Aller au contenu

Wikipédia:Sélection/Étoiles

Une page de Wikipédia, l'encyclopédie libre.

Si vous désirez rajouter un ou des articles, il faut le faire à deux endroits :

  1. Dans les arguments du modèle « Wikipédia:Lumière sur/Au hasard » ci-dessous ;
  2. Dans la table ci-dessous ;

Les mini-articles de présentation doivent être créés dans « Wikipédia:Lumière sur/ », par exemple Wikipédia:Lumière sur/Linux pour le premier article sélectionné de l'exemple ci-dessous, et dont le texte contient un lien en gras qui pointe vers Linux.

Corot (télescope spatial)

CoRoT (pour COnvection, ROtation et Transits planétaires) est un télescope spatial destiné à l'étude de la structure interne des étoiles et à la recherche d'exoplanètes. Lancé le , CoRoT est le premier télescope en orbite consacré à la recherche d'exoplanètes, c'est-à-dire de planète tournant autour d'autres étoiles que le Soleil, et notamment de planètes telluriques. D'une masse de 630 kg sa charge utile est constituée d'un télescope afocal associé à une caméra grand champ. Il a été développé par l'agence spatiale française, le CNES, avec l'aide des autres nations européennes impliquées dans le spatial et sa mission s'est achevée en novembre 2012.


Étoile de Barnard

Étoile de Barnard
Étoile de Barnard

L'étoile de Barnard est une étoile de la constellation d'Ophiuchus. Cette naine rouge de type M est principalement connue pour être l'étoile possédant le mouvement propre le plus important (10,3" par an). L'étoile est nommée en l'honneur de l'astronome Edward Emerson Barnard qui découvrit cette propriété en 1916. Située à une distance de 1,828 parsec (soit 5,96 années-lumière), c'est la cinquième étoile la plus proche de la Terre après le Soleil et les trois composantes d'Alpha Centauri. L'étoile est cependant invisible à l'œil nu en raison de sa faible luminosité.

Formation et évolution du Système solaire

Vue d'artiste d'un disque protoplanétaire.
Vue d'artiste d'un disque protoplanétaire.

La formation et l'évolution du Système solaire sont déterminées par un modèle aujourd'hui très largement accepté et connu sous le nom d'« hypothèse de la nébuleuse solaire ». Ce modèle fut développé pour la première fois au XVIIIe siècle par Emanuel Swedenborg, Emmanuel Kant et Pierre-Simon de Laplace. Les développements consécutifs à cette hypothèse ont fait intervenir une grande variété de disciplines scientifiques incluant l'astronomie, la physique, la géologie et la planétologie. Depuis le début de la conquête de l'espace dans les années 1950 et à la suite de la découverte des exoplanètes dans les années 1990, les modèles ont été remis en cause et affinés pour tenir compte des nouvelles observations.

Selon les estimations issues de ce modèle, le système solaire a commencé d'exister il y a 4,55 à 4,56 milliards d'années avec l'effondrement gravitationnel d'une petite partie d'un nuage moléculaire géant. La plus grande partie de la masse du nuage initial s'est effondrée au centre de cette zone, formant le Soleil, alors que ses restes épars ont formé le disque protoplanétaire sur la base duquel se sont formés les planètes, les lunes, les astéroïdes et les autres petits corps du Système solaire...

Gaia (satellite)

Gaia est une mission spatiale astrométrique, consacrée à la mesure de la position, de la distance et du mouvement des étoiles, développée par l'Agence spatiale européenne (ESA). Le projet est retenu en 2000 comme pierre angulaire du programme scientifique Horizon 2000+. Le satellite Gaia est lancé avec succès le 19 décembre 2013, pour une mission de cinq ans. Il prend la suite du satellite Hipparcos, lancé en 1989, qui a brillamment démontré les capacités des engins spatiaux dans le domaine de l'astrométrie. Gaia a pour objectif de mesurer les caractéristiques de plus d'un milliard d'objets célestes (étoiles, astéroïdes, galaxiesetc.) jusqu'à la magnitude 20. Les données collectées devraient améliorer nos connaissances concernant la structure, la formation et l'évolution de la Voie lactée, mais également apporter des contributions significatives dans les domaines scientifiques traitant des planètes extrasolaires, du système solaire, des galaxies extérieures ainsi qu'en physique fondamentale.

Gaia est un satellite d'environ 2 tonnes qui utilise, pour effectuer ses mesures, deux télescopes formant des images se superposant sur un plan focal commun, constitué par 106 capteurs CCD de 4 500×1 966 pixels. Ceux-ci se répartissent entre trois instruments : un instrument astrométrique dédié à la mesure de la position et du déplacement des étoiles, un instrument spectrophotométrique qui mesure l'intensité lumineuse dans deux bandes spectrales et un spectromètre à haute résolution qui doit permettre notamment de calculer la vitesse radiale des des objets observés les plus lumineux. Placé autour du point de Lagrange L2, le satellite en rotation lente balaie l'ensemble de la voute céleste, de manière à avoir accumulé à l'issue de sa mission au minimum 60 observations de tous les objets identifiables par ses instruments. Pour pouvoir produire le catalogue attendu vers 2020 à partir des quelque 100 téraoctets de données collectées par Gaia, un consortium de laboratoires, baptisé DPAC, développe des programmes particulièrement complexes nécessitant une infrastructure informatique lourde.

Genesis (sonde spatiale)

Vue d'artiste de Genesis.
Vue d'artiste de Genesis.

Genesis est une sonde spatiale développée par l'agence spatiale américaine, la NASA, dont l'objectif était de ramener sur Terre des échantillons des particules du vent solaire, flux d'ions et électrons énergétiques produit par le Soleil. La finalité de la mission était d'analyser en laboratoire les ions pour déterminer la composition du Soleil en éléments chimiques et la proportion des différents isotopes. Genesis est la cinquième mission du programme Discovery qui rassemble des missions spatiales d'exploration scientifique du système solaire de faible coût.

Genesis est lancée le 3 décembre 2001 par une fusée Delta II puis est placée en orbite autour du point de Lagrange L1 pour effectuer la collecte des particules solaires durant deux ans. À la fin de cette phase, Genesis se dirige vers la Terre. À la suite d'une erreur commise durant l'assemblage de la sonde spatiale, la capsule qui ramène les échantillons de vent solaire ne déploie pas son parachute et s'écrase le 8 septembre 2004 à plus de 300 km/h dans la région désertique de l'Utah où elle devait être récupérée. Malgré les dégâts infligés aux collecteurs de particules et la contamination induite, une grande partie des échantillons de vent solaire s'avère exploitable après un long travail de nettoyage mettant en œuvre plusieurs techniques. L'analyse des collecteurs se poursuit toujours en 2013 mais les objectifs qui consistaient à améliorer d'un facteur 3 à 10 notre connaissance des proportions des éléments présents dans le Soleil, sont considérés comme en voie d'être atteints par les scientifiques.

Nébuleuse du Crabe

La nébuleuse du Crabe observée en optique par le télescope spatial Hubble

La nébuleuse du Crabe (M1, NGC 1952, Taurus A, Taurus X-1) est un rémanent de supernova résultant de l'explosion d'une étoile massive en supernova historique (SN 1054) observée par un astronome chinois durant la période de la dynastie Song de juillet 1054 à avril 1056. La nébuleuse a été observée pour la première fois en 1731 par John Bevis, puis en 1758 par Charles Messier qui en fait le premier objet de son catalogue (catalogue Messier). Son nom traditionnel remonte au XIXe siècle, époque où William Parsons, troisième comte de Rosse, observe la nébuleuse au château de Birr dans les années 1840 et y fait référence sous le nom de nébuleuse du Crabe en raison d'un dessin qu'il en fait qui ressemble à un crabe. La nébuleuse du Crabe ne doit pas être confondue avec la nébuleuse planétaire Hen2-104, parfois appelée « nébuleuse australe du Crabe » du fait de sa ressemblance considérée comme plus manifeste avec le crustacé éponyme.

Située à une distance de ∼ 6 200 a.l. (∼ 1 900 pc) de la Terre, dans la constellation du Taureau, la nébuleuse a un diamètre de ∼ 10 a.l. (∼ 3,07 pc) et sa vitesse d'expansion est de 1 500 km/s, caractéristiques typiques pour un rémanent de cet âge. C'est le premier objet astronomique à avoir été associé à une explosion historique de supernova.

La nébuleuse contient en son centre un pulsar, le pulsar du Crabe (ou PSR B0531+21) qui tourne sur lui-même environ trente fois par seconde. Il s'agit du pulsar le plus énergétique connu, rayonnant environ 200 000 fois plus d'énergie que le Soleil, dans une gamme de fréquence extrêmement vaste, s'étalant de 10 mégahertz à plus de 30 GeV, soit près de 18 ordres de grandeurs. Le pulsar joue un rôle important dans la structure de la nébuleuse, étant entre autres responsable de son éclairement central.

Située à proximité immédiate du plan de l'écliptique, la nébuleuse est aussi une source de radiations utile pour l'étude des corps célestes qui l'occultent. Dans les années 1950 et 1960, la couronne solaire a été cartographiée grâce à l'observation des ondes radio de la nébuleuse du Crabe. Plus récemment, l'épaisseur de l'atmosphère de Titan, la lune de Saturne, a été mesurée grâce aux rayons X de la nébuleuse.

Helios (sonde spatiale)

Helios 1 et Helios 2 sont deux sondes spatiales développées par la république fédérale d'Allemagne avec une participation importante de la NASA et lancées en 1974 et 1976. Placées en orbite autour du Soleil les deux sondes ont étudié durant plus de 10 ans à l'aide de leurs 10 instruments les manifestations de l'astre durant un cycle solaire complet, les caractéristiques du milieu interplanétaire telles que le champ magnétique, le vent solaire, les rayons cosmiques et la poussière interplanétaire. Helios est le premier programme interplanétaire d'une nation européenne et constitue une réussite à la fois technique et scientifique.

Hipparcos

Le satellite Hipparcos (HIgh Precision PARallax COllecting Satellite, satellite de mesure de parallaxe à haute précision) est un projet de l'Agence spatiale européenne dédié à la mesure de la position, la parallaxe et le mouvement propre des étoiles. Le satellite a été utilisé pour mesurer la distance de plus de 2,5 millions d'étoiles situées à moins de 500 années-lumières de la Terre. Les résultats ont permis de produire trois catalogues d'étoiles : les catalogues Hipparcos, Tycho et Tycho 2. Le satellite porte le nom de l'astronome grec Hipparque, qui compila un des premiers catalogues d'étoiles. Le projet est proposé en 1980. Le satellite est lancé le par un lanceur Ariane IV. Le satellite devait être initialement placé sur une orbite géostationnaire mais, à la suite d'une panne du moteur d'apogée, Hipparcos reste sur l'orbite de transfert très elliptique. Malgré ce problème, les objectifs scientifiques ont pu être remplis. Les communications avec le satellite se sont interrompues le .

Les catalogues dressés grâce à Hipparcos ont permis de nombreux progrès dans notre connaissance d'une part des étoiles et de leur évolution d'autre part des structures des galaxies et de leur dynamique. Il a permis des progrès dans des domaines aussi divers que la détermination de l'âge de l'Univers, les taux de formation d'étoiles, les stratégies de recherches d'exoplanètes, la détermination des âges glaciaires. L'Agence spatiale européenne a décidé en 2000 de lui donner un successeur. Le satellite Gaia, dont le lancement est prévu en 2013, doit permettre d'établir un catalogue 50 fois plus précis qu'Hipparcos étendu à un milliard d'étoiles.


Hubble (télescope spatial)

Le télescope spatial Hubble est un télescope spatial développé par la NASA avec une participation de l'Agence spatiale européenne qui est opérationnel depuis 1990. Son miroir de grande taille (2,4 mètres de diamètre), qui lui permet de restituer des images avec une résolution angulaire inférieure à 0,1 seconde d'arc ainsi que sa capacité à observer à l'aide d'imageurs et de spectroscopes dans l'infrarouge proche et l'ultraviolet lui permettent de surclasser pour de nombreux types d'observation les instruments au sol les plus puissants handicapés par la présence de l'atmosphère terrestre. Les données collectées par Hubble ont contribué à des découvertes de grande portée dans le domaine de l'astrophysique telles que la mesure du taux d'expansion de l'Univers, la confirmation de la présence de trous noirs supermassifs au centre des galaxies ou l'existence de la matière noire et de l'énergie noire.

Le développement du télescope Hubble démarre au début des années 1970 mais des problèmes de financement, de mise au point technique et la destruction de la navette spatiale Challenger repoussent son lancement jusqu'en 1990. Une aberration optique particulièrement grave est découverte peu après qu'il a été placé sur son orbite terrestre basse à 600 km d'altitude. Dès le départ le télescope spatial avait été conçu pour permettre des opérations de maintenance par des missions des navettes spatiales. La première de ces missions en 1993 est mise à profit pour corriger l'anomalie de sa partie optique. Quatre autres missions, en 1997, 1999, 2002 et 2009, permettent de moderniser les cinq instruments scientifiques et remplacer certains équipements défaillants ou devenus obsolètes. La dernière mission de maintenance, réalisée en 2009, immédiatement avant le retrait définitif des navettes spatiales, devrait, sauf imprévu, permettre au télescope Hubble de fonctionner jusqu'à la fin de la décennie 2010. Pour les observations dans l'infrarouge il devrait être remplacé vers 2018 par le télescope spatial James-Webb aux capacités supérieures.

James Webb Space Telescope

Vue d’artiste du James Webb Space Telescope.
Vue d’artiste du James Webb Space Telescope.

Le James Webb Space Telescope (JWST), anciennement appelé « Next Generation Space Telescope » (NGST), est un télescope spatial développé par la NASA avec le concours de l’Agence spatiale européenne (ESA) et de l’Agence spatiale canadienne (CSA). Il doit succéder en 2018 au télescope spatial Hubble.

JWST est un télescope qui effectue ses observations dans l’infrarouge. Il est doté d’un miroir primaire de grande dimension qui lui permet de collecter 9 fois plus vite une image que Hubble (6,5 mètres de rayon pour 2,4 mètres pour Hubble). La résolution de ses instruments doit être utilisée, entre autres, pour observer les premières étoiles et galaxies qui se sont formées après le Big Bang. Le projet qui a démarré en 2002 entre en phase de fabrication. Le télescope doit être lancé par une fusée Ariane 5 depuis Kourou et sera positionné au point de Lagrange L2 à 1,5 million de km de la Terre. Il est prévu que sa mission dure 5 ans avec une possibilité de prolongation.

Les quatre principaux objectifs scientifiques du JWST sont :

  • la recherche de la lumière des premières étoiles et galaxies qui sont apparues dans l’univers après le Big Bang ;
  • l’étude de la formation de la galaxie et de son évolution ;
  • la compréhension des mécanismes de formation des étoiles ;
  • l’étude des systèmes planétaires et de la formation de la vie.

Naine blanche

Sirius B est une naine blanche visible comme un petit point en bas à gauche de Sirius A, beaucoup plus brillante. Si ce système était observé dans le domaine des rayons X, Sirius B apparaîtrait alors plus brillante que son compagnon du fait que sa surface est significativement plus chaude. Photographie prise le 15 octobre 2003 par le télescope spatial Hubble.
Sirius B est une naine blanche visible comme un petit point en bas à gauche de Sirius A, beaucoup plus brillante. Si ce système était observé dans le domaine des rayons X, Sirius B apparaîtrait alors plus brillante que son compagnon du fait que sa surface est significativement plus chaude. Photographie prise le 15 octobre 2003 par le télescope spatial Hubble.

Une naine blanche est, en astronomie, le nom donné à ce qu'il advient d'une étoile de masse modérée (de 8 à 10 masses solaires au maximum) à l'issue de la phase où se produisent des réactions thermonucléaires. Ces objets acquièrent alors une taille très petite comparativement à une étoile, et conservent longtemps une température de surface élevée, d'où leur nom de « naine blanche ».

Une naine blanche possède typiquement une masse inférieure quoique comparable à celle du Soleil pour un volume similaire à celui de la Terre. Sa densité est ainsi de l’ordre d’une tonne par centimètre cube, plusieurs dizaines de milliers de fois plus élevée que celle des matériaux observés sur Terre. Sa température de surface, qui peut dépasser au départ 100 000 kelvins, provient de la chaleur emmagasinée par son étoile parente, chaleur qui ne diffuse que très lentement du fait de la faible surface de l'astre. C'est aussi du fait de cette faible surface que, malgré sa température élevée, la luminosité d'une naine blanche reste limitée à une valeur de l’ordre d’un millième de luminosité solaire, et décroît au cours du temps.

On estime que les naines blanches constituent approximativement 6 % en nombre de l'ensemble des étoiles connues dans le voisinage solaire, mais étant donné la rareté des étoiles de grande masse, elles représentent le destin de 97 % des étoiles de notre galaxie.

Du fait de l'évolution de leur étoile parente (dictée par sa masse), les naines blanches existant aujourd'hui sont habituellement composées de carbone et d'oxygène. Quand l'étoile parente est suffisamment massive (probablement entre huit et dix masses solaires), il est possible qu'elle donne naissance à une naine blanche sans carbone, mais comprenant du néon et du magnésium en sus de l'oxygène. Il est également possible qu'une naine blanche soit principalement composée d'hélium, si son étoile parente a été sujette à un transfert de matière dans un système binaire. Dans chacun de ces cas, la naine blanche correspond au cœur mis à nu de l'étoile parente, alors que les couches externes de celle-ci ont été expulsées et ont formé une nébuleuse planétaire. Il n'existe pas de naines blanches issues d'étoiles de moins d'une demi masse solaire, car la durée de vie de celles-ci est supérieure à l'âge de l'univers. Ces étoiles-là évolueront selon toute vraisemblance en des naines blanches composées d'hélium...

Nuclear Spectroscopic Telescope Array

Le Nuclear Spectroscopic Telescope Array ou NuSTAR est un télescope spatial à rayons X de l'agence spatiale américaine de la NASA qui doit observer des rayons plus énergétiques (6-79 keV) que ceux étudiés par Chandra et XMM-Newton. Le télescope utilise deux optiques de type Wolter-I : celles-ci sont constituées de 133 miroirs cylindriques emboités les uns dans les autres. Les miroirs en verre sont recouverts de plusieurs couches de composants métalliques qui exploitent le principe du miroir de Bragg pour permettre la réflexion des rayons X les plus durs sous des incidences plus élevées. Ceux-ci font converger les rayons X sur des détecteurs constitués par 4 semi-conducteurs de type Cadmium-Zinc-Tellurium. Le télescope utilise une technologie mise au point pour le télescope X HEFT transporté par ballon. La sensibilité résultante pour les rayons X durs est de 10 à 100 fois supérieure aux télescopes de génération précédente.

NuSTAR doit étudier différentes sources astronomiques d'émission de rayons X durs. NuSTAR est le 11e satellite du programme Small Explorer de la NASA dédié aux petits satellites scientifiques dont le coût est inférieur à 120 millions $. Il doit être lancé durant le premier trimestre 2012 par une fusée Pegasus qui placera NuSTAR sur une orbite basse circulaire à 600 km d'altitude avec une inclinaison quasi équatoriale (6°). La durée nominale de la mission est de deux ans mais pourrait être étendue à six ans.

SN 1054

La nébuleuse du Crabe, rémanent de SN 1054 photographiée près de 1 000 ans après son explosion qui fut vue la première fois au matin du 4 juillet 1054.
La nébuleuse du Crabe, rémanent de SN 1054 photographiée près de 1 000 ans après son explosion qui fut vue la première fois au matin du 4 juillet 1054.

La supernova de l’an 1054, ou, selon son appellation normalisée, SN 1054, est une supernova dont l’explosion a été observée à partir du mois de juillet 1054, pendant une durée de deux ans. De très nombreux documents du monde chinois relatent son observation, qui est également attestée par un document en provenance du monde arabe. Par contre, la connaissance de cet événement par les Européens et les Amérindiens de cette époque reste très hypothétique.

Le rémanent de supernova de SN 1054, constitué des débris éjectés lors de l’explosion, est appelé nébuleuse du Crabe. Elle est située dans une direction proche de celle de l’étoile ζ Tauri. Elle héberge en son sein le résidu compact de l’étoile qui a explosé, un pulsar, appelé pulsar du Crabe (ou PSR B0531+21). Cette nébuleuse et le pulsar qu’elle contient forment la structure astronomique la plus étudiée en dehors du système solaire, entre autres parce qu’il s’agit d’une des rares supernovae galactiques dont la date d’explosion est parfaitement connue, et que ces deux objets sont parmi les plus lumineux de leurs catégories respectives. Pour ces raisons, et du fait du rôle important qu’elle a plusieurs fois occupé à l’époque moderne, SN 1054 est la supernova historique la plus célèbre de l’histoire de l’astronomie.

La nébuleuse du Crabe est facilement observable par les astronomes amateurs grâce à sa forte luminosité, et fut d’ailleurs cataloguée très tôt par les astronomes professionnels. Lorsque l’astronome français Charles Messier guettait le retour de la comète de Halley en 1758, il confondit la nébuleuse du Crabe, dont il ignorait alors l’existence, avec la comète ; c’est suite à cette erreur qu’il entreprit de réaliser son catalogue d’objets nébuleux non cométaires, le catalogue Messier, afin d’éviter de telles méprises à l’avenir. La nébuleuse figure ainsi à la première place du catalogue, sous la référence M1.

Sphère de Dyson

Schéma d'une coquille de Dyson d'une unité astronomique de rayon.
Schéma d'une coquille de Dyson d'une unité astronomique de rayon.

Une sphère de Dyson est une mégastructure hypothétique décrite en 1960 par le physicien et mathématicien américain Freeman Dyson, dans un court article publié dans la revue Science et intitulé Search for Artificial Stellar Sources of Infrared Radiation (« Recherche sur les sources stellaires artificielles de rayonnements infrarouges »). Cette structure d'astro-ingéniérie consiste en une sphère de matière, artificielle et creuse, située autour d'une étoile et conçue pour en capturer presque toute l'énergie émise, pour une utilisation industrielle. Dyson nomme également cette structure « biosphère artificielle ».

Bien que Dyson ait été le premier à formaliser et populariser le concept de sphère de Dyson, l'idée lui est venue en 1945 après la lecture d'un roman de science-fiction d'Olaf Stapledon intitulée Star Maker (Créateur d'étoiles, 1937). Dyson a également été influencé par la sphère imaginée par le Britannique John Desmond Bernal en 1929. Dans son article, Dyson explique qu'une telle sphère est un moyen idéal pour une civilisation très avancée de faire face à un accroissement démographique exponentiel. Il la décrit comme une coquille enserrant son étoile parente, captant la quasi intégralité de sa radiation solaire. Dyson explique que de telles sphères pourraient aussi abriter des structures d'habitations. Enfin, il recommande d'observer la galaxie dans l'infrarouge afin de détecter de possibles sphères dans notre galaxie.

Dyson, mais aussi d'autres auteurs après lui, ont décrit les propriétés de cette sphère, aussi bien concernant sa composition, sa température, sa localisation au sein de son système solaire, voire sa capacité de déplacement. L'idée qu'une civilisation extraterrestre avancée puisse pallier ses problèmes énergétiques au moyen d'une biosphère artificielle est une solution possible au paradoxe de Fermi, problème auquel Dyson a tenté de répondre en en précisant les conditions d'observation. Il existe plusieurs variétés de sphères de Dyson : coquille, essaim ou encore bulle. Le modèle élaboré par Dyson a influencé nombre de mégastructures hypothétiques.

Plusieurs programmes de recherche de possibles sphères de Dyson ont été menés depuis 1985. Si des étoiles ont pu afficher des caractéristiques proches de celles attendues concernant ces mégastructures spatiales, aucune conclusion n'a pu être tirée concernant l'existence probante de tels objets artificiels. La science-fiction a beaucoup utilisé l'idée de Dyson, que cela soit en littérature, au cinéma, ou dans les jeux vidéo.

Swift (télescope spatial)

Vue d'artiste de Swift.
Vue d'artiste de Swift.

Swift est un télescope spatial multi spectral (rayons X durs et mous, ultraviolet, lumière visible) développé par l'agence spatiale américaine, la NASA, avec des contributions importantes de l'Italie et du Royaume-Uni. Lancé en 2004 par une fusée Delta 2, Swift a pour objectif d'identifier, localiser et observer les sursauts gamma. Cette mission du programme Explorer est pilotée par le Centre Goddard et son coût est d'environ 250 millions de dollars. L'université d'État de Pennsylvanie a joué un rôle central dans la réalisation de l'instrumentation scientifique et héberge le centre de contrôle du télescope spatial. La mission initiale devait durer 2 ans mais Swift est toujours en activité en 2016.

Les sursauts gamma sont le phénomène astronomique le plus violent de notre Univers. Ils se caractérisent par une émission de rayons gamma qui ne dure que quelques millisecondes à quelques minutes. Du fait de cette brièveté et bien que la découverte de ce phénomène remonte à 1967, les astronomes ne disposent à l'époque du lancement de Swift que de peu d'informations sur l'origine et les caractéristiques des sursauts gamma. Les problèmes techniques soulevés de manière générale par l'observation du rayonnement gamma ne permettent qu'une localisation grossière d'un sursaut gamma. Toutefois en 1997 le télescope Beppo-SAX a découvert que le sursaut gamma était suivi par des émissions de rayons X et dans le domaine visible qui persistent durant plusieurs heures voir plusieurs jours. L'observatoire spatial Swift a été conçu pour exploiter cette caractéristique grâce aux trois instruments dont il dispose. Son télescope gamma BAT observe en permanence une fraction étendue du ciel pour détecter les sursauts gamma. Les données collectées sont analysées en temps réel par un logiciel embarqué paramétrable qui, dès qu'il identifie la signature caractéristique d'un sursaut gamma, transmet sa position à la fois aux deux autres instruments et aux contrôleurs au sol via le réseau de satellites de télécommunications géostationnaires TDRSS de la NASA. Le satellite, conçu pour pivoter rapidement, pointe un télescope rayons X XRT et un télescope optique (lumière visible/ultraviolet) UVOT co-alignés vers la région où le sursaut est apparu et sont capables de fournir une position beaucoup plus précise que l'observatoire gamma. Celle-ci est communiquée 90 secondes après la détection aux instruments terrestres ou spatiaux disposant d'optiques plus puissantes.

Swift a observé plus de 1 000 sursauts gamma depuis son lancement (situation à fin 2015). Il a permis de déterminer la contrepartie visuelle de nombreuses sources situées dans des galaxies lointaines et de confirmer que la plupart des sursauts gamma sont associés soit à l'effondrement d'une étoile géante aboutissant à la formation d'un trou noir ou d'une étoile à neutrons (sursauts longs) soit à la fusion de deux étoiles à neutrons binaires (sursauts courts). Il constitue l'observatoire le plus performant dans le recensement des phénomènes astronomiques transitoires et des sources astronomiques de rayons X durs.

Tau Ceti

Position de Tau Ceti dans la constellation de la Baleine.
Position de Tau Ceti dans la constellation de la Baleine.

Tau Ceti (τ Ceti / τ Cet) est une étoile de la partie méridionale de la constellation de la Baleine. Située à 12 années-lumière de la Terre, Tau Ceti est la 19e étoile la plus proche du Soleil. Elle est de masse et type spectral similaires au Soleil mais a une faible métallicité, c’est-à-dire que son abondance en éléments chimiques autres que l’hydrogène et l’hélium y est faible comparativement au Soleil.

Sa ressemblance partielle et sa proximité au Soleil lui valent un certain intérêt. Tau Ceti a par exemple fait l’objet de nombreuses études dans le cadre du programme SETI de recherche de vie extraterrestre. Elle apparaît également très fréquemment dans la littérature de science-fiction pour cette raison. Toutefois, en 2007, aucune planète n’a encore été détectée autour de Tau Ceti. Les recherches effectuées ont permis d’exclure la présence de certains compagnons sous-stellaires, telles les naines brunes et certaines planètes géantes gazeuses. Sa faible métallicité rend de plus peu probable qu’une planète tellurique soit en orbite autour d’elle. De plus, elle possède un important disque de débris. Toute planète en orbite subirait probablement un plus grand nombre d’impacts que la Terre. Cela contribue à atténuer les chances d’une vie développée dans ce système.

Trou noir

Trou noir de Schwarzschild vu par un observateur fixe situé à une distance de 50 rayons de Schwarzschild du centre de la Voie lactée.

En astrophysique, un trou noir est un objet dont l’existence est prédite par la théorie de la relativité générale. Un trou noir crée autour de lui une région de l’espace-temps dont la courbure est telle qu’au delà d’une limite appelée « horizon des événements, » rien, pas même la lumière, ne peut s’échapper. Malgré l’impossibilité fondamentale de voir un trou noir en tant que tel, leur existence dans l’univers est bien admise suite à de nombreuses observations indirectes, notamment de microquasars et de noyaux actifs de galaxies.

Lire la suite

Ulysses (sonde spatiale)

Ulysses est une sonde spatiale développée conjointement par la NASA et l'Agence spatiale européenne qui avait pour objectif l'étude in situ des régions voisines du Soleil (l'héliosphère) de son équateur à ses pôles sur la durée d'un cycle solaire. Les mesures effectuées portaient plus particulièrement sur le vent solaire, le champ magnétique du Soleil et le milieu interstellaire local. Lancée en 1990 depuis la navette spatiale Discovery, la sonde a utilisé l'assistance gravitationnelle de Jupiter pour parvenir à quitter l'écliptique et se placer sur une orbite héliocentrique polaire.

Ulysses est le premier engin scientifique qui est parvenu à recueillir des données au niveau des hautes latitudes du Soleil. La mission prolongée à deux reprises s'est achevée en juin 2009 après que la sonde eut bouclé trois orbites autour du Soleil. Les douze instruments scientifiques ont fourni de nombreuses données et modifié certaines hypothèses communément avancées sur les caractéristiques du vent solaire et du champ magnétique dans la région des hautes latitudes du Soleil.

Véga

Vue infrarouge du disque de débris entourant Véga, par le télescope spatial Spitzer
Vue infrarouge du disque de débris entourant Véga, par le télescope spatial Spitzer

Alpha Lyrae (α Lyrae / α Lyr), plus connue sous son nom traditionnel de Vega, est l'étoile la plus brillante de la constellation de la Lyre. Vue depuis la Terre, il s'agit de la cinquième étoile la plus brillante du ciel, la deuxième de l'hémisphère nord juste après Arcturus. C'est une étoile relativement proche du Soleil, à 25,3 années-lumière de celui-ci. C'est aussi, en termes de luminosité intrinsèque l'une des étoiles les plus brillantes du voisinage solaire avec α Bootis (Arcturus) et α Canis Majoris (Sirius).

Du fait de ses propriétés, Vega fut l'objet de nombreuses études de la part des astronomes et a ainsi plusieurs fois joué un rôle important dans l'histoire de l'astronomie. Elle fut par exemple la première étoile autre que le Soleil à avoir été photographiée et dont le spectre ait été mesuré. Ce fut aussi une des premières étoiles dont la distance fut estimée par parallaxe. Elle fut par ailleurs utilisée pour la calibration des échelles de luminosité photométriques et fut une des étoiles qui servirent de référence pour la définition des valeurs moyennes du système UBV. Incidemment, Vega fut l'étoile polaire autour de 12 000 av. J.-C. (et le sera de nouveau dans 12 000 ans), même s'il n'existe aucun document de l'ère préhistorique attestant qu'elle ait été utilisée pour le repérage ou l'orientation.

Vega est relativement jeune comparée au Soleil. Sa métallicité est inhabituellement faible. Vega serait une étoile variable (c'est-a-dire que son éclat varie périodiquement). Elle est en rotation rapide à une vitesse de 274 km s−1 à l'équateur. Elle présente ainsi un renflement à l'équateur en raison de la force centrifuge et, en conséquence, sa température varie au sein de sa photosphère pour être maximale aux pôles. Depuis la Terre, elle est observée dans une direction proche de l'axe de ses pôles.

La mesure des radiations infrarouges de Vega a permis de déterminer que l'étoile possède un disque de poussières centré sur l'étoile. Ces poussières sont probablement le résultat de collisions entre objets d'un disque de débris, similaire à la ceinture de Kuiper du Système solaire. Les étoiles qui présentent un excès de rayonnement infrarouge en raison des émissions de poussière sont appelées « étoiles similaires à Vega » (Vega-like stars). Les irrégularités du disque de Vega suggèrent la présence d'au moins une exoplanète, probablement de la taille de Jupiter en orbite autour de l'étoile.

Voie lactée

Le centre de la Voie lactée apparaît au-dessus de l'Observatoire du Cerro Paranal (le rayon est une étoile guide laser pour le télescope).
Le centre de la Voie lactée apparaît au-dessus de l'Observatoire du Cerro Paranal (le rayon est une étoile guide laser pour le télescope).

La Voie lactée, aussi nommée la Galaxie (avec une majuscule), est une galaxie spirale barrée dont le diamètre est le plus souvent estimé entre 100 000 et 120 000 années-lumière. Elle comprend de 200 à 400 milliards d'étoiles et au minimum 100 milliards de planètes. Elle et son cortège de galaxies satellites font partie du Groupe local, lui-même rattaché au superamas de la Vierge. Le Système solaire se situe à environ 27 000 années‌-lumière du centre de la Voie lactée. Ce centre est constitué d'une radiosource complexe, Sagittaire A, dont une des composantes, Sagittaire A*, est probablement un trou noir supermassif.

Observée de la Terre, la Galaxie ressemble à une bande blanchâtre parce que la planète se trouve à l'intérieur de sa structure en forme de disque. Des savants de la Grèce antique ont spéculé sur sa nature, par exemple Démocrite et Anaxagore ont avancé que cette blancheur céleste doit être produite par une multitude d’étoiles que l'on ne peut distinguer à l’œil nu. C'est grâce à son télescope que Galilée démontre le premier, en 1610, que cette bande est due à la présence de nombreuses étoiles. L'astronome Thomas Wright élabore, en 1750, un modèle de la Galaxie, qui sera repris par le philosophe Emmanuel Kant, qui avance que les nébuleuses observées dans le ciel sont des « univers-îles ». Dans les années 1920, l'astronome Edwin Hubble prouve qu'elle n'est qu'une galaxie parmi plusieurs et clôt ainsi le Grand Débat qui porte notamment sur la nature des nébuleuses. C'est à partir des années 1930 que le modèle actuel de galaxie spirale avec un bulbe central s'impose pour la Voie lactée.

Les plus anciennes étoiles de la Galaxie sont apparues après les âges sombres du Big Bang ; elles sont donc presque aussi âgées que l'Univers même. Par exemple, l'âge de HE 1523-0901, la plus vieille étoile de la Voie lactée, est de 13,2 milliards d'années. Selon des référentiels cosmologiques, l'ensemble de la Galaxie se déplace à une vitesse d'environ 600 km/s. Les étoiles et les gaz qui se trouvent à une grande distance de son centre galactique se déplacent à environ 220 km/s par rapport à ce centre. Les lois de Kepler ne pouvant expliquer cette vitesse constante, il est apparu nécessaire d'envisager que la majorité de la masse de la Voie lactée n'émet ni n'absorbe de rayonnement électromagnétique et est donc constituée d'une substance hypothétique, la matière noire.

XMM-Newton

XMM-Newton est un observatoire spatial destiné à l'observation des rayons X mous (0,1 à 12 keV) développé par l'Agence spatiale européenne et lancé en 1999. Cet observatoire de grande taille combine à l'époque de son lancement une sensibilité spectroscopique exceptionnelle, une bonne résolution angulaire et un large champ d'observation. Le télescope est constitué de trois optiques Wolter montées en parallèle ayant chacune une surface collectrice de 1 500 cm² à 1 keV et une longueur focale de 7,5 m. Deux instruments analysent les photons collectés : le spectro-imageur EPIC et le spectromètre à haute résolution RGS. Enfin un télescope optique (OM) indépendant permet d'associer les sources X découvertes à leur équivalent optique.

XMM-Newton est utilisé notamment pour étudier toutes les sources des rayons X mous telles que la formation des étoiles au sein des pouponnières d'étoiles, les mécanismes qui conduisent à la formation des amas de galaxies, les processus liés à la présence des trous noirs supermassifs au cœur des galaxies, la distribution de la matière noire. XMM-Newton est la deuxième "pierre angulaire" du programme spatial scientifique européen Horizon 2000. Le télescope a complètement rempli ses objectifs et a permis, depuis son lancement, de nombreuses découvertes dans le domaine de l'astrophysique. Sa mission d'une durée initiale de deux ans a été prolongée à plusieurs reprises. Sa fin actuelle est programmée pour le 31 décembre 2014.