ofy, i.e.,y(t) = y∞(t)+ỹ(t), where
limt→∞ ỹ(t) = 0. Suppose thaty∞i (t) = ȳi cos(φt + ϑi).
Then the norms ofu andy∞ in the frequency domain are|ū|
and|ȳ| respectively. For single input single output systems,
we have‖u‖ = |ū| = |w◦| and‖y∞‖ = ȳ. Hence

sup
w◦ 6=0

‖y∞‖
|w◦| = sup

|ū|6=0,θi∈[0,2π]

‖y∞‖
‖u‖ = ‖C(jφI −A)−1B‖.

For multiple input multiple output systems, since‖y∞‖ ≤
|ȳ|, we have

sup
w◦ 6=0

‖y∞‖
|w◦| ≤ ‖C(jφI −A)−1B‖. (9)

The discrepancy between the two sides of the above in-
equality can be handled by doubling the dimensions of the
state and the output to form an augmented system.

In view of these arguments, we use the quantity on the
left side of (9), i.e.,

γ∗ := sup
w◦ 6=0

‖y∞‖
|w◦|

to represent the frequency response (at a particular fre-
quency φ) of a linear system and will generalize it to
nonlinear systems. To realize the generalization, let us now
interpret the quantityγ∗ in the state space. Consider the
combined system

ẋ = Ax + Ew, ẇ = Sw, y = Cx, (E = BΓ). (10)

Let Π be the solution to

AΠ−ΠS = E. (11)

Claim 1: γ∗ = ‖CΠ‖ andγ∗ is the least positive number
γ such that there existK > 0 andη > 0 satisfying

|y(t)| ≤ K

∣∣∣∣
x◦
w◦

∣∣∣∣ e−ηt + γ|w◦| ∀x◦ ∈ Rn, w◦ ∈ R`. (12)

3) Frequency analysis for general systems: problem for-
mulation: For a linear system, the “frequency response”
can be easily obtained for allφ ∈ [0,∞) and the term also
represents the function itself. For a nonlinear system, we
have to restrict our attention to a fixed frequencyφ but we
still use “frequency response” to describe the input-output
relationship for simplicity. We also extend the term to the
situation where the input has the general description of (5).

In view of Claim 1, for a general system

ẋ = f(x, Γw), ẇ = g(w), y = h(x),

with 〈w, g〉 = 0, any locally Lipschitz functionγ ∈ K such
that there existK > 0 andη > 0 satisfying

|y(t)| ≤ K

∣∣∣∣
x◦
w◦

∣∣∣∣ e−ηt+γ(|w◦|) ∀x◦ ∈ Rn, w◦ ∈ R` (13)

is called an upper bound for the frequency response. Our
first objective of frequency analysis is to characterize the
set of locally Lipschitz functionsγ ∈ K such that there
exist K > 0 and η > 0 satisfying (13).4 The infimum of
this set of functions will be called the frequency response
of the system.

The notion of frequency response can also be extended
to differential inclusions. Consider the system

ẋ ∈ A(x,w), ẇ ∈ G(w), y = h(x), (14)

4The frequency response may also be developed replacing the expo-
nential decay function in (13) with a more general decay function, such
as theKL-function β in (2). The tools needed to address this case are
in place, and reasonable Lyapunov formulations can be stated. (Cf. [13].)
However, for the particular Lyapunov structure we use in this paper, it is
somewhat cumbersome to clarify the regularity of the Lyapunov function
characterizing the frequency response. For this reason, in order to keep the
presentation simple, we will restrict our attention to the exponential decay
case in this paper.



whereA andG are set-valued maps. Assume that〈w, g〉 =
0 for all g ∈ G(w). Given a locally Lipschitz function
γ ∈ K, if there existK > 0 andη > 0 satisfying (13) for
all y in the set of solutions under the initial conditionx◦
andw◦, thenγ is called an upper bound for the frequency
response. Similarly, the infimum of this set of functions will
be called the frequency response of the system.

We will develop a Lyapunov approach to characterize
such a set of functionsγ for general systems. Specific
results will be presented for linear systems, homogeneous
systems and nonlinear systems, respectively. We will also
present an LMI approach to estimate the frequency response
for linear differential inclusions. Another objective of this
paper is to characterize the transient behavior of the output,
in particular, the peak of the output under a set of initial
conditions. This problem is important for systems that are
subject to state or output constraints.

II. FREQUENCYRESPONSE: MAIN RESULTS

Standing assumption:All systems considered are forward
complete, i.e., there are no finite escapes.

A. Linear systems

Consider the linear system

ẋ = Ax + Ew
ẇ = Sw
y = Cx ,

(15)

wherex ∈ Rn, w ∈ R` andy ∈ Rq.
Assumption 1:S + ST = 0 andA is Hurwitz. ¤
Under Assumption 1, we have|w(t)| = |w◦| for all t ≥ 0.

Define

AL :=
[

A E
0 S

]
. (16)

We consider square matricesP and numbersγ > 0, η >
0 satisfying

P = P T > 0[
CTC 0

0 0

]
≤ P

AT
LP + PAL ≤ −2η

(
P − γ2

[
0 0
0 I`

])
.

(17)

Theorem 1:Suppose Assumption 1 holds and letγ > 0
be given. For eachγ > γ there exist a matrixP andη > 0
satisfying (17) if and only if for eachγ > γ there exist
K > 0, η > 0 such that

|y(t)| ≤ K

∣∣∣∣
x◦
w◦

∣∣∣∣ e−ηt+γ|w◦| ∀ x◦∈Rn, w◦∈R`. (18)

From Claim 1, we know that the leastγ such that there
existK > 0, η satisfying (18) is the frequency responseγ∗.
By Theorem 1, we have

γ∗ = inf{γ : ∃ P, η > 0 satisfying (17)}. (19)

B. Homogeneous systems

Let M : Rn → (subsets ofRn) be a set-valued map.
We say thatM is homogeneous of degreep if M(λx) =
λpM(x) for all λ ≥ 0 andx ∈ Rn. Consider the system

ẋ ∈ A(x, w)
ẇ ∈ G(w)
y = h(x) ,

(20)

where x ∈ Rn, w ∈ R` and y ∈ Rq. A : Rn × R` →
(subsets ofRn) and G : R` → (subsets ofR`) are set-
valued maps. Define

ξ :=
[

x
w

]
(21)

F (ξ) :=
{[

a
g

]
: a ∈ A(x,w), g ∈ G(w)

}
. (22)

Assumption 2:〈w, g〉 = 0 for all g ∈ G(w). The set-
valued mapF and the functionh are homogeneous of
degree one and globally Lipschitz with nonempty compact,
convex values. ¤

Under Assumption 2, it is clear that|w(t)| = |w◦| for all
t > 0.

We consider continuously differentiable functionsW :
Rn+` → R≥0 and numbersγ > 0, η > 0, p > 1 satisfying

W (0) = 0
|h(x)|p ≤ W (ξ)

max
f∈F (ξ)

〈∇W (ξ), f〉 ≤ −pη (W (ξ)− γp|w|p) .
(23)

Theorem 2:Suppose Assumption 2 holds and letγ > 0
be given. There existsη > 0 such that, for eachγ > γ and
p > 1, (23) has a continuously differentiable solution that is
homogeneous of degreep if and only if there existsη > 0
and for eachγ > γ there existsK > 0 such that

|y(t)| ≤ K|ξ◦|e−ηt + γ|w◦| ∀ x◦ ∈ Rn, w◦ ∈ R` . (24)

Remark 1: In fact, the necessary condition can be re-
placed with a seemingly weaker one: There existη > 0 and
p > 1 such that, for eachγ > γ, (23) has a continuously
differentiable solution that is homogeneous of degreep. The
equivalence of these conditions implies that we can restrict
our attention to a fixedp > 1, such as an even integer.

By Theorem 2, the frequency response is given by the
infimum of γ such that there existp > 1, η > 0
and a continuously differentiable solution for (23) that is
homogeneous of degreep.

C. Nonlinear Systems

Consider the system

ẋ ∈ A(x, w)
ẇ ∈ G(w)
y = h(x) ,

(25)

where x ∈ Rn, w ∈ R` and y ∈ Rq, and A and G are
set-valued maps. Letξ andF be defined as in (21)-(22).



Assumption 3:〈w, g〉 = 0 for all g ∈ G(w), and the set-
valued mapF is locally Lipschitz with nonempty compact,
convex values. ¤

Under Assumption 3, we also have|w(t)| = |w◦| for all
t > 0.

Given γ ∈ K locally Lipschitz, we consider locally
Lipschitz functionsW : Rn+` → R≥0 and numbersη > 0,
ε > 0, p > 1 satisfying

W (0) = 0
|h(x)|p ≤ W (ξ)

max
f∈F (ξ)

〈∇W (ξ), f〉≤−pη (W (ξ)−(1+ε)pγ(|w|)p) a.e.

(26)
Theorem 3:Suppose Assumption 3 holds and letγ ∈ K

be given and locally Lipschitz. There existsη > 0 such
that, for eachε > 0 andp > 1, (26) has a locally Lipschitz
solution if and only if there existsη > 0 and for eachε > 0
there existsαε ∈ K∞ such that

|y(t)| ≤ αε(|ξ◦|)e−ηt + (1 + ε)γ(|w◦|)
∀ x◦ ∈ Rn, w◦ ∈ R` . (27)

By Theorem 3, we see that any bound on the frequency
response can be arbitrarily closely approximated by a
function γ satisfying (26), along with a locally Lipschitz
function W and numbersη > 0, ε > 0 andp > 1.

The input-output description in (27) is a global relation.
For some systems, such a relation may only be valid for
initial states in a local region. This situation is addressed
by the following corollary.

Corollary 1: Given γ ∈ K locally Lipschitz. Suppose
there exist locally Lipschitz functionW : Rn+` → R≥0

and a functionη : Rn+` → R≥0, and numbersp > 1, ρ >
0, η > 0 such thatW (0) = 0 and for all

ξ ∈ Λ(ρ) := {ξ ∈ Rn+` : W (ξ) ≤ ρ, γ(|w|)p ≤ ρ}
the following is satisfied

η(ξ) ≥ η
|h(x)|p ≤ W (ξ)

max
f∈F (ξ)

〈∇W (ξ), f〉 ≤ −pη(ξ) (W (ξ)−γ(|w|)p) a.e.

Then there existsα ∈ K∞ such that,

|y(t)| ≤ α(|ξ◦|)e−ηt + γ(|w◦|) ∀ ξ0 ∈ Λ(ρ).

Example 1:Consider a first-order system

ẋ = sat(−x) + d, y = h(x) = x,

where sat(u) = sign(u)min{1, |u|} and d is the distur-
bance. Ifd is arbitrary, then the steady state gain fromd
to x is unbounded. For instance, a constantd > 1 will
drive x unbounded. However, ifd is a sinusoidal signal
d(t) = k sin(βt), we will show that the steady statex is
bounded by2k/β. We expressd as

d =
[

1 0
]
w, ẇ =

[
0 β
−β 0

]
, |w0| = k.

Choosep = 2, η(ξ) = sat(x)/x, γ(|w|) = 2|w|/β and

W (ξ) = 2x2 +
4
β

xw2 +
2
β2

w2
1 +

4
β2

w2
2

Then it can be verified that the condition of Corollary 1 is
satisfied for everyρ > 0. Moreover, for allξ0 ∈ R3, the
steady statex is bounded byγ(|w0|) = 2|w0|/β = 2k/β.

III. PEAK ESTIMATION THROUGH LYAPUNOV

APPROACH

Evaluation of the peak of an output is an important
problem, especially for systems that must operate under
some state or output constraint. An LMI method for es-
timating a bound for the peak was presented in [3] for
stable linear systems. In this section, we will develop a
general method for peak evaluation by further exploring the
Lyapunov approach.

A. A general result

Consider system (25) under the standing assumption and
Assumption 3. Letr : Rn → R≥0 be a function that
measures the size of the statex. We would like to determine
the peak of the output in terms ofr(x◦) and |w◦|.

Theorem 4:Suppose that there exist a locally Lipschitz
function W : Rn+` → R≥0, a functionη : Rn+` → R≥0,
and classK∞-functionsα1, α2, α3, α4 satisfying

α1(|h(x)|p) ≤ W (ξ) ≤ α2(r(x)) + α3(|w|p)
max

f∈F (ξ)
〈∇W (ξ), f〉≤−η(ξ) (W (ξ)− α4(|w|p)) a.e.

then

|y(t)|p ≤ α−1
1 (max{α2(r(x◦)) + α3(|w◦|p), α4(|w◦|p)})

∀x◦ ∈ Rn, w◦ ∈ R`.

B. Application to linear systems

Let the initial state ofx be inside a setX◦, sayX◦ =
{x ∈ Rn : xTRx ≤ 1}, whereR = RT > 0. Assume for
simplicity thatwT

◦w◦ ≤ 1. We taker(x) = xTRx. Consider
quadratic type Lyapunov functionsW (ξ) = ξTPξ andp =
2. According to Theorem 4, if we can find aP = P T > 0,
and numbersα2, α3, α4, η > 0 such that, for allξ ∈ Rn+`,

ξT

[
CTC 0

0 0

]
ξ ≤ ξTPξ ≤ ξT

[
α2R 0

0 α3I`

]
ξ, (28)

AT
LP + PAL ≤ −η

(
P − α4

[
0 0
0 I`

])
, (29)

then for allx◦ ∈ X◦, |w◦| ≤ 1,

y(t)Ty(t) ≤ max {α2 + α3, α4} ∀ t ≥ 0. (30)



Our objective is to compute

γp∗ := inf
η,α2,α3,α4>0,P

max {α2 + α3, α4} . (31)

s.t. a) P = P T > 0

b)
[

CTC 0
0 0

]
≤ P

c) P ≤
[

α2R 0
0 α3I`

]

d) AT
LP + PAL ≤ −η

(
P − α4

[
0 0
0 I`

])

It is shown that the optimal solution can be obtained by
restrictingα2 + α3 = α4.

A degenerated case is whereX0 = {0}. In this case, the
initial conditions belong to the set

{(x◦, w◦) ∈ Rn+` : xT
◦Rx◦ ≤ 1, wT

◦w◦ ≤ 1},
whereR = ∞I. Because of this, the constraint (31c) should
be replaced with

[
0 I`

]
P

[
0
I`

]
≤ α3I`.

An optimization problem similar to (31) can be formulated
to estimate the output bound.

Example 2:Consider a second order system

ẋ=Ax + Ew, A=
[−0.6 −0.8

0.8 −0.6

]
, E =

[
0 0
1 1

]
, x◦ = 0,

with

ẇ = Sw, S =
[

0 −β
β 0

]
, wT

◦w◦ ≤ 1.

The output isy = Cx = [1 0]x. If we don’t use the
frequency information of the disturbance, then the bound
on y2 computed from the method in [3] isλ∗ = 2.3594. By
using the frequency information for differentβ, we obtained
a much smaller bound ony2, denoted asy2

M,est (see the
dash-dotted curve in Fig. 1). The actual maximal value of
y(t)2, denotedy2

M , is computed through simulation and is
the solid curve in Fig. 1. As a comparison, we also plotted
the exact asymptotic amplitude ofy2, denotedy2

∞, as the
dashed curve in Fig. 1. We see that the asymptotic amplitude
of y2 could be much smaller than its actual maximal value
which is reached during the transient process.

IV. LDI S AND AN OBSERVATION ON FREQUENCY

RESPONSE VSL2 GAIN

A. Numerical analysis with quadratic Lyapunov functions

Consider the following linear differential inclusion:

ξ̇ ∈ {ALξ : AL ∈ Ω}, y =
[

C 0
]
ξ, (32)

where ξ =
[

x
w

]
∈ R(n+`). Assume thatΩ is a convex

set in R(n+`)×(n+`) whose elementAL has the structure
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Fig. 1. The estimated bound and the actual bound: a 2nd order system

AL =
[

A E
0 S

]
and for eachAL ∈ Ω, S + ST = 0. Here

we have two types of LDIs. For polytopic LDIs,

Ω = co{ALi : i = 1, 2, · · · , N},
and for structured LDIs,

Ω = {AL◦ + U∆H : ‖∆‖ ≤ 1},
whereAL◦, U andH are given matrices. The polytopic LDI
can be used to describew with time-varying and uncertain
frequency. Hence it allows nonperiodic signalw.

Theoretically, the exact frequency response can be ob-
tained by optimizing over all the homogeneous Lyapunov
functions and the numbersγ > 0, η > 0, p > 1 satisfying
(23). For computational simplicity, we would like to restrict
our attention to quadratic Lyapunov functions. We consider
Lyapunov functions of the type:W (ξ) = ξTPξ andp = 2.

Then the condition (23) can be stated as[
CTC 0

0 0

]
≤ γ2P (33)

AT
LP + PAL ≤ −2η

(
P−

[
0 0
0 I`

])
, ∀AL ∈ Ω, (34)

where P = P/γ2. We have replacedP with P for
numerical simplicity. If there existP = P T > 0, γ, η > 0
satisfying (33) and (34), thenγ is an upper bound for the
frequency response.

For polytopic LDIs, (34) is satisfied if and only if

AT
LiP +PALi≤−2η

(
P−

[
0 0
0 I`

])
, ∀ i=1, · · · , N. (35)

Therefore, the bound on the frequency response can be
sharpened by solving

inf
γ,η,P=P T>0

γ, (36)

s.t. (33), (35)

For a fixedη > 0, this is a standard “gevp” problem in LMI.
For structured LDIs, similar optimization problem can be
formulated.



B. An observation on frequency response vsL2 gain

For linear systems, we know that the peak of the fre-
quency response equals theL2 gain. For LDIs, it may be
expected that the peak of the frequency response is no
greater than theL2 gain. If this is the case, then the peak
of the frequency response can be suppressed indirectly by
minimizing the L2 gain, which can be easily addressed
by solving LMIs. However, the following example demon-
strates that theL2 gain of an LDI system could be less
than the peak of the frequency response. This means that
the frequency analysis has to be performed separately from
the L2 gain analysis to ensure that the output is below an
admissible value.

Example 3:Consider the linear differential inclusion:

ẋ ∈ co{A1x + B1u,A2x + B2u}, (37)

where

A1 =
[ −0.6 −0.8

0.8 −0.6

]
, B1 =

[
0
1

]
,

A2 =
[ −0.3 −2.5

2.5 −0.3

]
, B2 =

[
0

0.5

]
.

The output isy = Cx =
[

1 0
]
x. The L2 gains of the

two linear systems(C,A1, B1) and (C, A2, B2) are both
0.8333. An upper bound for theL2 gain of the LDI is
computed asγu

∞ = 0.9906 (with the algorithm in [3]).
Now assume thatu = sin(φt + θ). By using our method

at φ = 1.26, the upper bound for asymptotic outputy∞ is
computed as1.2169. An actual bound ony∞, for a specific
phaseθ and a specific switching strategy within (37), is
detected as1.0917, which is greater thanγu

∞ = 0.9906. Ac-
tually, under this particular switching strategy, we detected
two “steady state” responses of the output, corresponding
to different phaseθ. These two asymptotic responses are
plotted in Fig. 2. The solid response has a peak larger than
1 but the energy over the time interval is only 0.556 of the
energy of the disturbanceu = sin(1.26t+θ) over the same
interval. From Fig. 2, we see that the peaks of the solid
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Fig. 2. Two asymptotic responses

curves are much sharper than those of a sinusoidal signal.

This explains the low energy of the output even with a high
peak. This cannot happen in linear systems [16].

V. CONCLUSIONS

Motivated by a state-space interpretation of frequency
response for linear systems, we have given a trajectory-
based definition of frequency response for general nonlinear
systems and we have given an equivalent Lyapunov char-
acterization. The Lyapunov characterization of frequency
response uses quadratic functions, naturally, for linear sys-
tems, continuously differential homogeneous functions for
homogeneous systems, e.g., linear differential inclusions,
and locally Lipschitz functions for general nonlinear sys-
tems. We have also tailored the Lyapunov analysis to
estimate the peak of the output as it converges to the
frequency response. Finally, we have pointed out that, in
contrast to the situation for linear systems, the frequency
response may exceed theL2 gain for nonlinear systems, in
particular for a two dimensional LDI.
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