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A Lyapunov Approach to Frequency Analysis

Tingshu Hd Andrew R. Tedl Zongli Lint

Abstract— This paper proposes a Lyapunov approach to fre- characterization of the frequency response [5], [6], [14],
quency analysis for general systems. The notion of frequency [15] and others used individual systems to demonstrate
response is extended to general systems through a connectlonspt_:,ciﬁC nonlinear phenomena such as jump phenomena,

in linear systems. Lyapunov approaches to the characterization - L . .
of frequency response are established for linear systems, subharmonic oscillations and frequency entrainment. This

homogeneous systems and nonlinear systems, respectively.Paper attempts to establish a systematic frequency analysis
In particular, we show that for linear systems, quadratic approach for the study of the input-output properties of
Lyapunov functions are sufficient for the characterization; for  nonlinear systems. In particular, we would like to determine
homogeneous systems, homogeneous Lyapunov functions arey,qip the asymptotic behavior and the transient behavior of

sufficient; and for general nonlinear systems, locally Lipschitz o . . .
Lyapunov functions will be used. We also develop a Lyapunov the output under the excitation of an input signal which has

approach for the characterization of the peak of the output. ON€ or more frequency components.

This approach is demonstrated to be effective on linear Consider nonlinear systems of the form

systems. An LMI based method for performing frequency )

analysis on linear differential inclusions is developed. Through &= f(x,u), y=h(w) 1)
a numerical example, an interesting phenomenon is observed where f : R" x R — R" and h : R" — RY

about the relation between the frequency response and thé, . . . .
gain of linear differential inclusions. are both locally Lipschitz continuous. Several notions of

output stability for such systems were introduced in [11]
and a Lyapunov approach was developed in [12] for the
characterization of these output stability properties. Given
an initial statex, € R™ and an inputu, let z(-,z.,u)
be the solution of the system and lgt-, z,,u) be the

Keywords: Frequency analysis, transient analysis, Lyapunov
functions, differential inclusions, LMI.

Basic Definitions

-l _Eug'dea” norm oft. _ corresponding output. Assume that for everyandu, the
- lull: L5-norm of an essentially bounded functien  goytionz (¢, ., u) is defined for al > 0. Then the system
R>o — R™. is said to be input to output stable if there existC&-

- Afunction a :  R>g — R is said to belong 0 ¢ netion 3 and ak-function y such that
classC (« € K) if it is continuous, zero at zero, and

strictly increasing. It is said to belong to claks, if, ly(t, o, u)| < B(|2ol 1) +y([ul]), VE>0. (2

in addition, it is unbounded. o Now suppose that the system is input to output stable. One
- Afunction 3 : R>g x R>9 — R is said t0 belong jyeresting problem is to find a functionthat characterizes

to classKCL if, for eacht > 0, (-, ?) is nondecreasing yq asymptotic bound of the output as sharply as possible.

andlim; o+ §(s,t) = 0, and for eachs > 0, 5(s,-)  por |inear systems, the problem of minimizing the asymp-

is nonincreasing antim; ., 3(s,t) = 0. totic bound can be approached through reachable sets with
unit-peak inputs, which are estimated with ellipsoids under
the LMI framework (see page 82, [3]). In the literature,
A. Background attempts have also been made to minimize the gain function

Frequency domain analysis and time domain analysis atefor special classes of nonlinear systems (e.g., see [7],
equally important for linear systems. They provide differenf10] for systems with saturation nonlinearities). Most often,
insights into systems characteristics and they complemethte inputw« is not an arbitrary signal and more detailed
each other in the development of linear systems theoigwformation about it may be exploited to obtain a weaker
[8]. For nonlinear systems, frequency analysis is also astability condition or a sharper bound on the output. For
important problem and has been attempted since 1950s (sistance, the bound on the derivatives of the input was used
e.g., [4], [5]. [6], [9], [14], [15] and [2] for a review of in [1] to obtain a weaker condition of stability.
the early developments). Some of the early papers usedin many situations, the input can be modeled as the
the describing function method to obtain an approximateutput of an autonomous system. For instance, in rotating

machinery, a disturbance/inputusually takes the form of
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has a potential to result in a better estimate of the asymptofihe discrepancy between the two sides of the above in-
gain from the input to the output. This brings us back tequality can be handled by doubling the dimensions of the
the topic of frequency analysis for nonlinear systems.  state and the output to form an augmented system.

In view of these arguments, we use the quantity on the

B. Motivation and problem formulation left side of (9), i.e.,

1) Modeling the input:Consider the system (1). An input [l
u whose components have the same frequepiagan be T = 5113070‘
modeled as ’

to represent the frequency response (at a particular fre-
uw=Tw= [Im Om]w, W= [ 0 _Mm]w. (3) quency¢) of a linear system and will generalize it to
¢Im 0O nonlinear systems. To realize the generalization, let us now
The magnitudes and the phases of all the componenis ofnterpret the quantityy. in the state space. Consider the
are determined by the initial condition of. Moreover, the combined system
norm of « in .th-e. frequerj(?y domain equals the Euclidean , _ Az + Bw, w=Sw, y=Cxz, (E=BI). (10)
norm of the initial condition,|w,|. If v has several fre-
quency components, we can model it as Let I be the solution to

u="Tw, w=>8Sw, (4) AIl - IIS = E. (11)

Claim 1: ~, = ||CTI|| and-, is the least positive number

with R’ and T = 0. A more general situation is . L
w e 515 =0 9 ~ such that there exisk’ > 0 andn > 0 satisfying

thatw is the output of an oscillator:

w=Tw, =gw), G) Wt <K Z‘; e 4 ylwo| Yz, € R™, w, € RE (12)
wherew € R’ and (w, g) = 0. In all the above cases, we 3) Frequency analysis for general systems: problem for-
have |w(t)| = |w.|. mulation: For a linear system, the “frequency response”

Now we have the combined autonomous system can be easily obtained for all € [0, ) and the term also
represents the function itself. For a nonlinear system, we
& = flz,Tw), y=h(x), (6)  have to restrict our attention to a fixed frequengjput we
w = g(w). (7) still use “frequency response” to describe the input-output

relationship for simplicity. We also extend the term to the

Since the original inputu is completely determined by gjyation where the input has the general description of (5).
the initial condition w,, we would like to characterize |, view of Claim 1. for a general system

the relationship between the output amd. Under the . _
traditional frequency analysis framework, this relationship = f(z,Tw), w=gw), y=h(z),
is described by the term “frequency response”. with (w, g) = 0, any locally Lipschitz functiony € K such

2) Frequency analysis for linear systems: time domaiiy,,t there existy > 0 andn > 0 satisfying
interpretation: Consider a linear system

()] < K| ° e y(jws|) Vo € R" wo € R (13)

Zo
& = Ax + Bu, y = Cux, z(0) =z,, (8) Wo
wherez € R, u € R™ andy € R?. Assume thatd is IS called an upper bound for the frequency response. Our
Hurwitz. Let u be an input whose elements have the samié'st objective of frequency analysis is to characterize the
frequencye, i.e., u;(t) = u; cos(¢t + ;). Thenwu can be Set of locally Lipschitz functionsy € K such that there
described with (3). Note thai| = |w.|. Let y> be the €xXistK > 0 andn > 0 satisfying (13).* The infimum of
asymptotic component af, i.e.,y(t) = 4 (t)+5(t), where this set of functions will be called the frequency response
limy . §(t) = 0. Suppose tha>®(t) = ; cos(¢t + ;).  Of the system.

Then the norms of, andy* in the frequency domain até| The noti_on _of frequency response can also be extended
and|y| respectively. For single input single output systemd0 differential inclusions. Consider the system
we have||u|| = || = |w.| and[|y>°|| = y. Hence € Alz,w), weGw), y=h(z) (14)

(o] o0
sup M = sup M = [|C(jpl — A)_lBH. 4The frequency response may also be developed replacing the expo-
wo#0 |wo| |u|#£0,0,€[0,27] HU” nential decay function in (13) with a more general decay function, such

as theK L-function B in (2). The tools needed to address this case are
For multiple input multiple output systems, sinftg>°|| < in place, and reasonable Lyapunov formulations can be stated. (Cf. [13].)

|§ we have However, for the particular Lyapunov structure we use in this paper, it is

! somewhat cumbersome to clarify the regularity of the Lyapunov function
Hyoo H characterizing.the frequenpy response. For th!s reason, in order to keep the

sup < ||C(]¢[ — A)*lB”. (9)  presentation simple, we will restrict our attention to the exponential decay

wo#0 |wo| case in this paper. 4146



where A andG are set-valued maps. Assume thiat g) = B. Homogeneous systems
0 for all g € G(w). Given a locally Lipschitz function |t 77 . R? — (subsets ofR™) be a set-valued map.

v € K, if there existK' > 0 andn > 0 satisfying (13) for \ye say that)/ is homogeneous of degreeif M(\zx) =

all y in the set of solutions under the initial conditian APM () for all A > 0 andz € R”. Consider the system
and w,, then+ is called an upper bound for the frequency N
€ A(z,w)

response. Similarly, the infimum of this set of functions will T

be called the frequency response of the system. w € G(w) (20)
We will develop a Lyapunov approach to characterize y = h(z),

such a set of functionsy for general systems. Specific,pora € R we R andy € R9. A : R* x R! —

results will be presented for linear systems, homogene01(1§ubsets oR") and G : R’ — (subsets oR’) are set-

systems and nonlinear systems, respectively. We will al%lued maps. Define

present an LMI approach to estimate the frequency response

for linear differential inclusions. Another objective of this €= [ x ] (21)

paper is to characterize the transient behavior of the output, w

in particular, the peak of the output under a set of initial a

conditions. This problem is important for systems that are £ §) = H g } s a € Az,w),g € G(w)}' (22)

subject to state or output constraints. )
Assumption 2:(w,g) = 0 for all ¢ € G(w). The set-

valued mapF and the functionh are homogeneous of

Il. FREQUENCYRESPONSE MAIN RESULTS X ) X
degree one and globally Lipschitz with nonempty compact,

Standing assumption:All systems considered are forward convex values. 0
complete, i.e., there are no finite escapes. Under Assumption 2, it is clear thai(t)| = |w.| for all
t>0.
A. Linear systems We consider continuously differentiable functiofig :
: wW@O) = 0
& = Ar+ Ew
Ww = Sw (15) ()P < W(E) (23)
VW (§), < —pn(W(&) — ~+P|w|P) .
y = Cz, Jnax (VW(E), ) < =pn(W(E) =2"[wl?)
wherez € R™, w € R? andy € RY. Theorem 2:Suppose Assumption 2 holds and #et> 0
Assumption 1:S + S™ = 0 and A4 is Hurwitz. 0 be given. There existg > 0 such that, for eacl > 7 and
Under Assumption 1, we have ()| = |w,| forallt > 0. P > 1, (23) has a continuously differentiable solution that is
Define B homogeneous of degreeif and only if there exists; > 0
A { A E } (16) and for eachy > 7 there existsK > 0 such that
L= _
0 S ly(1)] < K|E|e ™ + ~lwo| ¥ zo € R®,wo € RE . (24)
We consider square matricésand numbersy > 0, 7 > Remark 1:In fact, the necessary condition can be re-
0 satisfying placed with a seemingly weaker one: There exist 0 and
P—P >0 p > 1 such that, for each > 7, (23) has a continuously
cC 0 differentiable solution that is homogeneous of degrethe
{ 0 0 <P (17) equivalence of these conditions implies that we can restrict
0 0 our attention to a fixegh > 1, such as an even integer.
AT P+ PAL < —2n (P — 2 { 0 I, D By Theorem 2, the frequency response is given by the

infimum of 4 such that there exisp > 1, n > 0
Theorem 1:Suppose Assumption 1 holds and fet- 0 and a continuously differentiable solution for (23) that is

be given. For eacl > 7 there exist a matri® andn > 0 homogeneous of degrge

satisfying (17) if and only if for eachy > 7% there exist

K > 0.7 > 0 such that C. Nonlinear Systems

To - / Consider the system
ly(t)| < K e M tylwe| V. eR™ w, R, (18)
Wo

) z € A(z,w)
From Claim 1, we know that the leastsuch that there .
. T : w € G(w) (25)
exist K > 0,7 satisfying (18) is the frequency response y = h(z)

By Theorem 1, we have
. o wherez € R", w € R andy € R?, and A and G are
¥x = inf{y: 3 P,n >0 satisfying (17}. (19)  set-valued maps. Let and F be defined as in (21)-(22)47



Assumption 3:(w, g) = 0 for all g € G(w), and the set- Choosep = 2, n(¢) = salx)/z, ¥(Jw|) = 2|w|/B and
valued mapfF is locally Lipschitz with nonempty compact,
convex values. O 2, 4 2 9

W) =2x° 4+ —xws + —swi +

Under Assumption 3, we also haye(t)| = |w,| for all © g g
t>0.

Given ¥ € K locally Lipschitz, we consider locally
Lipschitz functionsiV : R**+¢ — R, and numbers) > 0,

e > 0, p > 1 satisfying

4
7

Then it can be verified that the condition of Corollary 1 is
satisfied for everyp > 0. Moreover, for all§, € R3, the
steady state: is bounded byy(|wo|) = 2|wo|/3 = 2k/8.

W(0) =0
4 I1l. PEAK ESTIMATION THROUGH LYAPUNOV
(@)l < W(E) APPROACH
max (VIV(E), f) < =pn (W(&) ~ (1+¢)"7(|w])”) a.e.

(26) Evaluation of the peak of an output is an important
Theorem 3:Suppose Assumption 3 holds andiet £  problem, especially for systems that must operate under
be given and locally Lipschitz. There exists> 0 such some state or output constraint. An LMI method for es-
that, for eachke > 0 andp > 1, (26) has a locally Lipschitz timating a bound for the peak was presented in [3] for
solution if and only if there exist§ > 0 and for eaclkt > 0  stable linear systems. In this section, we will develop a
there existsv. € K, such that general method for peak evaluation by further exploring the

= _ Lyapunov approach.
()] < a=(&)e™™ + (1 + )7(|wo|) yap PP

Yz, € R", w, € RY . (27)
A. A general result

By Theorem 3, we see that any bound on the frequency _ _ .
response can be arbitrarily closely approximated by a Consider system (25) under the standing assumption and
function ¥ satisfying (26), along with a locally Lipschitz Assumption 3. Letr : R" — R, be a function that
function W and numbers) > 0, ¢ > 0 andp > 1. measures the size of the stateWe would like to determine

The input-output description in (27) is a global relationthe peak of the output in terms ofz.) and |w|.
For some systems, such a relation may only be valid for Theorem 4:Suppose that there exist a locally Lipschitz
initial states in a local region. This situation is addressefinction W : R"** — R, a functionn : R"™* — R,

by the following corollary. and classC..-functionsay, as, as, a4 satisfying
Corollary 1: Given 7 € K locally Lipschitz. Suppose
there exist locally Lipschitz functionV : R" — R a1 ([h(2)[P) < W(E) < az(r(z)) + as(|w[?)
and a functior : R*** — R, and numberg > 1, p > fféllf}é)ww(f), ) <=n(&) (W(E) — au(|wP)) ae.
0,7 > 0 such thati¥’(0) = 0 and for all
n _ then
£€Ap)=1{£eR™: W(E) <p, F(|wl)? < p}
the following is satisfied ly(t) P < a7t (max{az(r(x.)) + az(jwe|P), ca(|ws|P)})
n) >n Vo € R, w, € R.
|h(@)[P < W(E)
flenlglé)ww(f),f) < —pn(&) (W (E)—(|w])F) ae. B. Application to linear systems
Then there exista € K., such that, Let the initial state ofr be inside a sefX,, say X, =
L {z € R": 2Rz < 1}, whereR = R" > 0. Assume for
(O] < a(|&De™ +7(Jwo]) V& € Alp). simplicity thatw’w, < 1. We taker(z) = 2" Rz. Consider

quadratic type Lyapunov functiori§’(¢) = {'P¢ andp =

Example 1:Consider a first-order system ) ) .
2. According to Theorem 4, if we can find& = P™ > 0,

t=sal—z)+d, y=h(z)=uz, and numbersy,, as, oy, > 0 such that, for al € R*+¢,
where satu) = sign(u) min{1, |u|} and d is the distur- cC 0 aR 0
bance. Ifd is arbitrary, then the steady state gain fram 5T{ 0 0 }E <ETPE< fT{ 3 asl, ]f, (28)

to x is unbounded. For instance, a constant- 1 will 0 0
drive x unbounded. However, il is a sinusoidal signal A} P+ PAp < —n (P - a;{ 0 I D ) (29)
d(t) = ksin(gt), we will show that the steady stateis ¢

bounded by2k/3. We expressl as then for allz, € X, |wo| < 1,

. 0 B
d= [ 10 }w, w= { _3 }7 lwol = k. y(®)'y(t) < max{as + as,aq} VE>0. (U8



The estimated bound vs the actual bound, 2nd order

Our objective is to compute 18

— : 16f
T n,az,alsr,ljomp max {a2 + as, as} . (31) gl
st. a) P=P'>0 ‘

CTC O 1.2F

< N>8
b) [ 0 0 } =Pk 3 1
as R 0 Ni 0.8}

P < o83
i N [ 0 asly } 0.6f
d) AiP+PAL <-n(P -« 00 04f

L = 1o I

0.2

It is shown that the optimal solution can be obtained by

icti — . . 2 2. X
reStrICtlng Qg + a3 = Q. 0 0% ! ! 5Frequency[}(rad) ° $ 38 ¢

A degenerated case is whekg = {0}. In this case, the

o .. Fig. 1. The estimated bound and the actual bound: a 2nd order system
initial conditions belong to the set

0706Rn+ei TR0<]—7 T0<]‘7
{(2o, wo) zoRro <1, wiwo < 1} A = 61 ? and for eachd; € Q, S+ ST = 0. Here

whereR = ocol. Because of this, the constraint (31c) shoulqye nave two types of LDIs. For polytopic LDls

be replaced with
Q=co{Ar;: i=1,2,---,N},

0
[0 L ]P{ I, ] < asly. and for structured LDlIs,

An optimization problem similar to (31) can be formulated QO={AL. +UAH : ||A| <1},
to estimate the output bound. whereA ., U andH are given matrices. The polytopic LDI

Example 2:Consider a second order system can be used to describe with time-varying and uncertain

. . frequency. Hence it allows nonperiodic signal

. 0.6 —0.8 00 ;
t=Az + Fw, A= 08 061" E=11 1] %=0 Theoretically, the exact frequency response can be ob-

_ tained by optimizing over all the homogeneous Lyapunov
with functions and the numbergs > 0, > 0,p > 1 satisfying

] 0 —-f . (23). For computational simplicity, we would like to restrict
w=Sw, 5= [ 3 0 ]v Wowo < 1. our attention to quadratic Lyapunov functions. We consider
Lyapunov functions of the typd¥ () = £"P¢ andp = 2.

The output isy = Cz = [1 O]z If we don't use the " Then the condition (23) can be stated as
frequency information of the disturbance, then the bound [ oC o }

on y? computed from the method in [3] 5" = 2.3594. By 0 0
using the frequency information for differefit we obtained

2 2
a much smaller bo_und_ op*, denoted AYis st (see the AVP 4+ PA;, < —2p (P—
dash-dotted curve in Fig. 1). The actual maximal value of

y(t)?, denotedy?,, is computed through simulation and IS\where P — P/~2. We have replaced® with P for
the solid curve in Fig. 1. As a comparison, we also plottedl | 1erical simplicity. If there exisP = P™ > 0, 7,7 > 0

the exact asymptotic amplitude of, denotedys., as the  gqiictying (33) and (34), then is an upper bound for the
dashed curve in Fig. 1. We see that the asymptotic amp“tu‘flr%quency response.

of y2 could be much smaller than its actual maximal value For polytopic LDIs, (34) is satisfied if and only if
which is reached during the transient process. '

<~%P (33)

0 0
0 I, }),VALGQ, (34)

T . — — O 0 ) — “ e
IV. LDI S AND AN OBSERVATION ON FREQUENCY ApP+P AL <=2 <P {0 I, , Vi=1-, N (39)

RESPONSE VSLy GAIN Therefore, the bound on the frequency response can be

A. Numerical analysis with quadratic Lyapunov functionssharpened by solving

Consider the following linear differential inclusion: inf o (36)
. v P=PT>0
ef{Ars: ApeQ), y=[C 0]¢ (32 s.t. (33),(35)

For a fixedn > 0, this is a standard “gevp” problem in LMI.
For structured LDIs, similar optimization problem can be
set in R(m+Hx(n+0 whose elementd; has the structure formulated. 4149

where ¢ = e R*+O, Assume thak) is a convex




B. An observation on frequency responselysgain This explains the low energy of the output even with a high

For linear systems, we know that the peak of the freP€@k. This cannot happen in linear systems [16].
quency response equals thhg gain. For LDIs, it may be
expected that the peak of the frequency response is no
greater than the., gain. If this is the case, then the peak
of the frequency response can be suppressed indirectIyOE
minimizing the L, gain, which can be easily addresse
by solving LMIs. However, the following example demon-
strates that thel, gain of an LDI system could be less
than the peak of the frequency response. This means the
the frequency analysis has to be performed separately frch
the L, gain analysis to ensure that the output is below a
admissible value.

Example 3:Consider the linear differential inclusion:

(37)

V. CONCLUSIONS

Motivated by a state-space interpretation of frequency
ponse for linear systems, we have given a trajectory-
sed definition of frequency response for general nonlinear
systems and we have given an equivalent Lyapunov char-
acterization. The Lyapunov characterization of frequency
sponse uses guadratic functions, naturally, for linear sys-
s, continuously differential homogeneous functions for
omogeneous systems, e.g., linear differential inclusions,
and locally Lipschitz functions for general nonlinear sys-
tems. We have also tailored the Lyapunov analysis to
estimate the peak of the output as it converges to the
frequency response. Finally, we have pointed out that, in
contrast to the situation for linear systems, the frequency

T € CO{Al.%' + Blu, AQ.’,E + BQU},

where

—0.6 —0.8 0
Al{ 0.8 —0.6]’ Bl[l]’
—-0.3 —25 0
Az = { 25 0.3 ] Bz = [ 0.5 } [

The outputisy = Cz = [ 1 0 |z. The L, gains of the
two linear systemgC, A, B1) and (C, A, Bs) are both
0.8333. An upper bound for thel, gain of the LDI is
computed asy, = 0.9906 (with the algorithm in [3]).

Now assume that = sin(¢t + 6). By using our method
at ¢ = 1.26, the upper bound for asymptotic outpyf® is
computed ad.2169. An actual bound o, for a specific
phased and a specific switching strategy within (37), is
detected a$.0917, which is greater than’y, = 0.9906. Ac-
tually, under this particular switching strategy, we detected
two “steady state” responses of the output, corresponding[
to different phase&). These two asymptotic responses are [7]
plotted in Fig. 2. The solid response has a peak larger than
1 but the energy over the time interval is only 0.556 of the (8]
energy of the disturbance = sin(1.26t + ) over the same
interval. From Fig. 2, we see that the peaks of the solid 0

5]

15

[10]

[11]

0.5

[12]

[13]

-1

(14]

-15
260

. . . .
280 285 290 295
time(sec)

L L L
265 270 275 300

[15]

Fig. 2. Two asymptotic responses

[16]

curves are much sharper than those of a sinusoidal signal.

response may exceed tiig gain for nonlinear systems, in
particular for a two dimensional LDI.
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