
Applying Advanced SAT-Based Techniques
to Circuit Testing

Dissertation zur Erlangung des Doktorgrades
der Technischen Fakultät

der Albert-Ludwigs-Universität
Freiburg

vorgelegt von

Jan Burchard

Albert-Ludwigs-Universität Freiburg

Dean: Prof. Dr. Oliver Paul,
Albert-Ludwigs-Universität Freiburg, Germany

First Co-chair: Prof. Dr. Bernd Becker,
Albert-Ludwigs-Universität Freiburg, Germany

Second Co-chair: Prof. Dr. Krishnendu Chakrabarty
Duke University, United States of America

Examination Date: April 20, 2018

ii

Zusammenfassung

In integrierten Schaltungen ist das Auftreten von Herstellungsdefekten eher Regel als Aus-
nahme. Dies wird durch das kontinuierliche Schrumpfen der Strukturgrößen und das gleich-
zeitige Wachsen der Anzahl an Transistoren pro Chip noch verstärkt. Um trotzdem eine
hohe Qualität zu gewährleisten ist es unerlässlich einen Chip nach der Fertigung umfang-
reich zu testen.
Da ein vollständiger funktionaler Test aufgrund der enormen Anzahl an Eingangsbe-

legungen nicht möglich ist, werden digitale Schaltkreise im Allgffemeinen strukturell mit
Fehlermodellen getestet. Ein Fehlermodell abstrahiert von der großen Gesamtzahl mögli-
cher Defekte auf eine kleinere Menge von modellierten Fehlern. Die modellierten Fehler
haben das Ziel die Auswirkungen von häufig auftretenden Defekten abzudecken. Die Ab-
wesenheit dieser Fehler wird anschließend über speziell generierte Testmuster überprüft.
Nur durch passende Fehlermodelle kann dabei auch eine hohe Defektabdeckung erreicht
werden.
Mit der eingangs diskutierten steigenden Integrationsdichte und Transistoranzahl mo-

derner Schaltkreise steigt auch das Potential für mögliche Defekte. Aus diesem Grund
reichen einfachere Fehlermodelle oft nicht mehr aus, um einen Großteil der defekten Chips
zu erkennen. Daher werden neue Ansätze, die komplexe elektrische Vorgänge effizient
modellieren können, zur Erstellung von Testmustern für moderne Schaltkreise immer es-
sentieller. Ein vielversprechender Ansatz sind SAT-basierte Methoden, die das Problem
zunächst formal als Boolesche Formel beschreiben um diese dann mit einem spezialisierten
SAT-Solver zu lösen. Dies erlaubt es die Frage nach der Existenz eines Testmusters auf die
Lösbarkeit einer Formel zu reduzieren. Aus einer erfüllenden Belegung der Formel kann
hiernach ein Testmuster hergeleitet werden.

In dieser Dissertation werden drei wichtige Beiträge zum SAT-basierten Testen von
Schaltkreisen vorgestellt.

Der erste Teil dieser Arbeit befasst sich mit D-chains. D-chains erweitern die Boolesche
Formel, die bei einer SAT-basierten Testmustergenerierung erstellt wird, um strukturel-
le Informationen zur Ausbreitung eines Fehlereffektes. Diese zusätzlichen Informationen
reduzieren die Größe des Suchraums und können so den Lösungsvorgang beschleunigen.
Im Rahmen dieser Dissertation werden ein neues D-chain Konzept sowie zwei hybride D-
chains entwickelt und vorgestellt. Darüber hinaus erfolgt zum ersten Mal ein umfassender
Vergleich aller gebräuchlichen D-chain Ansätze.
Die neu entwickelte hybride D-chain mit einer dynamischen Heuristik zur Knoten-

auswahl zeigt in der Evaluation den größten Geschwindigkeitsgewinn aller betrachteter
D-chain Varianten. Sie verringert die Zeit zur Lösungsberechnung um durchschnittlich
74% im Vergleich zu der Variante ohne D-chains. Damit sind die neuen D-chains den

iii

Zusammenfassung

bekannten Ansätzen überlegen und bieten die beste Beschleunigung für die SAT-basierte
Testmustergenerierung.

Im zweiten Teil dieser Dissertation wird die SAT-basierte Testmustergenerierung selbst
vorangetrieben. Aktuelle Forschungsergebnisse zeigen, dass das Testen von Logikzellen im-
mer wichtiger wird, da Defekte innerhalb einer Zelle von klassischen Fehlermodellen nicht
zuverlässig entdeckt werden. Das Transistor stuck-open Fehlermodell bietet hier eine viel-
versprechende Lösung. Es modelliert den Fall, dass ein einzelner Transistor innerhalb einer
Zelle dauerhaft nicht leitet und deckt damit sowohl Defekte, die den Transistor selbst
betreffen, als auch Defekte in den Leitungen ab.
Die Testmustergenerierung für einen Transistor stuck-open Fehler wird von zwei Effek-

ten erschwert, die für eine hohe Genauigkeit beachtet werden sollten. Eine erfolgreiche
Fehlerentdeckung kann ansonsten nicht garantiert werden. Zum Einen muss sichergestellt
werden, dass bestimmte Eingänge der fehlerhaften Logikzelle stabil und frei von Störim-
pulsen (Glitches) sind, da der Fehlereffekt sonst maskiert werden könnte. Darüber hinaus
kann der Fehlereffekt auch durch das sogenannte charge-sharing maskiert werden. Beim
charge-sharing wird die Ladung innerhalb der Logikzelle zwischen verschiedenen Leitun-
gen verteilt, wodurch sich die Spannung am Ausgang der Zelle möglicherweise signifikant
verändert.
Der in dieser Dissertation vorgestellte deterministische Algorithmus zur Generierung von

Testmustern für das Transistor stuck-open Modell garantiert sowohl deren Glitch-Freiheit,
als auch die Abwesenheit von charge-sharing Konflikten. Darüber hinaus unterstützt er die
Generierung von Testmustern, die gezielt Glitches einsetzen um einen Fehler zu aktivieren
oder einen charge-sharing Konflikt zu umgehen.
Die ausführliche Evaluierung der vorgestellten Methode zeigt deutlich, dass Glitches

beim Testen von Transistor stuck-open Fehlern unbedingt beachtet werden müssen. Ist
dies nicht der Fall sind in den durchgeführten Experimenten durchschnittlich über 25%
der erstellten Testmuster ungültig. Das eingeführte Verfahren dagegen kann selbst für
große Schaltkreise gültige Testmuster erstellen die frei von Glitches und charge-sharing
Konflikten sind. Darüber hinaus kann der Algorithmus die Fehlerabdeckung durch das
gezielte Ausnutzen von Glitches noch weiter erhöhen und so auch Fehler testen, die von
einem konventionellen Ansatz als untestbar klassifiziert werden.

Der letzte Teil dieser Dissertation behandelt die Charakterisierung von möglicherweise
erkannten Fehlern. Ein Fehler wird als möglicherweise erkannt klassifiziert, wenn seine
Detektion von der Belegung an unbekannten oder unkontrollierbaren Eingängen abhängt.
Der entwickelte Ansatz erlaubt es die Wahrscheinlichkeit für die Fehlerentdeckung exakt
zu berechnen. Dies ermöglicht die genaue Bestimmung der Gesamtfehlerabdeckung des
Schaltkreises. Die gewonnenen Informationen können weiterhin bei Entscheidungen zur
Erhöhung der Fehlerabdeckung genutzt werden, zum Beispiel um Testpunkte einzufügen.
Das vorgestellte Verfahren modelliert die Charakterisierung der möglicherweise erkann-

ten Fehler als #SAT-Problem. Dabei wird die Anzahl der erfüllenden Belegungen einer
Booleschen Formel mit einem #SAT-Solver berechnet. Aus dieser Anzahl lässt sich die Ent-
deckungswahrscheinlichkeit für den aktuell betrachteten möglicherweise erkannten Fehler
herleiten.

iv

Die Evaluation des präsentierten Ansatzes ergibt, dass ein Großteil der möglicherweise
erkannten Fehler akkurat charakterisiert werden kann. Die Ergebnisse zeigen, dass die
Entdeckungswahrscheinlichkeit stark vom Schaltkreis und der Eingangsbelegung abhängt
und nicht mit einem fixen Wert abgeschätzt werden kann. Der vorgestellte Algorithmus
liefert daher einen klaren Mehrwert über den aktuellen Stand der Technik hinaus.
Das #SAT-Problem – die Berechnung der Anzahl der erfüllenden Belegungen einer Boo-

leschen Formel – ist sehr schwer zu lösen. Um das entwickelte Verfahren zur Charakte-
risierung von möglicherweise erkannten Fehlern auch auf große Schaltkreise anwenden zu
können, präsentiert diese Dissertation außerdem den verteilten #SAT-Solver dCountAntom.
Dieser setzt CPU-Kerne auf verschiedenen Computern gleichzeitig ein und verbessert die
Skalierbarkeit dadurch signifikant. Außerdem wird ein Verfahren zur frühen Abschätzung
der Gesamtlösungszeit vorgestellt. Basierend auf diesem Verfahren ist es möglich den Lö-
sungsvorgang für zu schwere Formeln frühzeitig abzubrechen. Die experimentellen Ergeb-
nisse für Formeln die unterschiedliche realistische Probleme modellieren zeigen eine große
Beschleunigung des Lösungsvorgangs wenn viele CPU-Kerne eingesetzt werden.

vi

Contents

Zusammenfassung iii

1. Introduction 2
1.1. Contributions . 2
1.2. Structure . 4
1.3. List of Discussed Papers . 5

2. Preliminaries 6
2.1. Formal Solving Methods . 6

2.1.1. Boolean Formulas . 7
2.1.2. Tseitin Transformation . 8
2.1.3. SAT-Solving . 9
2.1.4. Model Counting . 12

2.2. Circuit Testing . 14
2.2.1. Digital Circuits . 14
2.2.2. Improving the Testability of a Circuit 17
2.2.3. Cell Layout . 19
2.2.4. Fault Models . 20
2.2.5. Automatic Test Pattern Generation 24
2.2.6. SAT-Based Test Pattern Generation 25
2.2.7. Modeling Time in SAT-Based ATPG 28

3. Advanced Modeling Techniques for SAT-Based ATPG 30
3.1. Optimized Stuck-At ATPG . 32

3.1.1. Modeling Merely the Required Parts of the Circuit 32
3.1.2. Accurately Modeling Complex Cells 33
3.1.3. Incremental Solving . 33

3.2. D-Chains . 35
3.2.1. Forward D-Chain . 35
3.2.2. Backward D-Chain . 37
3.2.3. Combined Backward-Forward D-Chain 38

3.3. Good-Diff D-Chain . 38
3.3.1. Gate Encoding . 38

3.4. Hybrid D-Chains . 41
3.4.1. Static Node Selection Heuristic . 42
3.4.2. Dynamic Node Selection Heuristic 42

3.5. Evaluation . 43
3.5.1. Without D-Chain . 44
3.5.2. With D-Chains . 45

vii

Contents

3.5.3. Incremental Solving . 49
3.5.4. Fault Simulation . 50

3.6. Summary . 52

4. Testing Transistor Stuck-Open Faults 58
4.1. Basic Transistor Stuck-Open Fault ATPG 61

4.1.1. Modeling Two Time Frames . 61
4.1.2. Modeling the Fault . 62
4.1.3. Incremental Solving . 63

4.2. Challenges . 64
4.2.1. Glitches . 65
4.2.2. Charge-Sharing . 67
4.2.3. Test Infrastructure Restrictions . 68

4.3. Detection Library . 69
4.3.1. Resolving Charge-Sharing Conflicts 71

4.4. Handling Glitches . 73
4.4.1. Glitch-Avoidance . 73
4.4.2. Glitch-Initialization . 77

4.5. Charge-Sharing Mitigation . 81
4.5.1. Switching Order . 81
4.5.2. Glitch-Charging . 82

4.6. Minimum Event Durations . 84
4.6.1. Initialization . 84
4.6.2. Charge-Sharing Mitigation . 85

4.7. Glitch- and Charge-Sharing Aware TSOF ATPG 85
4.7.1. Timing-Aware ATPG . 86
4.7.2. ATPG Flow . 87

4.8. Evaluation . 89
4.8.1. General ATPG Performance . 89
4.8.2. Timing-Aware ATPG . 93
4.8.3. Glitch-Initialization . 93
4.8.4. Charge-Sharing . 95
4.8.5. Minimum Event Durations . 97
4.8.6. The Importance Of Considering Glitches and Charge-Sharing 98
4.8.7. D-Chains in the TSOF ATPG . 98

4.9. Summary . 99

5. #SAT-Solving 104
5.1. countAntom . 106

5.1.1. Sub-Formula Splitting . 106
5.1.2. Formula Caching . 108
5.1.3. Laissez-Faire Caching . 108
5.1.4. Thread Synchronization . 109

5.2. dCountAntom . 109
5.2.1. Solve Flow . 109

viii

Contents

5.2.2. The Master Process . 110
5.2.3. The Slave Processes . 113
5.2.4. MPI Communication . 113

5.3. Progress Estimation . 114
5.3.1. Estimating the Solve Progress . 115
5.3.2. Predicting the Solve Time . 116

5.4. Evaluation . 117
5.4.1. Single-Threaded Performance Comparison 117
5.4.2. Distributed Parallel Performance . 118
5.4.3. Solve Progress Estimation . 122

5.5. Summary . 125

6. Accurate Characterization of Possibly Detected Faults 126
6.1. Possibly Detected Faults . 128

6.1.1. Classification of Test Patterns . 129
6.2. Detection Probability Computation . 129

6.2.1. Generating the Boolean Formula . 130
6.2.2. Restricting the Inputs . 132
6.2.3. Computing the Detection Probability 133

6.3. Improvements . 133
6.3.1. Restrict Propagation Outputs . 133
6.3.2. Fixed X-Inputs . 134
6.3.3. Always Satisfied Formulas . 135
6.3.4. Caching the Detection Probability 135

6.4. Evaluation . 136
6.4.1. Characterizing Possibly Detected Faults 136
6.4.2. Detection Probability . 137
6.4.3. Optimizations . 138
6.4.4. Timeouts . 139
6.4.5. Solve Time . 142
6.4.6. Inputs that are Always X . 144

6.5. Summary . 145

7. Conclusion 150

Appendix 152

A. Experimental Setup 154
A.1. Solver Description . 154
A.2. Circuit Information . 154

B. Complete List of Publications by the Author 156

ix

1. Introduction

Manufacturing defects in integrated circuits have always been a problem, especially with
very large scale integration. This problem is further fueled by the progressively smaller
feature sizes and, at the same time, a growing number of transistors per chip. Thus, to
ensure a high quality of the shipped devices a thorough testing is necessary.
Since a complete functional test is generally impossible because of the huge number of

possible input assignments, digital circuits are usually tested structurally based on fault
models. A fault model abstracts from the high number of possible defects to a smaller
number of modeled faults. The aim of the fault model is to cover the most probable defects.
Only a fitting fault model can therefore ensure a high defect coverage. The absence of the
modeled faults is then checked with specifically crafted test patterns.

With the above mentioned increase in integration density and the vast quantity of tran-
sistors in modern circuits, the potential for defects is growing. For this reason, basic fault
models (e.g., the stuck-at fault model) are often not sufficient to detect all of the defects
and, therewith, the majority of defective devices. More complex fault models that are
more closely related to real defects can be used to increase the defect coverage. However,
the generation of test patterns for these fault models is often more difficult. As a result,
novel approaches for the generation of test patterns which can efficiently model complex
electrical properties are becoming more and more relevant. SAT-based methods, which
first formally describe the problem as a Boolean formula before solving it with a special-
ized SAT solver, are a promising approach in that direction. With these approaches the
problem of finding a test pattern for a fault is reduced to the satisfiability of a formula. A
test pattern for the fault can be derived from a satisfying assignment of the formula.

1.1. Contributions

In this thesis three major contributions to the area of SAT-based testing are presented.
The first contribution focuses on the development and analysis of D-chains. D-chains ex-

tend the Boolean formula that is utilized by a SAT-based test pattern generation approach
with structural information regarding the fault propagation. This information reduces the
size of the search space that has to be covered by the SAT solver and can, therefore, in-
crease the solving speed. In the scope of this thesis, an efficient D-chain concept and two
novel hybrid D-chains that combine the new concept with an established encoding are in-
troduced. Furthermore, the first comprehensive analysis of the different common D-chains
known from literature is performed.
The evaluation shows that the newly developed hybrid D-chain with a dynamic node

selection heuristic gives the largest increase in solving speed of all of the analyzed D-chain
variants. On average it reduces the time to compute a solution by about 74% in compari-

2

1.1. Contributions

son to not utilizing a D-chain at all. Overall, the presented novel D-chains outperform the
known approaches and offer the largest speedup for the SAT-based test pattern generation.

The second part of this thesis advances the SAT-based test pattern generation itself.
Recent research results show that testing logic cells is becoming more and more important
because cell-internal defects are not reliably detected by classic fault models. In this
context, the transistor stuck-open fault model offers a promising solution. It models the
case of a single transistor within a cell which is never conducting. It, thereby, covers defects
within the transistor itself as well as some defects on the interconnects.
Generating a valid test pattern for a transistor stuck-open fault is challenging because

of two effects that have to be considered to perform a high quality test. If these effects
are ignored, a successful test cannot be guaranteed. On the one hand, it must be ensured
that specific inputs of the faulty cell are stable and free from glitches. Otherwise the fault
effect might be masked. On the other hand, the fault effect could also be masked by the
so-called charge-sharing. Charge-sharing describes the sharing of the residual charges of
different lines within the cell. This could have a significant impact on the voltage at the
cell’s output.
The deterministic algorithm for the generation of test patterns for the transistor stuck-

open fault model presented in this work guarantees both glitch freedom as well as the
absence of any charge-sharing conflicts. Furthermore, it supports the generation of test
patterns that utilize glitches to initialize a fault or to mitigate a charge-sharing conflict.
The extensive evaluation of the proposed methodology clearly shows the importance

of considering glitches when testing for transistor stuck-open faults. In the performed
experiments on average more than 25% of the test patterns that are generated without
glitch-awareness might be invalidated. The presented approach, however, is able to gener-
ate valid test patterns that are free from dangerous glitches and charge-sharing conflicts
even for large circuits. In addition, the algorithm is capable of further increasing the fault
coverage by utilizing glitches. This allows for the testing of faults which would be classified
as untestable by a conventional approach.

The final part of this thesis deals with the characterization of possibly detected faults.
When the detection of a fault depends on the assignment of unknown or not controllable
circuit inputs, it is classified as possibly detected. The developed approach is able to
accurately compute the detection probability for these faults. This allows for an exact
determination of the overall fault coverage of a circuit. Furthermore, the obtained infor-
mation could be used to increase the fault coverage, for example by inserting test points
that ensure the detection of faults with a low detection probability.
The presented algorithm models the characterization of potentially detected faults as a

#SAT problem. To this end, the number of satisfying assignments of a generated Boolean
formula is counted with a #SAT solver. From the number of satisfying assignments the
detection probability of the currently considered fault can be derived.
The evaluation of the approach shows that most of the possibly detected faults can be

accurately characterized. The results reveal that the detection probability of the faults
is highly dependent on the circuit and the input assignment. Therefore, the approach of
state-of-the art commercial tools which simply estimate the detection probability with a

3

1. Introduction

global user selectable value is inaccurate and the proposed algorithm has a clear benefit
beyond the current state-of-the art.
The #SAT problem – counting the number of satisfying assignments of a Boolean for-

mula – is very hard to solve. To be able to apply the algorithm for the characterization
of possibly detected faults to large circuits, this thesis presents the distributed #SAT
solver dCountAntom. dCountAntom utilizes CPU cores across different computers in par-
allel and thereby significantly improves the scalability. The experimental results show a
large speedup of the solve speed across formulas from different origins when many cores
are used in parallel. Furthermore, an approach for the early prediction of the solve time is
presented. This allows for the abortion of the solve process when the formula is too hard
to solve and is used for the implementation of a novel soft timeout mechanism.

1.2. Structure

This thesis is structured as follows: Chapter 2 introduces the basic concepts that are
used in this work and focuses on formal solving methods and digital circuit testing. The
subsequent chapters discuss and evaluate the different contributions of this thesis: D-
chains are covered in Chapter 3. The test pattern generation for transistor stuck-open
faults is described in Chapter 4. The application of #SAT-solving to circuit test is split
into two parts: Chapter 5 introduces the distributed parallel #SAT solver dCountAntom.
Thereafter, Chapter 6 is concerned with the characterization of possibly detected faults.
Chapter 7 concludes this thesis with a summary.
Further information on the experimental setup, especially with regard to the used cir-

cuits, can be found in Appendix A. Appendix B gives a complete list of the author’s
publications.

4

1.3. List of Discussed Papers

1.3. List of Discussed Papers

This thesis is based in parts on the following previous publications by the author. For
improved readability, citations of these publications within the text are replaced by a
general reference of the applicable works at the beginning of each chapter.

[J1] J. Burchard, D. Erb, S. M. Reddy, A. D. Singh, and B. Becker, “On the generation
of waveform-accurate hazard and charge-sharing aware tests for transistor stuck-off
faults in CMOS logic circuits”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2017. doi: 10.1109/TCAD.2017.2772825

[J2] P. Raiola, J. Burchard, F. Neubauer, D. Erb, and B. Becker, “Evaluating the effec-
tiveness of D-chains in SAT-based ATPG and diagnostic TPG”, Journal of Electronic
Testing: Theory and Applications (JETTA), 2017. doi: 10.1007/s10836-017-5693-
6

[C1] J. Burchard, F. Neubauer, P. Raiola, D. Erb, and B. Becker, “Evaluating the ef-
fectiveness of D-chains in SAT-based ATPG”, in 18th IEEE Latin American Test
Symposium (LATS), 2017. doi: 10.1109/LATW.2017.7906752

[C2] J. Burchard, D. Erb, A. D. Singh, S. M. Reddy, and B. Becker, “Fast and waveform-
accurate hazard-aware SAT-based TSOF ATPG”, in Design, Automation and Test
in Europe (DATE), 2017, Best Paper Award in the Test Category, 2017. doi: 10.
23919/DATE.2017.7927027

[C3] J. Burchard, D. Erb, S. M. Reddy, A. D. Singh, and B. Becker, “Efficient SAT-based
generation of hazard-activated TSOF tests”, in IEEE 35th VLSI Test Symposium
(VTS), 2017. doi: 10.1109/VTS.2017.7928943

[C4] J. Burchard, T. Schubert, and B. Becker, “Laissez-faire caching for parallel #SAT
solving”, in SAT 2015, ser. Lecture Notes in Computer Science, Springer International
Publishing, 2015. doi: 10.1007/978-3-319-24318-4_5

[C5] J. Burchard, T. Schubert, and B. Becker, “Distributed parallel #SAT solving”, in
IEEE International Conference on Cluster Computing (CLUSTER), 2016. doi: 10.
1109/CLUSTER.2016.20

[C6] J. Burchard, D. Erb, and B. Becker, “Characterization of possibly detected faults by
accurately computing their detection probability”, in Design, Automation and Test
in Europe (DATE), 2018, 2018. doi: 10.23919/DATE.2018.8342040

5

http://dx.doi.org/10.1109/TCAD.2017.2772825
http://dx.doi.org/10.1007/s10836-017-5693-6
http://dx.doi.org/10.1007/s10836-017-5693-6
http://dx.doi.org/10.1109/LATW.2017.7906752
http://dx.doi.org/10.23919/DATE.2017.7927027
http://dx.doi.org/10.23919/DATE.2017.7927027
http://dx.doi.org/10.1109/VTS.2017.7928943
http://dx.doi.org/10.1007/978-3-319-24318-4_5
http://dx.doi.org/10.1109/CLUSTER.2016.20
http://dx.doi.org/10.1109/CLUSTER.2016.20
http://dx.doi.org/10.23919/DATE.2018.8342040

2. Preliminaries

This chapter introduces the basic concepts that are used throughout this work. These can
be grouped into two areas: formal solving methods with a focus on SAT and #SAT are
introduced in Section 2.1. Circuit testing including an introduction to digital circuits is
covered in Section 2.2.
Since these topics are vast fields of study by themselves, only the parts relevant to this

thesis will be discussed. For more details on a specific subject, the interested reader can
find additional information in the referenced publications.
For improved readability, the descriptions and definitions are sometimes simplified but

always mathematically sound. More in-depth information on formal methods can be found
in [1] while [2] covers a wide range of topics related to circuit test.

2.1. Formal Solving Methods

In computer science and related fields, there are many problems that can generally only be
solved with a substantial amount of computational effort. A well-defined and adequately
formulated problem can be solved by a mathematically sound algorithm, a formal method.
Most well-defined theoretical problems are grouped into complexity classes based on

their theoretical difficulty.
In the areas covered in this thesis, the class of NP-complete problems is the most relevant.

A problem is NP-complete if it is in the complexity class NP and every other problem in NP
can be reduced to that problem with little effort (within polynomial-time in the problem
size) [3].
Thus, if one can solve an NP-complete problem, one can solve all other problems in NP

as well.

The Boolean satisfiability problem (SAT) [3] has proven to be a well suited candidate for
the development of efficient formal solving methods, called solvers, because many problems
in NP can be easily mapped to a Boolean formula and the corresponding decision problem.
The similarities of digital circuits that consist of logic gates implementing Boolean func-

tions and of Boolean formulas allow for the easy formulation of many challenging problems
from the realm of circuit testing as a SAT problem.

The following sections briefly introduce the background of SAT-solving and the closely
related counting problem #SAT. First, Section 2.1.1 defines Boolean formulas. In Sec-
tion 2.1.2 the Tseitin transformation which creates Boolean formulas in conjunctive normal
form is presented. Next, Section 2.1.3 describes the Boolean satisfiability problem and the
concepts of SAT-solving. Finally, Section 2.1.4 extends SAT to model counting and gives
a summary of the computations performed by a #SAT solver.

6

2.1. Formal Solving Methods

2.1.1. Boolean Formulas

A Boolean (or propositional) formula Φ is built up of variables (v1, v2, . . .) which are
linked by operators. Table 2.1 gives an overview of the most common operators and their
interpretation. In addition, some more advanced operators are defined in Table 2.2. These
are used as syntactic sugar for added comprehensibility of complex relations.

Table 2.1.: Common operators in Boolean formulas.
Operator Symbol Interpretation (evaluates to true iff)

NOT ¬v1 v1 = false

AND v1 ∧ v2 v1 = true and v2 = true
OR v1 ∨ v2 v1 = true or v2 = true

XOR v1 ⊕ v2 v1 6= v2

Table 2.2.: Advanced operators in Boolean formulas.
Operator Symbol Definition

Implication v1 ⇒ v2 ¬v1 ∨ v2
Equivalence v1 ⇔ v2 (v1 ⇒ v2) ∧ (v2 ⇒ v1)

Equation 2.1 shows an example Boolean formula with the variables v1, v2 and v3.

Φ =
(
(v1 ∨ v2) ∧ (¬v1 ∨ ¬v2)

)
∨ v3 (2.1)

A (partial) variable assignment π assigns (some) variables a truth value (true or false).
Based on a variable assignment, the formula can be evaluated to either true or false. As
a shorthand Φ|π = false is written if, and only if Φ evaluates to false for π and vice-versa
for true. When a formula is evaluated to true, it is called satisfied (SAT). When it is
evaluated to false, it is called unsatisfied. If no variable assignment π with Φ|π = true
exists, the formula is called unsatisfiable (UNSAT).
For the Boolean formula 2.1, the assignment

π1 = {v1 → true, v2 → true, v3 → true}
satisfies the formula whereas

π2 = {v1 → true, v2 → true, v3 → false}
does not.

A Boolean formula in conjunctive normal form (CNF) is composed of clauses connected
by conjunctions (∧). Each clause consists of literals connected with disjunctions (∨). A
literal is a variable or a negated variable (v or ¬v). Equation 2.2 gives Formula 2.1 in an
equivalent CNF.

ΦCNF = (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) (2.2)

To satisfy a Boolean formula in CNF all clauses have to be satisfied. To satisfy a clause
it is sufficient that one of its literals evaluates to true.

7

2. Preliminaries

Generally, transforming a Boolean formula Φ into an equivalent formula in CNF ΦCNF

(Φ ≡ ΦCNF) could increase the formula size exponentially. This can be avoided, however,
by only preserving equisatisfiability instead of complete equivalence. A formula ΦCNF

is equisatisfiable to Φ if ΦCNF is satisfiable if, and only if, Φ is satisfiable. Equivalent
formulas on the other hand are satisfied by the exact same variable assignments. In this
work the Tseitin transformation [4] is used for the purpose of generating an equisatisfiable
formula and will be described in detail in Section 2.1.2.
A variable that is not assigned through a partial variable assignment is called free. The

concept of free variables is extended to literals: A literal is free if its variable is free. A
clause with free literals which is not satisfied (yet) is called open. An open clause that has
exactly one free literal l is unit. Unit clauses imply a variable assignment which makes
l evaluate to true because each clause has to be satisfied in order to satisfy the entire
formula.
Given a partial variable assignment π the residual formula consists of the remaining open

clauses of the original formula without the assigned literals.
Applying the partial variable assignment

π3 = {v1 → true, v3 → false}
to Formula 2.2 satisfies the first clause and leaves the residual formula in Equation 2.3.

ΦCNF |π3 = (¬v2) (2.3)

The second clause of the original formula (¬v1 ∨ ¬v2 ∨ v3) is reduced to (¬v2) and is
unit: To satisfy the formula v2 has to be assigned to false.

In this thesis the term formula refers to a Boolean formula in conjunctive normal form
unless otherwise noted. To increase the readability and clarity, true and false are replaced
by 1 and 0, respectively, in many graphics.

2.1.2. Tseitin Transformation

The basic idea of the Tseitin transformation [4] is the conversion of any Boolean formula
into an equisatisfiable formula in CNF which is linear in the size of the original Boolean
formula. To this end, the original Boolean formula is extended with new variables. These
variables are used to encode the Boolean operations within the formula into small sub-
formulas in CNF. By combining all the sub-formulas, an equisatisfiable formula in CNF is
created.
This process consists of two steps: Firstly, for every Boolean operator a corresponding

sub-formula has to be computed. This computation has to be performed only once since
the sub-formula’s structure is not dependent on the encoded variables which can simply be
substituted. Secondly, the initial Boolean formula is transformed into CNF by replacing
every Boolean operator by the corresponding sub-formula. This adds a new variables for
each operator to the resulting formula.

Computation of the Sub-Formulas

Every Boolean operator can be seen as a simple function which computes an output value
based on input values. For example for the AND operator with variables v1 and v2 this

8

2.1. Formal Solving Methods

function is o = (v1 ∧ v2) which can be seen as the Boolean formula o ⇔ (v1 ∧ v2). This
formula can now be transformed into CNF:

o⇔ (v1 ∧ v2) (2.4)
≡

(
o⇒ (v1 ∧ v2)

)
∧
(
(v1 ∧ v2)⇒ o

)
(2.5)

≡
(
¬o ∨ (v1 ∧ v2)

)
∧
(
¬(v1 ∧ v2) ∨ o

)
(2.6)

≡
(
(¬o ∨ v1) ∧ (¬o ∨ v2)

)
∧
(
(¬v1 ∨ ¬v2) ∨ o

)
(2.7)

≡ (¬o ∨ v1) ∧ (¬o ∨ v2) ∧ (¬v1 ∨ ¬v2 ∨ o) (2.8)

Formula 2.8 is the CNF representation of the Boolean AND operator. The same cal-
culation can be repeated for all of the different operators. The results are summarized
in Table 2.3. The NOT operator is not transformed. If a negated variable occurs in an
operation all of its occurrences are substituted by its negation.

Table 2.3.: The representation of the different Boolean operators as sub-formulas in CNF.
Operator Sub-formula in CNF

AND (v1 ∨ ¬o) ∧ (v2 ∨ ¬o) ∧ (¬v1 ∨ ¬v2 ∨ o)
OR (¬v1 ∨ o) ∧ (¬v2 ∨ o) ∧ (v1 ∨ v2 ∨ ¬o)

XOR (v1 ∨ v2 ∨ ¬o) ∧ (¬v1 ∨ ¬v2 ∨ ¬o) ∧ (¬v1 ∨ v2 ∨ o) ∧ (v1 ∨ ¬v2 ∨ o)

Converting a Formula

To convert an entire formula into CNF through the Tseitin transformation one has to start
from the innermost expression which contains only variables but no complex terms. This
expression is then converted into CNF and every occurrence of the expression replaced
by the output variable which is a new variable. The generated sub-formula in CNF is
added to a new formula ΦCNF which will be the equisatisfiable formula once the process
is completed. This procedure is repeated until the entire formula has been converted and
only one variable remains.
As an example consider the conversion of Formula 2.1 shown in Table 2.4. The resulting

formula ΦCNF consists of twelve clauses and seven variables, four of which were added
through the transformation. In comparison to Formula 2.2 it is clearly larger, even though
both represent Φ in CNF. However, in general a direct conversion might result in expo-
nential growth of the formula in CNF and the Tseitin transformation gives much smaller
results. This is especially true for formulas representing large circuits with many levels
from the inputs to the outputs. For each logic gate the Tseitin transformation requires
only a constant number of clauses. Thus, the size of the final formula is linear in the
number of gates.

2.1.3. SAT-Solving

A SAT solver attempts to find a variable assignment that satisfies a given Boolean formula
Φ. This satisfying assignment is also known as a model of Φ. Usually, the formula has

9

2. Preliminaries

Table 2.4.: Converting Formula 2.1 into CNF with the Tseitin Transformation.
Step Φ ΦCNF

Initial
(⇔n1︷ ︸︸ ︷

(v1 ∨ v2)∧(¬v1 ∨ ¬v2)
)
∨ v3 -

1
(
n1 ∧

⇔n2︷ ︸︸ ︷
(¬v1 ∨ ¬v2)

)
∨ v3 (¬v1 ∨ n1) ∧ (¬v2 ∨ n1) ∧ (v1 ∨ v2 ∨ ¬n1)

2

⇔n3︷ ︸︸ ︷
(n1 ∧ n2)∨v3 (¬v1∨n1)∧(¬v2∨n1)∧(v1∨v2∨¬n1)∧(v1∨

n2) ∧ (v2 ∨ n2) ∧ (¬v1 ∨ ¬v2 ∨ n2)

3
⇔n4︷ ︸︸ ︷

n3 ∨ v3 (¬v1 ∨ n1) ∧ (¬v2 ∨ n1) ∧ (v1 ∨ v2 ∨ ¬n1) ∧
(v1∨n2)∧ (v2∨n2)∧ (¬v1∨¬v2∨n2)∧ (n1∨
¬n3) ∧ (n2 ∨ ¬n3) ∧ (¬n1 ∨ ¬n2 ∨ n3)

Final n4 (¬v1 ∨ n1) ∧ (¬v2 ∨ n1) ∧ (v1 ∨ v2 ∨ ¬n1) ∧
(v1∨n2)∧ (v2∨n2)∧ (¬v1∨¬v2∨n2)∧ (n1∨
¬n3)∧ (n2∨¬n3)∧ (¬n1∨¬n2∨n3)∧ (¬n3∨
n4) ∧ (¬v3 ∨ n4) ∧ (n3 ∨ v3 ∨ ¬n4)

to be in CNF which simplifies the overall solver structure and allows for many of the
improvements found in modern solvers.
Over the years a large number of different concepts have been applied to SAT-solving.

Incomplete methods employ heuristics, for example local search, in an attempt to find a
satisfying assignment [5], [6]. While these methods have shown to be fast for certain types
of formulas, they cannot prove that a formula is unsatisfiable. This makes such approaches
unsuitable for many applications including those pursued in this thesis because they cannot
prove that a fault is untestable.
On the other hand, complete solvers can prove unsatisfiability by ensuring that every

possible assignment is considered. The first complete approaches to solve the SAT prob-
lem are known as the DP [7] and DPLL [8] algorithms. Most modern SAT solvers are
based on the principle methods established by the DPLL solver and are extended by many
improvements.
This section gives a short overview of the concept of DPLL, while the subsequent section

contains a more extensive review of the techniques used by modern SAT solvers.
The DPLL algorithm is defined recursively and takes only a formula Φ as input. It can

be summarized into the following three main steps:

1. Check if Φ is satisfied or unsatisfied and return the result if either case occurs.

2. Check if any clause is unit and assign the variables implied by unit clauses.

3. Choose a free variable v, called the decision variable. Check if DPLL(Φ|v→false) or
DPLL(Φ|v→true) returns satisfiable. Otherwise return unsatisfiable.

A possible solve process for Formula 2.2 is shown in Figure 2.1. This graph is known
as a decision tree because it visualizes the decision of the solver. The variable within the

10

2.1. Formal Solving Methods

nodes is the chosen decision variable. The dashed arrow represents the assignment of this
variable to false, the solid line that to true. The nodes that are reached by the arrows
are the children of the origin node (which is also known as the parent node). The dashed
line leads to the negative branch of the parent node, the solid line to the positive branch.
Each node is annotated with the corresponding residual formula. The distance of a node
to the tree root is its decision level.

In the example the solver first chooses v3 as decision variable and assigns it to false.
Next, v1 is chosen and assigned to false. This leads to the residual formula (v2) which is
unit and forces the assignment of v2 = true. At this point the formula is satisfied and the
solver would return the model

π = {v1 → false, v2 → true, v3 → false}.
The remaining steps that are shown in light gray are only added for further visualization

to highlight other possible outcomes, had the solver assigned some of the variables to true
first.

v3

(v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3)

v1

(v1 ∨ v2) ∧ (¬v1 ∨ ¬v2)

sat

sat
(v2)

sat
(¬v2)

Figure 2.1.: Visualization of the DPLL solve process for Formula 2.2.

Modern SAT-Solving Techniques

The basic concept of a modern branch-and-bound SAT solver is still based on the DPLL
algorithm. However, different changes and extensions have been introduced which lead to
a conflict-driven clause-learning (CDCL) methodology. This section introduces the most
sweeping changes that are implemented in virtually every successful SAT solver:

• Iterative computation: Unlike the classic DPLL algorithm, modern SAT solvers usu-
ally do not use recursion but a more efficient solve loop.

• Decision heuristic: The choice of the next variable that should be assigned is
performed by a complex heuristic. Among the best known is the variable state
independent decaying sum (VSIDS) heuristic [9] which measures how often a vari-
able recently occurred in a conflict clause. The heuristic picks the free variable with
the highest score for the next decision.

• Conflict learning: Whenever the solver encounters a conflict – to satisfy the formula
the solver would have to assign a variable to true and false at the same time – it
learns a new conflict clause. This clause attempts to store the essence of the conflict
and ensures the solver will avoid this particular variable assignment in the future.

11

2. Preliminaries

• Non-chronological backtracking: If the solver encounters a conflict it backtracks –
removes the variable assignments and their implications – to the first decision level
where the conflict clause becomes unit. This unit clause immediately implies a new
variable assignment which should lead the solver away from the conflict.

• Restarts: If the solver cannot find a model after a certain amount of decisions it
resets itself and starts a new solving attempt. Some of the learned knowledge is
retained to ensure that the solver does not repeat the exact same calculations. The
restart interval is increased over time.

• Preprocessing: By analyzing the formula it can often be drastically simplified. Such
simplifications can, among others, find variables that must have a certain value or
eliminate some variables completely.

Implementation details and many more improvements can be found in recent publications
on SAT solvers [9]–[14] in addition to [1].

Incremental Solving

Modern SAT solvers often provide an incremental solving mode [10]. In this mode two
additional features are supported. Firstly, after a formula has been solved it can be ex-
tended by adding new clauses and then solved again. Should the solver have learned any
conflict clauses during the previous run, this knowledge is retained and used during any
subsequent calls on the same base formula.
Secondly, incremental solvers support assumptions. An assumption forces a variable to a

fixed value during the next solver call. However, the assumption can be reverted after the
current formula was solved. The solver will ensure that it only retains knowledge that is
independent from any assumed variable values. The combination of incremental additions
to the base formula and assumptions allows for many advances, for example bounded model
checking [15]. In this thesis, incremental solving is used to greatly increase the speed of
the presented SAT-based algorithms.

2.1.4. Model Counting

Solving the Boolean satisfiability problem gives a single model for the formula (if one
exists). Determining the number of different models of a formula is the closely related
#SAT problem. From the number of satisfying assignments (called model count) it might
be possible to derive the probability for the effect that is modeled by the formula to occur:
When solving a formula with a SAT solver a single example for a solution is returned.
However, from the model count – computed by a #SAT solver – the likelihood that the
modeled problem is solved can often be computed. The #SAT problem is even more
difficult to solve than the SAT problem: It is #P-complete [16].

A #SAT solver computes the model count of a given formula Φ. Similar to SAT solvers,
two different approaches can be distinguished: Approximating #SAT solvers compute an
approximation of the model count by using stochastic methods. This approximation is
usually given as an interval with a certain confidence.

12

2.1. Formal Solving Methods

This work focuses on exact #SAT solvers which accurately compute the number of
satisfying assignment by considering the entire decision tree much like a complete SAT
solver does.
This thesis discusses the development of the #SAT solver countAntom and its distributed

variant dCountAntom in detail in Chapter 5 and applications of #SAT to circuit testing
in Chapter 6. This section will therefore only give an example for the general approach of
exact #SAT-solving.

A #SAT solver works similar to the DPLL algorithm used for SAT-solving. However,
instead of stopping when a satisfying assignment has been found, the solver continues with
computing the model count for every branch of the decision tree until the entire decision
tree has been traversed. The model count of the current branch is based on the number
of remaining free variables: For n free variables there are 2n different possible variable
assignments in the current branch.
Figure 2.2 shows an example of the solving process for Formula 2.2. In comparison to

the DPLL solving process in Figure 2.1, the #SAT solver definitely considers the entire
decision tree and computes the model count for each node (shown below the corresponding
nodes). The model count of an internal node within the tree is computed by adding the
model counts of the two child nodes. The overall model count of Φ, abbreviated as mc(Φ),
is 6.
Since there are 23 = 8 possible different variable assignments, the satisfiability probabil-

ity of Φ is 6
8 = 75 %.

v3

(v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3)

6

v1

(v1 ∨ v2) ∧ (¬v1 ∨ ¬v2)

2

sat

22 = 4

sat
(v2)

1

sat
(¬v2)

1

Figure 2.2.: Visualization of the #SAT solve process for Formula 2.2.

13

2. Preliminaries

2.2. Circuit Testing

In this section the basics of circuit testing are introduced. Section 2.2.1 describes the
general structure of digital combinational and sequential circuits. In Section 2.2.2 various
approaches to improve the testability of a circuit are discussed. Section 2.2.3 gives a more
in-depth insight into the real hardware implementations of logic cells. Next, Section 2.2.4
discusses the modeling of defects with fault models. Section 2.2.5 introduces the general
problem of automatically generating test patterns for the modeled faults. In Section 2.2.6
SAT-based test pattern generation is described. Finally, Section 2.2.7 gives an overview of
the techniques that are required to model the circuit’s timing in a SAT-based test pattern
generation approach.

2.2.1. Digital Circuits

A digital circuit consists of logic blocks that are connected by wires and implements a
Boolean function g : Bn → Bm (where B ∈ {0, 1}) with n inputs and m outputs. Usually,
a circuit has controllable inputs (known as primary inputs) as well as observable outputs
(known as primary outputs). The logic blocks in a circuit are known as cells and are
defined in a cell library. These cells can be simple buffers or inverters, implement basic
Boolean functions or incorporate more complex behavior (e.g., a combination of AND, OR
and negation). The cell library describes the functionality of the cells using basic logic
gates that can be directly mapped to Boolean operators. Thus, a circuit consisting of
cells can be converted into a mapped circuit consisting of gates by replacing each cell by
its definition. The mapped circuit can then be transformed into a Boolean formula. To
distinguish the cell level description of a circuit from the description as a Boolean formula,
‘0’ and ‘1’ are used for the values of signals in a circuit while false and true are reserved
for variables in a Boolean formula.
Tables 2.5 and 2.6 give an overview of the Boolean functions implemented by basic and

complex cells, respectively. Many of the basic cells also exist in versions with more than two
inputs (e.g., a four-input OR-cell). Instead of mapping these cells to multiple two-input
gates, they are mapped to a single gate with the corresponding number of inputs (e.g.,
a four-input OR-gate). These gates can be transformed into CNF with less clauses than
the multiple two-input gates could be: Directly encoding a four-input OR-cell requires
five clauses. Mapping the cell to two-input cells requires nine clauses and two additional
variables.
The presented cells are just examples. Generally, any Boolean function can be repre-

sented as a cell and used in a circuit. More details on the hardware implementation of the
cells is given in the next section. In this work basic and complex cell are distinguished. A
complex cell implements more advanced functions whereas a basic cell corresponds directly
to a gate.

From a modeling perspective, a digital circuit can be seen as a directed graph with the
logic blocks as nodes and the wires as edges. Figure 2.3 gives an example for a simple
circuit consisting of three cells and a corresponding representation as a graph. In the
graph, the nodes are annotated with the type of the cell they represent.
The representation as a graph is used for all of the algorithms presented in this thesis.

14

2.2. Circuit Testing

Table 2.5.: Basic cells and their corresponding Boolean functions.
Name Symbol Boolean function

BUF a o o = a

NOT or inverter a o o = ¬a

AND
a

b
o o = a ∧ b

NAND
a

b
o o = ¬(a ∧ b)

OR
a

b
o o = a ∨ b

XOR
a

b
o o = a⊕ b

XNOR
a

b
o o = ¬(a⊕ b) = (a⇔ b)

Table 2.6.: Two complex cells with their corresponding Boolean functions.
Name Symbol Boolean function

AND-OR-Invert (AOI)
A1
A2
B1
B2 A

O
I
22

a1
a2
b1
b2

o o = ¬
(
(a1 ∧ a2) ∨ (b1 ∧ b2)

)

Multiplexer (MUX)
a

b

o

sel

o =
(
(a ∧ sel) ∨ (b ∧ ¬sel)

)

15

2. Preliminaries

Thus, when discussing digital circuits in the context of algorithms, cells (or gates, when
talking about a mapped circuit) are also referred to as nodes. However, the graphical
representation as a circuit consisting of cells is chosen for clarity because it makes the
overall structure of the circuit easier to comprehend.
The graph representing the circuit in Figure 2.3 is a directed acyclic graph: There is

no cycle when following the edge only in the indicated direction. Generally, a circuit can
also contain feedback loops which result in a cyclic graph. Circuits with feedback loops
have a different and more complex behavior that is not always well defined in the purely
digital domain (e.g., depending on analog characteristics of the manufactured circuit) and
are, therefore, not considered in this thesis.

C1

C2

C3

a

b
o1

o2

x

x
x

(a) As a circuit

a b

C1

AND
C2

OR

C3

XOR

o2o1

(b) As a directed graph

Figure 2.3.: Two different representations for the same digital circuit.

Memory Elements

In addition to cells, digital circuits can also contain flip-flops that act as memory elements.
Flip-flops store the value on their input on a transition of a special signal, usually called
clock. Circuits with memory elements are known as sequential circuits because the clock
gives the circuit a defined sequential behavior, whereas circuits consisting only of cells are
called combinational circuits. Figure 2.4 shows a small sequential circuit with one flip-flop
and one cell. The flip-flop stores the value at its input D at a rising edge of the clock clk
and shows it at the output Q. The output of the complete circuit is ‘1’ when the value of
a differs from that stored in the flip-flop.
There are many different types of storage elements in modern circuits and even many

different kinds of flip-flops. For the context of this thesis, the handling of rising edge
clocked D-type flip-flops like the one used in Figure 2.4 is presented. More details on
different kinds of storage elements can, for example, be found in [17].

D Q

clk

a o
x

(a) The sequential circuit

input a flip-flop Q output o
0 0 0
0 1 1
1 0 1
1 1 0

(b) The implemented function as a table

Figure 2.4.: A small sequential circuit and the Boolean function it implements.

16

2.2. Circuit Testing

A sequential circuit can be split into two parts: the flip-flops and the remaining cells
(called the combinational core). Figure 2.5 visualizes this partitioning.

Sequential circuits differ from circuits with a feedback loop because the value on the
feedback lines only changes when there is a rising clock edge. Hence, for a single time
frame starting after a rising clock edge until the next rising clock edge only the current
output values of the flip-flops, the values at the primary inputs and the combinational
core need to be considered. Therefore, the outputs of the flip-flops are considered to be
secondary inputs of the combinational core. Similarly, the flip-flop inputs are considered
as secondary outputs.

Combinational
Core

Q D

. . .
Q D

. . .Primary Inputs . . . Primary Outputs

. . . Secondary Outputs. . .Secondary Inputs

Figure 2.5.: Partitioning a sequential circuit into its combinational core and flip-flops.

2.2.2. Improving the Testability of a Circuit

The testability of a fault depends on the structure and functionality of the corresponding
circuit. Especially in sequential circuits it can be very difficult to generate the required
input stimuli or to observe the fault effect. Imagine, for example, an n-bit counter that
counts from 0 to 2n− 1 and a fault that requires the counter value to be “1. . . 1”. To reach
this value, the counter would have to be incremented 2n− 1 times before a test could even
be applied.
To solve observability and controllability challenges, various design for testability (DFT)

improvements have been proposed [18].

Scan-Chains

One of the most common DFT techniques is the use of scan-chains to control the values
of flip-flops in sequential circuits. A scan-chain connects flip-flops into a shift register that
can be filled with values while the circuit is in test mode. Additionally, the values stored
in the flip-flops can be shifted out of the chain again which makes them observable. To
this end, flip-flops have to be augmented with additional logic to create a scan flip-flop (see
Figure 2.6a). These scan flip-flops are then combined into a scan-chain (see Figure 2.6b).
When the scan mode (SM) signal is ‘1’, the flip-flops act as a scan-chain and store the value
at the scan-in (SI) port. When the scan mode is disabled, a scan flip-flop can be used just
like any other flip-flop. In a full-scan circuit all of the flip-flops are accessible through
scan-chains. This makes all of the secondary inputs controllable and all of the secondary

17

2. Preliminaries

outputs observable. Thus, the ATPG algorithms need only consider the combinational
core of the circuit and do not need to handle the flip-flops. Faults in the additional scan
logic are tested through separate and specialized methods [19]–[21] which are not pursued
in this thesis.
In this work, it is assumed that all circuits are full-scan and that all secondary circuit

inputs and outputs are, therefore, fully controllable and observable.

D Q

clk
Q

SI

D

SM

(a) Layout of a scan flip-flop based on a nor-
mal D-flip-flop.

Scan in

Scan out

SI
Q D

SI
Q D

SI
Q D

..
.

Fr
om

co
m
bi
na

ti
on

al
co
re

T
o
co
m
bi
na

ti
on

al
co
re

(b) Structure of a scan-chain (in blue). The clock
and test mode signals are not drawn.

Figure 2.6.: Construction of a scan-chain based on scan flip-flops.

Multiple Time Frame Tests

While scan-chains greatly improve the testability, shifting values into the chains still re-
quires a certain amount of time depending on the chain length. Shifting in and out a
complete pattern after every test leads not only to an increase in test time but can also
cause issues with timing relevant tests. For example, in the transistor stuck-open fault
model the detection of a fault depends on a floating line storing the charge from the first
time frame. If the second test pattern T2 takes a long time to be loaded into the flip-flops
the charge might have already dissipated and the fault effect would be masked by the time
T2 is available.
To solve this problem, different techniques for multiple-pattern tests have been intro-

duced: Launch-on-capture [22] (LOC) and launch-on-shift [23] (LOS) re-use (some of) the
values that were used or generated in the previous time frame. In an LOS type test, the
values in the flip-flops are shifted once more to derive the second pattern. For LOC tests
the flip-flop values for the second pattern are derived from the secondary outputs of the
previous time frame. Thus, the second test pattern can be applied only one clock-cycle
after the first pattern but the values of the secondary inputs in all but the first time frame
are limited by the possibilities of the combinational logic (LOC) or of the values in the
scan-chain (LOS).
Other techniques, for example enhanced scan [24], allow for full freedom in all time

frames but come at an increased cost and complexity.

18

2.2. Circuit Testing

Test Points

For some tests, it might be necessary to observe the value at a certain signal within the
circuit or to set this signal to a specific value. This can be achieved by inserting a test
point. To only observe a value, the signal can be routed to a pin of the device. To control
the value of a signal, an additional cell needs to be inserted into the circuit. Figure 2.7
shows the required modifications to force a signal to ‘0’ or to ‘1’. These two modifications
can of course be combined to allow for an arbitrary signal value.

control

L L

(a) When control is assigned to ‘1’, L becomes
‘1’, otherwise it is unchanged.

control

L L

(b) When control is assigned to ‘0’, L be-
comes ‘0’, otherwise it is unchanged.

Figure 2.7.: Adding a test point to control the value of a line L in a circuit.

2.2.3. Cell Layout

Up until this point, digital circuits and the cells contained in them were considered only
as Boolean functions. However, to build actual working hardware circuits, this abstract
description has to be mapped to a physical implementation. Most modern logic is imple-
mented as complementary metal-oxide-semiconductor (CMOS) devices [25]. MOS transis-
tors have three ports: gate, source and drain. The gate input controls whether the drain
and source ports are connected or not. The transistor is considered to be turned on when
it is conducting. In CMOS, two types of transistors are used:

• N-type transistors: These transistors conduct when a voltage is applied to the gate.

• P-type transistors: These transistors conduct when no voltage is applied to the gate.

By combining these transistors into small circuits, the Boolean functions of cells can be
implemented. Figure 2.8 shows the transistor layout of an OR-cell with inputs A1 and
A2 and output ZN as implemented by the 45 nm Nangate library [26]. A cell library
provides a set of different logic cells, their Boolean function as a gate description, physical
implementation and often a characterization of the power and timing characteristics of the
cells.
With the information provided by the cell library, a digital circuit can be transferred

into a physical design, an integrated circuit (IC).
For the mapping between physical implementation, Boolean function and Boolean for-

mula, the voltage levels of the circuit have to be interpreted. To this end, a logic ‘1’ (or
true in the context of Boolean formulas) represents the positive supply voltage VDD of the
circuit. Conversely, a logic ‘0’ (false) is represented by the negative supply voltage VSS –
often this is also the ground level.
An example for the functionality of a CMOS logic cell is given with the transistor-stuck-

open fault model discussed in the next section.

19

2. Preliminaries

T5

T4

T2 T3

T1

T0

VDD

VDD

VSS VSS VSS

A2

A1

A1 A2

ZN
ZNneg

x x x x

Figure 2.8.: Transistor layout of an OR-cell as implemented by [26].

2.2.4. Fault Models

There are many reasons why a manufactured IC does not function as intended, ranging
from design bugs over incorrect specifications to manufacturing challenges. The field of
circuit test focuses on finding manufacturing defects that influence the functionality of
the produced chip. With the mass production of chips which have smaller and smaller
feature sizes and more and more transistors, such defects are impossible to eradicate and
are occurring with a certain probability for any manufactured chip. The percentage of
chips without a defect is the yield of the production.

With an almost infinite number of possible defects, an abstraction is needed. In struc-
tural circuit test, a fault model is used to generate a finite list of faults that are in some
way related to real defects. By testing a manufactured chip for the presence of any of the
modeled faults, one hopes to separate the defect-free chips from those which are defective.
The quality of a fault model impacts the share of chips that pass the testing but still

contain a defect, the so called test escapes. The number of defective parts that are shipped,
usually counted in defective parts per million (DPPM), directly corresponds to the defective
chips that escape all tests. While a low DPPM rate is definitely desirable (and often certain
DPPM rates are required by a customer), the test cost is always a consideration, especially
with cheap, mass manufactured devices. Thus, a balance between optimal fault or defect
coverage and test application time has to be found.
Many different fault models have been proposed. This section discusses the well estab-

lished stuck-at [27] and transition-delay [27], [28] fault models as well as the more advanced
transistor stuck-open model [29]. A comprehensive collection of different models used in
hardware testing can, for example, be found in [2].
To test a circuit for the presence of a modeled fault, a test pattern is applied to the inputs

of the circuit. This test pattern is a specifically crafted input assignment with the property
of creating a difference between the fault-free and the fault-affected circuit on at least one

20

2.2. Circuit Testing

of the outputs. A test pattern fulfills two tasks: Firstly, it activates the fault which makes
it visible at the faulty location. This step usually involves applying a detection pattern
to the fault site. Secondly, it propagates the fault effect to at least one of the observable
circuit outputs. The signal values within the fault-free version of the circuit are called the
good (G) values, those in the fault-affected circuit the bad (B) values.
For sequential circuits, extra care has to be taken to ensure a correct handling of the

secondary inputs and outputs because these are actually connected to flip-flops and not
directly controllable and observable. This special handling is discussed in Section 2.2.2.

Stuck-At Faults

In the single stuck-at fault model one of the inputs or the output of one of the cells in the
circuit is always ‘1’ or always ‘0’. Thus, the number of different faults is limited to twice
the sum of the number of cell inputs and outputs within the circuit. Furthermore, many
stuck-at faults are equivalent and can be combined. Consider, for example, a stuck-at-1
fault at the input of an inverter and a stuck-at-0 fault at its output. The stuck-at-1 fault
would always produce a ‘0’ at the output of the inverter which is equivalent to a stuck-at-0
fault at the output. Hence, it is sufficient to test for the absence of one of the two faults.
An example for stuck-at faults is shown in the circuit in Figure 2.9. Here, two different

stuck-at faults and the effect of the test pattern “11” are analyzed. The propagation of the
test pattern in the fault-free circuit is shown in blue. The yellow and red values show the
values in the faulty circuits starting from the particular fault location.
The pattern “11” is a test pattern for the stuck-at-0 fault at the second input of C3

(Figure 2.9a). It activates the fault location by applying the good value ‘1’ to the input
which differs from the bad value ‘0’. The fault effect is then propagated through the
XOR-cell to output o2 where a difference between the good and bad output value can be
observed.
On the other hand, the pattern “11” is not a test pattern for the stuck-at-0 fault at the

second input of C2 (Figure 2.9b). While the fault site is successfully activated, the fault
effect is not propagated through the OR-cell C2. Hence, there is also no difference at either
output of the circuit.

C1

C2

C3

stuck-at-0

a

b
o1

o2

1

1

1

1

1

0
0 1

1

1

x

x
x

(a) Stuck-at-0 fault at the second input of C3

C1

C2

C3

a

b
o1

o2

1

1

1

1

1

0

0 1

1

0

x

x
x

stuck-at-0
(b) Stuck-at-0 fault at the second input of C2

Figure 2.9.: Two circuits with different stuck-at faults.

21

2. Preliminaries

Transition-Delay Faults

The stuck-at fault model assumes that the faulty signal is stuck at a specific value. While
this covers many different defects and even though the stuck-at model is widely used
throughout the industry, testing only for stuck-at faults is not sufficient to ensure the
absence of all possible defects. The single transition-delay fault model targets defects
which do not cause a line to be stuck but instead delay the propagation of a rising or
falling transition for a long time. Thus, when the assignments T1 and T2 are successively
applied to the circuit’s inputs, the faulty line will remain at the value implied by T1
and will not change to the value implied by T2. The transition delay fault locations are
chosen similarly to the stuck-at model. In addition, the delay faults are further refined by
distinguishing slow-to-rise and slow-to-fall faults.

It should be noted that the transition-delay model assumes that the propagation of a
transition is delayed for a long time (until after the next clock edge triggers the flip-flops
to be updated). However, the propagation of the transition still eventually occurs. Other
fault models, for example the small delay fault model, assume that the signal propagation
is only delayed for a certain (small) amount of time [30]–[32] and can be used to target
defects which only cause slight changes in the circuit’s timing.
To test for a transition delay fault, a two pattern test 〈T1, T2〉 has to be applied to the

circuit. The initialization pattern T1 generates a known logic value at every line in the
circuit and the required logic value at the fault site (i.e., a ‘0’ for a slow-to-rise fault and a
‘1’ for a slow-to-fall fault). In the second time frame, the propagation pattern T2 activates
the fault and propagates its effect to at least one output. T2 is also known as the launch
pattern since it launches the transition that tests for the transition-delay fault.

Figure 2.10 shows an example for the detection of two different transition-delay faults.
The test pattern 〈11, 00〉 is able to detect both of the slow-to-fall faults at output o2 because
the output has a value of ‘1’ in the fault-affected circuit instead of the correct ‘0’. In both
cases a 1→ 0 transition is delayed and the corresponding signal stays at ‘1’.

C1

C2

C3

a

b
o1

o2

1→0

1→0

1→0

1→0

1→0

0→0
→1

→0

→1

x

x
x

slow-to-fall

(a) Slow-to-fall fault at the second input of C3

C1

C2

C3

a

b
o1

o2

1→0

1→0

1→0

1→0

1→0

0→0

1→1

→1

→0

→1

x

x
x

slow-to-fall
(b) Slow-to-fall fault at the second input of C2

Figure 2.10.: Two circuits with different transition-delay faults.

22

2.2. Circuit Testing

Transistor Stuck-Open Faults

The transistor stuck-open fault (TSOF) model represents a specific kind of fault: opens.
Recent data from manufactured devices shows that opens are a predominant defect mech-
anism in modern devices [33]–[35]. An open can occur within a cell (intra-cell open) or on
the interconnects between cells and be partial, resistive or full.
The TSOF model assumes that a single transistor within a cell will never conduct and

is always open. This corresponds to defects within the transistor itself or within the wires
that connect the terminals of the transistor to its neighbors. This fault model is also known
as the transistor stuck-off model which describes the exact same effect.
Some TSOFs are likely to be covered by sets of stuck-at or transition-delay tests. How-

ever, others would most likely be missed without specifically designed tests. This thesis
presents novel approaches for the generation of test patterns for TSOFs which accurately
account for many of the challenges that arise with a detailed low-level fault model where
timing and analog effects cannot be ignored anymore. Therefore, this section will only give
some examples for the test of TSOFs while a more exact discussion of the fault model is
deferred to Chapter 4.
Figure 2.11 shows the effect of a TSOF at the transistor level of an OR-cell. Similar to

transition-delay faults a two pattern test is required for the detection of these faults. Here,
the transistor M2 is stuck-open and the detection pattern 〈00, 10〉 is applied to the cell
inputs.

M5

M4

M2 M3

M1

M0

VDD

VDD

VSS VSS VSS

A1

A2

A1 A2

ZN
ZNneg

x x x x
stuck-open

0→1

0→1

0→0

0→0

1→1 0→0

Figure 2.11.: The transistor layout of an OR-cell with a TSOF in transistor M2.

In the first time frame the initialization pattern “00” turns on M4 and M5. This creates
a conducting path from VDD to the internal wire ZNneg which is charged to ‘1’. This
turns on M0 and creates a conducting path between VSS and ZN . Thus, the cell output
becomes ‘0’. So far, the cell behaves normally: the faulty transistor M2 is off anyway,
since A1 is ‘0’.

In the second time frame, the propagation pattern “10” turns off M5 and should turn

23

2. Preliminaries

on M2. However, as M2 is stuck-open, ZNneg is connected to neither VDD nor to VSS .
Instead, it is floating and maintaining its previous charge and value due to the line capaci-
tances [29]. Therefore, the circuit output ZN stays at ‘0’ – the correct output value would
be ‘1’.
The TSOF in transistorM2 of the considered OR-cell is not represented by any stuck-at

or transition delay-fault. It is, therefore, not reliably detected by a stuck-at or transition-
delay test pattern:

• Stuck-at: The cell output ZN can become both ‘0’ or ‘1’ because M3 offers a
possible parallel path to the faulty M2. Thus, the fault is not a stuck-at fault and
no stuck-at pattern could guarantee a successful detection. The pattern “10” is a
detection pattern for a stuck-at-0 fault at the cell. However, without knowing (or
controlling) the charge of ZNneg, the output might very well already be ‘1’ and the
cell would be considered fault-free.

• Transition-Delay: The pattern 〈00, 10〉 (which detects the TSOF in M2) is also a
detection pattern for a slow-to-rise fault at the output of the OR-cell. However, so
are 〈00, 01〉 and 〈00, 11〉 both of which fail to detect the TSOF in M2 (because they
openM3). Therefore, when picking a random transition delay pattern, the detection
probability for the TSOF would be only 1

3 .

As a result, a specifically crafted TSOF test pattern is required to guarantee a successful
test of the fault and the defects which might be causing it.

2.2.5. Automatic Test Pattern Generation

An automatic test pattern generation (ATPG) algorithm computes a test pattern for a
fault in a given circuit. Usually, an ATPG algorithm is used to generate a test pattern for
every single fault in the circuit. These test patterns can then be applied to a manufactured
IC. Depending on the circuit structure and the fault model, there are usually some faults for
which a test pattern cannot be generated. The share of faults which is detected by at least
one test pattern is known as fault coverage. Depending on the fault model, a high fault
coverage also gives a high defect coverage, which in turn should result in a low DPPM rate.

Many different ATPG algorithms have been proposed. They range from the D-algorithm
[36] and its variants [37], [38] which work more or less directly on the circuit structure,
to advanced SAT-based techniques which utilize an abstract model of the test pattern
generation problem and are applicable to a wide range of scenarios [39]–[48].
The exact nature of the ATPG algorithm depends on the considered fault model. The

general idea, however, is always the same: The ATPG algorithm must compute a test
pattern that creates a difference on at least one observable output if the considered fault
is present in the circuit.

24

2.2. Circuit Testing

2.2.6. SAT-Based Test Pattern Generation

This thesis focuses on SAT-based ATPG algorithms. Here, the problem of generating a
test pattern is transferred to a Boolean formula which can be solved by a SAT solver. If the
SAT solver finds a model for the formula, a test pattern can be derived from the variable
assignment.
The basic concept of SAT-based ATPG for a fault f can be divided into three steps each

of which is described in detail in the subsequent sections:

1. Create a miter circuit [49] with a good and bad copy of the circuit.

2. Create a representation of the miter circuit as a Boolean formula Φ.

3. Add the fault activation condition to Φ.

By solving Φ with a SAT solver a test pattern for f is computed. If Φ is unsatisfiable, it
is proven that the fault is untestable.

Creating the Miter Circuit

Figure 2.12 shows the general structure of a miter circuit for ATPG. It consists of two
copies of the original circuit which are used to compute the output values for the fault-
free (good) and fault-affected (bad) circuit. Corresponding inputs of the circuit copies are
connected to form a new input of the miter circuit. This ensures that the inputs of the
good and bad circuit have the same value. To detect a fault, the value of at least one of the
outputs of the bad circuit must differ from that of its representative in the good circuit.
To detect this difference, an XOR-cell, which combines corresponding outputs, is added
for each pair of outputs. Finally, the outputs of the difference-detecting XOR-cells are
connected by an OR-cell. If the output of the OR-cell is ‘1’, at least one of the outputs
shows a difference.

Good circuit

Bad circuit

Inputs Outputs Difference-
detection

x
x

. . .

x
x

..
.

..
.

..
.

..
.

..
.

..
.

Figure 2.12.: The layout of a miter circuit for test pattern generation.

25

2. Preliminaries

Converting the Miter Circuit to a Boolean Formula

The miter circuit has to be converted into a format that can be handled by a SAT solver
– a Boolean formula. Luckily, the circuit can easily be transformed into a mapped circuit
consisting of logic gates. The logic gates are closely related to Boolean formulas already
since they correspond to Boolean operators. In fact, the entire mapped circuit could be
converted into a Boolean formula by traversing the circuit from the inputs to the output
and combining the encountered Boolean functions of the gates into an ever larger formula.
As an example consider the mapped circuit in Figure 2.13a. Here, every gate is anno-

tated with the (sub-)formula that is contained until this stage of the circuit. Therefore,
the Boolean function implemented by the circuit is represented by the following Boolean
formula:

Φ =
(
o⇔

(
(a ∧ b)⊕ (a ∨ b)

))
This direct conversion of the circuit is not in CNF and Φ can, therefore, not be directly

used by most SAT solvers. The formula has to be transformed into CNF with the Tseitin
transformation [4] which generates an equisatisfiable CNF that is linear in the size of the
original formula.
Instead of first creating a huge, convoluted formula and then transforming this formula

to CNF, one can also apply the Tseitin transformation to the mapped circuit on a gate-
by-gate basis. This direct conversion is shown in Figure 2.13b. The final formula ΦCNF is
simply the combination of the individual sub-formulas for each gate:

ΦCNF =(a ∨ ¬x) ∧ (b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ x) ∧ (¬a ∨ x) ∧ (¬b ∨ x) ∧ (a ∨ b ∨ ¬x)

∧ (x ∨ y ∨ ¬o) ∧ (¬x ∨ ¬y ∨ ¬o) ∧ (¬x ∨ y ∨ o) ∧ (x ∨ ¬y ∨ o)

ΦCNF directly encodes the behavior of the circuit in a SAT solver friendly format and
can be easily generated by traversing the circuit once from the inputs to the outputs. Every
variable in Φ corresponds to a signal in the miter circuit. After solving the formula, the
value of the signal can simply be derived by the value of the variable in the model.
To increase readability and clarity, many Boolean formulas shown in this thesis are not

in CNF and include implications and other boolean operators instead. These formulas are
all transformed into CNF with the Tseitin transformation before being handed over to the
SAT solver.

The Fault Activation Condition

The fault activation condition – that is, the values that need to be applied to the cell
inputs to make the fault effect visible at its output – differs depending on the fault model.
Thus, the modeling of the activation condition in the ATPG also differs and might also be
implementation specific. The approach that is described in this section is the one that is
implemented by the SAT-based ATPG algorithms developed for this thesis.
For stuck-at faults the faulty line is split into two parts. The first part is connected to

the cell driving the line and must have a value that is inverse to the fault (i.e., ‘1’ for a
stuck-at-0 fault and ‘0’ for a stuck-at-1 fault) to activate the fault. The second part is
connected to all the cells driven by the line. This line has the value of the stuck-at fault in

26

2.2. Circuit Testing

a

b

o

x

x
a ∧ b

a ∨ b

(a ∧ b)⊕ (a ∨ b)

(a) Direct conversion with a gradual formula con-
struction

a

b

o

x

x
x

(a ∨ ¬x) ∧ (b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ x)

y

(¬a ∨ x) ∧ (¬b ∨ x) ∧ (a ∨ b ∨ ¬x)

(x ∨ y ∨ ¬o)
∧(¬x ∨ ¬y ∨ ¬o)

∧(¬x ∨ y ∨ o)
∧(x ∨ ¬y ∨ o)

(b) Tseitin transformation, which introduces ad-
ditional helper variables

Figure 2.13.: Construction of the Boolean formula that represents the circuit.

the bad circuit and its inverse in the good circuit. Thus, the only difference between the
good and the bad circuit lies with the values at the fault location. Figure 2.14 shows an
example for the fault activation conditions for both types of stuck-at faults. The required
values for the line are added as unit clauses to the Boolean formula.

Original
circuit:

stuck-at-1

Good
circuit:

‘0’ ‘0’

Bad
circuit:

‘0’ ‘1’

(a) For a stuck-at-1 fault

Original
circuit:

stuck-at-0

Good
circuit:

‘1’ ‘1’

Bad
circuit:

‘1’ ‘0’

(b) For a stuck-at-0 fault

Figure 2.14.: Modeling the fault activation condition and effect by splitting the faulty line.

This process shows one of the strengths of SAT-based ATPG: There are almost no limits
with regard to the fault model, fault location and fault effect. The basic circuit modeling
can remain unchanged and only the parts that are changed by the fault need to be added.
To generate a formula that creates a valid test pattern one more step is needed: It has to

be ensured that at least one of the circuit outputs shows a difference between the fault-free
and faulty versions of the circuit. In the miter circuit this is achieved by combining all of
the difference-detecting XOR-cells through a large OR-cell and then forcing the output of
this cell to be ‘1’. In SAT-based ATPG the OR-cell is not needed. Instead, the variables
representing the outputs of the XOR-cells are combined into a single new clause. To
satisfy the formula, this clause has to be satisfied. Thus, at least one of the XOR-output’s
variable has to be true.

27

2. Preliminaries

2.2.7. Modeling Time in SAT-Based ATPG

The SAT-based ATPG approach that has been outlined in the previous sections can be
extended to handle the concept of time. In the context of an ATPG algorithm, this thesis
uses two different conceptions of time:

• A time frame: Here, time is considered to be progressing stepwise, for example, with
every rising clock edge. This concept is very popular as it is used in common multiple
time frame fault models like the transition-delay fault model.

• Waveform accurate time: In this conception, time is considered at a much finer
granularity at which the propagation of a signal through the different cells can be
analyzed with waveform accuracy. The different cell delays are extracted from the
circuit layout specifications which gives a close representation of the real circuit’s
behavior.

This section describes how both of these conceptions of time can be modeled in a SAT-
based ATPG algorithm.

Time Frames

To model the circuit’s behavior across multiple time frames it is unrolled: For every con-
sidered time frame a copy of the circuit is added. Then, depending on the selected test
type (LOS, LOC, . . .), the secondary inputs and outputs are connected. Figure 2.15 gives
an example for a LOC type test over two time frames. Note that the primary inputs and
outputs are always controllable and observable whereas only the secondary inputs of the
first time frame can be controlled and only the secondary outputs of the second time frame
can be observed.

T1

. . .

Primary
inputs

. . .

Primary
outputs

..
.

..
.

..
.Secondary

inputs
Secondary
outputs

T2

. . .

Primary
Inputs

. . .

Primary
Outputs

Figure 2.15.: Modeling of two time frames by unrolling the circuit.

The unrolled circuit can be used in a miter circuit like any other circuit. The only
difference is that for the bad circuit the fault has to be added in each copy for every time
frame.

Waveform Accurate Time

A waveform accurate SAT model of the transitions caused by a change in the input as-
signment was first presented in [48]. The approach can be summarized as follows: The
continuous time is split into small discrete time steps. The resolution of the discretization

28

2.2. Circuit Testing

can be chosen arbitrarily. Next, the earliest and latest possible time steps at which a signal
can change its value are computed for every line in the circuit. This only requires a single
sweep of the circuit from the inputs to the outputs. Finally, a copy of each cell is added
for every time step where the cell might be active. The cell copy models the behavior at
exactly one time step. Every signal is represented by a list Tvars of variables representing
the value of the signal from the earliest to the latest point of activity.
Figure 2.16 gives an example of the signal propagation of the pattern 〈11, 00〉 applied to

the circuit from Figure 2.3a. The values after the @ symbol give the time step after which
a transition occurs.

Tvars: 1 0

@0

Tvars: 1 0

@0 Tvars: 1 0 0 0

@2

Tvars: 1 1 1 0

@4
Tvars: 0 1 1 0

@4 @6

2

4

2

a

b

o1

o2

x

x

x

Figure 2.16.: Propagation of signal changes through a circuit. The value in each cell gives
the delay from its inputs to its output.

This example also shows the relevance of a waveform accurate modeling: Due to the
different delays along the paths to the XOR-cell, the falling transitions arrive at different
time points. This causes a glitch at the output of the cell – an intermediate value on a
signal that occurs only while the circuit is still propagating the changes which occur due to
a change in input values. Glitches can have positive and negative effects on the testability
of a fault. This topic will be discussed further in Chapter 4.

29

3. Advanced Modeling Techniques for
SAT-Based ATPG

Since its introduction roughly 25 years ago [39], SAT-based ATPG algorithms have been
broadly studied and applied to many different fault models and related problems. Such
algorithms offer a remarkable performance on large industrial designs [41], [47]. Especially
for untestable faults there appears to be a clear benefit to using SAT instead of working
directly on the circuit structure [40].
Furthermore, the more abstract nature of the problem description makes it easy to

consider higher value logics [45], [46], [50] or more sophisticated fault models [44], [51]–
[53].
At the same time, the abstraction from a circuit to a Boolean formula can also remove

some of the useful information. Introducing some of this information back into the Boolean
formula can increase the overall solve speed by guiding the SAT solver through the search
space more efficiently. This chapter discusses one such improvement: D-chains. A D-chain
adds information about the propagation of the difference between the good and bad circuit
to the Boolean formula used by the SAT-based ATPG algorithm. The concept itself was
first introduced in [39] and further divided into a forward [39], [54] and backward [55]
implication D-chain. In [56] a precursor of the presented good-diff D-chain was introduced.
The indirect gate encoding presented in that work is, however, limited to gates with two
inputs. Furthermore, a basic idea for a reduction of the redundancy created by D-chains
was shortly discussed in [57] but not followed up any further.

This chapter discusses and compares the known D-chain variants and introduces the
good-diff D-chain encoding which supports cells with any number of inputs as well as
novel efficient hybrid implementations.
In Section 3.1 the implementation of an optimized SAT-based ATPG algorithm for the

evaluation of the different D-chains is presented. Afterwards, the backward and forward D-
chains are discussed in Section 3.2. The newly developed good-diff D-chain and its hybrid
variants are introduced in Sections 3.3 and 3.4, respectively. In Section 3.5 a comprehensive
analysis and comparison of the different D-chains across a large selection of different circuits
is performed. Section 3.6 concludes the chapter with a summary of the contributions.

30

This chapter is partially based on:

[J2] P. Raiola, J. Burchard, F. Neubauer, D. Erb, and B. Becker, “Evaluating the effective-
ness of D-chains in SAT-based ATPG and diagnostic TPG”, Journal of Electronic
Testing: Theory and Applications (JETTA), 2017. doi: 10.1007/s10836- 017-
5693-6

[C1] J. Burchard, F. Neubauer, P. Raiola, D. Erb, and B. Becker, “Evaluating the ef-
fectiveness of D-chains in SAT-based ATPG”, in 18th IEEE Latin American Test
Symposium (LATS), 2017. doi: 10.1109/LATW.2017.7906752

The main contributions by the author to this chapter are:

• The implementation of a reference SAT-based stuck-at ATPG algorithm.

• The addition of different improvements to the ATPG to increase the overall solve
speed.

• The implementation of a forward and a backward D-chain.

• The development and implementation of the good-diff D-chain.

• The development and implementation of two hybrid D-chain variants.

• The first comprehensive analysis of all of the different D-chains for a wide range of
different circuits.

The implementations are built on top of the PHAETON framework [44] by Matthias Sauer
which, among others, provides a circuit file parser, logic generators for the Tseitin transfor-
mation as well as an interface to the SAT solver antom [13], [14]. The formal generalization
of the good-diff D-chain for multiple input cells and its proof of correctness was performed
by Pascal Raiola.

31

http://dx.doi.org/10.1007/s10836-017-5693-6
http://dx.doi.org/10.1007/s10836-017-5693-6
http://dx.doi.org/10.1109/LATW.2017.7906752

3. Advanced Modeling Techniques for SAT-Based ATPG

3.1. Optimized Stuck-At ATPG

To evaluate algorithmic improvements, a baseline ATPG implementation is required. To
this end, an optimized SAT-based stuck-at ATPG which combines support for complex
cells and incremental solving is designed and implemented.
The basic concept of a SAT-based ATPG was already introduced in Section 2.2.6. In

this section, the more advanced features that are required for an efficient test pattern
generation are discussed. The three main improvements are:

1. Merely model the required parts of the circuit.

2. Accurately model complex cells.

3. Incrementally build and solve the formula.

Each of these improvements will be discussed in the following sections. By combining
them, the presented algorithm is able to efficiently compute a test pattern for a given
stuck-at fault. It should be noted that the discussed improvements are not novel and used
by other SAT-based ATPG algorithms as well.

3.1.1. Modeling Merely the Required Parts of the Circuit

Not all parts of a circuit are needed to compute a test pattern for a fault [58]. Figure 3.1
shows the modeled parts for the stuck-at ATPG.

Primary
inputs

Primary
outputs

Secondary
inputs

Secondary
outputs

Justification cone Propagation cone

Support cone

Figure 3.1.: Only the marked areas of the circuit are required when modeling a fault (red
cross).

The effects of a fault in a circuit only propagate to the outputs that are structurally
connected to the fault site. The cells that are connected to the output of the faulty cell
are known as the propagation cone (shown in red). Similarly, only the inputs with a path
leading to the fault site can potentially influence its activation. The corresponding cells
form the justification cone (blue). Furthermore, the values of the side inputs of the cells

32

3.1. Optimized Stuck-At ATPG

in the propagation cone are required – these are provided by the support cone, marked in
yellow.
By modeling only the required parts of the circuit, the size of the formula can be dras-

tically reduced.

3.1.2. Accurately Modeling Complex Cells

Modern cell libraries and circuits rely heavily on complex cells because they allow for a
tighter integration of logic functions, resulting in a smaller footprint and lower delays. In
the PHAETON framework the original circuit is converted into a mapped circuit by replacing
every complex cell by its definition based on logic gates. This creates a mapped circuit
which only consists of gates. These gates can then be transformed into a formula with the
Tseitin transformation and the ATPG can run as previously described in Chapter 2.
When modeling a stuck-at fault in the original circuit, the fault also has to be transferred

into the mapped circuit. Since the input signal of a cell might be connected to more than
one gate in the cell’s definition, a stuck-at fault at a cell input might correspond to multiple
stuck-at faults in the mapped circuit (see Figure 3.2). To appropriately handle these effects,
the ATPG algorithm is extended to support multiple different stuck-at faults in the mapped
circuit. This ensures that all kinds of complex cells are accurately represented in the ATPG
flow.

stuck-at
(a) A multiplexer with a stuck-at fault at the

select input.

x
stuck-at

stuck-at

(b) The logic gate definition of the multiplexer re-
quires two stuck-at faults.

Figure 3.2.: A single stuck-at fault at the input of a complex cell might correspond to
multiple stuck-at faults in the mapped circuit.

3.1.3. Incremental Solving

The normal SAT-based ATPG approach is based on a miter circuit with an XOR-cell be-
tween all corresponding outputs that could possibly show a difference. For an incremental
solving approach [47], the miter is instead built up step-by-step to create smaller formulas
that can potentially be solved more quickly.
Let Of be the list of outputs in the propagation cone of the fault. In the incremental

approach, in the first step, a single output o1 ∈ Of is chosen and the initial formula
is created. This formula models the entire justification cone of the fault but only the
propagation to o1. This results in a potentially much smaller propagation and support
cone. The formula is then solved. If it is satisfiable, a test pattern that makes the fault

33

3. Advanced Modeling Techniques for SAT-Based ATPG

visible at o1 has been found – and the ATPG for this fault is finished. Otherwise, it is
proven that the fault effect cannot be propagated to o1. In this case, the next output
o2 ∈ Of is selected and the formula augmented with the missing information required for
the propagation to o2 and the necessary support. Because it is already known that the fault
cannot be propagated to o1, the output of the XOR-cell that detects a difference at o1 is
forced to ‘0’. This ensures that the solver does not perform any unnecessary calculations.
The new formula is then solved again. From here on, the algorithm is repeated until a test
pattern has been found, or it has been proven for all different outputs in Of that the fault
cannot be propagated there.
The algorithm is summarized in Figure 3.3. For the solving itself, the SAT solver is used

incrementally. This allows it to maintain helpful knowledge of the previous solver call and
further improves the solve speed.

1 o1 = Of .pop();
2 Φ = encodeMiter(o1) ;
3 solveResult = solve(Φ + assumeDifferenceAt(o1));
4 if solveResult.isSAT() then
5 return extractTestPattern(solveResult);
6 end
7 olast = o1;
8 while not Of .empty() do
9 oi = Of .pop();

10 Φ += encodePropagationCone(oi);
11 Φ += encodeSupportCone(oi);
12 Φ += encodeNoDifferenceAt(olast);
13 solveResult = solve(Φ + assumeDifferenceAt(oi));
14 if solveResult.isSAT() then
15 return extractTestPattern(solveResult);
16 end
17 olast = oi;
18 end
19 return “untestable”;

Figure 3.3.: Incremental SAT-based ATPG framework with Of implemented as a stack.

34

3.2. D-Chains

3.2. D-Chains

A D-chain is an optimization technique in a SAT-based ATPG algorithm that enhances the
generated formula with information regarding the propagation of the differences between
the good and bad circuit. It should be noted that the D-chain is defined on the mapped
circuit. Therefore, for the following definitions the circuit is assumed to be mapped to
logic gates already.
Consider the circuit in Figure 3.4. Each line is annotated with the information that a

classic SAT-based ATPG provides: variables representing the good (G) and bad (B) circuit
and extra variables for the difference at each output (Do).
Note that the gate C2 is not in the propagation cone of the fault and does not require a

B variable. Since it is in the support cone of C4 (which is located in the fault propagation
cone), C2 still has to be modeled in the good circuit.

C3

C4

C5

C6

C2

C1

x
x

x

c

b

a

o1

o2

Ga

Gb

Gc

G1, B1

G2

G3, B3

G4, B4

G5, B5

Do1 ⇔ (G5 ⊕B5)

G6, B6

Do2 ⇔ (G6 ⊕B6)

Figure 3.4.: Modeling of the effects of a stuck-at fault in a classic SAT-based ATPG.

The basic description sketched in Figure 3.4 is sufficient for the ATPG algorithm but
the solve speed can be improved by adding further information to the formula. All D-
chains work by implementing extra reasoning about the difference between the good and
bad circuit at every gate in the propagation cone. To this end, additional D variables are
added that compute whether there is a difference between the good and bad circuit. They
are created similar to the computation of the Do variables at the circuit’s outputs.
All of the D-chains that are presented in this thesis are implemented with full support for

gates with more than two inputs since these gates allow for a much more efficient encoding
of the circuit.

3.2.1. Forward D-Chain

When there is a difference between the good and bad circuit at the output of a gate,
this difference will probably propagate to one of the successor nodes of the gate. This
assumption is encoded by the forward implication D-chain [39], [54] which is shown in
Figure 3.5.
In this circuit, the arrows indicate the implications that are added by the forward D-

chain. In detail, the Boolean formula representing the ATPG problem is extended with
the sub-formulas shown in Figure 3.6. As previously stated, the forward D-chain is based
on the assumption that a difference propagates to a successor gate. This is, however,

35

3. Advanced Modeling Techniques for SAT-Based ATPG

C3

C4

C5

C6

C2

C1

x
x

x

c

b

a

o1

o2

Ga

Gb

Gc

G1, B1

D1 = true

G2

G3, B3

D3 ⇒ (G3 ⊕B3)

G4, B4

D4 ⇒ (G4 ⊕B4)

G5, B5

Do1 ⇔ (G5 ⊕B5)

G6, B6

Do2 ⇔ (G6 ⊕B6)

Figure 3.5.: Implications added by the forward D-chain.

not always the case. Due to re-converging paths in the circuit a difference at the output
of a gate might disappear. To allow for this effect, the forward D-chain utilizes a weak
difference condition: The D variables for the D-chain are encoded with an implication (see
Formulas 3.2 and 3.3) instead of a full equivalence like the Do variables for the outputs.
Thus, the solver can always assign the D variables to false in case the difference cannot
be propagated.

D1 = true (3.1)
D3 ⇒ (G3 ⊕B3) (3.2)
D4 ⇒ (G4 ⊕B4) (3.3)
D1 ⇒ (D3 ∨D4) (3.4)
D3 ⇒ Do1 (3.5)
D4 ⇒ (Do1 ∨Do2) (3.6)

Figure 3.6.: List of the sub-formulas that are encoded for the forward D-chain.

At the fault site itself there is always a difference (D1 = true). This further simplifies
the formulas – in the presented example, the clause (D3 ∨ D4) is added directly to the
formula because the left side of the implication in Formula 3.4 is definitely true.

Cost

For each gate in the propagation cone of the fault, two clauses are required to model the
weak difference condition. Furthermore, one additional clause is required to model the
forward implication itself. Thus, the total cost per gate is three clauses.

36

3.2. D-Chains

3.2.2. Backward D-Chain

When there is a difference between the good and bad circuit at the output of a gate, there
must be a difference on at least one of the inputs of the gate as well. This is the basic idea
behind the backward implication D-chain [55] which is shown in Figure 3.7.

C3

C4

C5

C6

C2

C1

x
x

x

c

b

a

o1

o2

Ga

Gb

Gc

G1, B1

D1 = true

G2

G3, B3

D3 ⇔ (G3 ⊕B3)

G4, B4

D4 ⇔ (G4 ⊕B4)

G5, B5

Do1 ⇔ (G5 ⊕B5)

G6, B6

Do2 ⇔ (G6 ⊕B6)

Figure 3.7.: Implications added by the backward D-chain.

Again, the arrows indicate the implications that are added by the backward D-chain.
In detail, the Boolean formula representing the ATPG problem is extended with the sub-
formulas shown in Figure 3.8. Unlike the forward D-chain, the backward D-chain utilizes
the normal equivalence for the difference condition (see Equations 3.8 and 3.9). This is
possible because a difference between the good and bad circuit does not appear out of
nothing. When there is a difference at the output of a gate, there must be a difference on
at least one of the gate’s inputs.

D1 = true (3.7)
D3 ⇔ (G3 ⊕B3) (3.8)
D4 ⇔ (G4 ⊕B4) (3.9)
Do1 ⇒ (D3 ∨D4) (3.10)
Do2 ⇒ D4 (3.11)
D3 ⇒ D1 (3.12)
D4 ⇒ D1 (3.13)

Figure 3.8.: List of the sub-formulas that are encoded for the backward D-chain.

Cost

For each gate in the propagation cone of the fault, four clauses are required to model the
difference condition. Furthermore, one additional clause is required to model the backward
implication itself. Thus, the total cost per gate is five clauses.

37

3. Advanced Modeling Techniques for SAT-Based ATPG

3.2.3. Combined Backward-Forward D-Chain

The backward and forward D-chains can be combined to give the solver the maximum
amount of information about the propagation of the difference. This is achieved by intro-
ducing two variables per gate: Df encodes the forward D-chain, whereas Db is responsible
for the backward D-chain. In the combined backward-forward D-chain, the weak equiv-
alence condition for the forward D-chain can be encoded more cheaply by simply adding
the single clause Df ⇒ Db instead of Df ⇒ (G ⊕ B). This is possible because Db and
(G ⊕ B) are equivalent. Thus, combining the backward and forward D-chains is slightly
cheaper than the sum of the costs for each individual D-chain.

Cost

For each gate in the propagation cone of the fault, four clauses are required to model the
difference condition for the backward D-chain. In addition, one clause is needed for the
weak difference of the forward D-chain. Furthermore, one additional clause each is required
to model the backward and forward implications themselves. Thus, the total cost per gate
is seven clauses.

3.3. Good-Diff D-Chain

The backward and forward D-chains each add a new variable for every gate in the propa-
gation cone of the fault which models the difference between the good and bad version of
the circuit. Hence, every gate output is represented by three variables: G, B and D. This
creates overhead since any two of these three variables can be used to compute the third:

D ⇔ (G⊕B) (3.14)
G⇔ (B ⊕D) (3.15)
B ⇔ (G⊕D) (3.16)

The good-diff D-chain attempts to create a smaller representation of the signal values
while still reasoning about the difference like the other D-chains do. To this end, it elimi-
nates the representation of the bad circuit and, instead, stores only the fault-free value, G,
of each signal and whether there is a difference to the bad version, D. While this reduces
the number of variables per gate output from three to two, it also requires a new gate en-
coding to accurately compute whether a difference will propagate through the gate. In [56]
an indirect two variable circuit encoding similar to the good-diff D-chain was presented.
However, while the approach presented in this thesis is applicable to all kinds of cells, the
indirect encoding of [56] is limited to basic cells with two inputs.
Figure 3.9 shows the circuit with the variables required for the good-diff D-chain. The

arrows indicate the new encoding of the gates.

3.3.1. Gate Encoding

The gate encoding for the good values in the good-diff D-chain is unchanged and is per-
formed with the Tseitin transformation. For the difference literals, the encoding becomes

38

3.3. Good-Diff D-Chain

C3

C4

C5

C6

C2

C1

x
x

x

c

b

a

o1

o2

Ga

Gb

Gc

G1

D1 = true

G2

G3

D3

G4

D4

G5

D5

G6

D6

Figure 3.9.: Modeling of the effects of a stuck-at fault with the good-diff D-chain.

more challenging and has to be computed for every gate type. This section gives examples
for the encoding of the difference for an AND-gate and for an XOR-gate. The encoding
of the remaining standard gates can be derived in a similar manner.
To compute the difference Do at the output of the gate, the good and difference values

at all of the gate inputs are required (Gi and Di, respectively). In the examples, it is
assumed that there is a difference variable for every gate input. If the gate is at the border
of the fault propagation cone (in the example in Figure 3.9 this is the case for C3, C4 and
C6) some inputs cannot have a difference. In this case, the Di variables corresponding to
these inputs are definitely false and the derived clauses can be simplified accordingly.

Difference for an AND-Gate

Table 3.1 shows the value of Do depending on the input values in a two-input AND-gate.
The table is generated by first deriving the B values at the inputs, then computing the B
value of the output and finally comparing this value to the correct output value.

Table 3.1.: The difference at the output, Do, depending on the input values of a two-input
AND-gate.

No dif. Dif. at 1 Dif. at 2 Dif. at both
G1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
G2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
D2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Do 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1

The function table then has to be transformed into a formula in CNF as efficiently as
possible. This is performed in two steps: First, each column of the table is transformed
into CNF. Then, the columns are optimized through common inference rules for Boolean
logic [59]. Figure 3.10 specifies the clauses that are derived directly from the logic table.
Figure 3.11 shows the optimized list of clauses.
Clearly, simple logic optimizations greatly reduce the size of the encoding – from 16

clauses containing 80 literals to 9 clauses containing 35 literals. In the formula generated

39

3. Advanced Modeling Techniques for SAT-Based ATPG

(¬Do ∨ G1 ∨ G2 ∨ D1 ∨D2) (3.17)
(¬Do ∨ ¬G1 ∨ G2 ∨ D1 ∨D2) (3.18)
(¬Do ∨ G1 ∨ ¬G2 ∨ D1 ∨D2) (3.19)
(¬Do ∨ ¬G1 ∨ ¬G2 ∨ D1 ∨D2) (3.20)
(¬Do ∨ G1 ∨ G2 ∨ ¬D1 ∨D2) (3.21)
(¬Do ∨ ¬G1 ∨ G2 ∨ ¬D1 ∨D2) (3.22)
(Do ∨ G1 ∨ ¬G2 ∨ ¬D1 ∨D2) (3.23)
(Do ∨ ¬G1 ∨ ¬G2 ∨ ¬D1 ∨D2) (3.24)

(¬Do ∨ G1 ∨ G2 ∨ D1 ∨ ¬D2) (3.25)
(Do ∨ ¬G1 ∨ G2 ∨ D1 ∨ ¬D2) (3.26)
(¬Do ∨ G1 ∨ ¬G2 ∨ D1 ∨ ¬D2) (3.27)
(Do ∨ ¬G1 ∨ ¬G2 ∨ D1 ∨ ¬D2) (3.28)
(Do ∨ G1 ∨ G2 ∨ ¬D1 ∨ ¬D2) (3.29)
(¬Do ∨ ¬G1 ∨ G2 ∨ ¬D1 ∨ ¬D2) (3.30)
(¬Do ∨ G1 ∨ ¬G2 ∨ ¬D1 ∨ ¬D2) (3.31)
(Do ∨ ¬G1 ∨ ¬G2 ∨ ¬D1 ∨ ¬D2) (3.32)

Figure 3.10.: List of the clauses derived by parsing the function table.

(¬Do ∨D1 ∨D2) (3.33)
(¬Do ∨G1 ∨D1) (3.34)
(¬Do ∨G2 ∨D2) (3.35)
(¬Do ∨ G1 ∨ ¬G2 ∨ ¬D2) (3.36)
(¬Do ∨ ¬G1 ∨ G2 ∨ ¬D1) (3.37)

(Do ∨ ¬G1 ∨ D1 ∨ ¬D2) (3.38)
(Do ∨ ¬G2 ∨ ¬D1 ∨ D2) (3.39)
(Do ∨ ¬G1 ∨ ¬G2 ∨ D1 ∨ D2) (3.40)
(Do ∨ ¬G1 ∨ G2 ∨ ¬D1 ∨ ¬D2) (3.41)

Figure 3.11.: List of optimized clauses that encode when a difference is propagated to an
output of the AND-gate.

by the optimizations, clause 3.33 (which can be re-written as Do ⇒ (D1 ∨ D2)) encodes
the simple property that a difference at the output requires at least one of the inputs to
be different. This corresponds to the idea of the backward D-chain, which can therefore
be considered to be a part of the good-diff encoding. However, unlike the clauses encoding
the backward D-chain, these clauses cannot be removed from the formula without affecting
its correctness.

Difference for an XOR-Gate

The clauses encoding the propagation of the difference to the output of an XOR-gate can
be created similar to those for the AND-gate. After optimization, the clauses shown in
Figure 3.12 are derived. Here, the difference at the output is completely independent from
the good values at the gate inputs. The output differs between the good and the bad
circuit if exactly one of the inputs differs.

Cost

Unlike the previously discussed D-chains, the cost of the good-diff D-chain is variable,
depending on the gate type and the number of inputs that can have a difference. A two-
input AND-gate for example requires 9 clauses with 35 literals if both inputs can show a
difference. If only one input can show a difference because the gate is at the border of the

40

3.4. Hybrid D-Chains

(¬Do ∨ D1 ∨ D2) (3.42)
(¬Do ∨ ¬D1 ∨ ¬D2) (3.43)
(Do ∨ D1 ∨ ¬D2) (3.44)
(Do ∨ ¬D1 ∨ D2) (3.45)

Figure 3.12.: List of optimized clauses that encode when a difference is propagated to an
output of the XOR-gate.

fault propagation cone, the costs drop to 3 clauses with 7 literals.
For standard gates with more than two inputs, the cost increases steeply because the

encoding becomes much more difficult and there are many more possibilities. An AND-
gate with four inputs, for example, requires 36 clauses already, if every input can have a
difference. This way, the overall cost in terms of number of clauses is different for every
circuit and every fault location.
If the ATPG algorithm would be restricted to two-input gates (by mapping basic cells

with more than two inputs to multiple gates) this drawback of the good-diff D-chain in
comparison to the other D-chains would be less pronounced. The indirect encoding of [56]
is limited to such two-input cells. However, while this encoding requires slightly fewer
clauses (27 instead of 36), it adds two more variables and a new logic level for the output
of the new intermediate cells. Therefore, this thesis instead presents two novel hybrid
D-chains in the next section to tackle the problem of gates where many inputs can have
a difference. These hybrid D-chains reduce the number of clauses without adding more
variables for every gate. This solution also allows for the efficient integration of different
D-chains into the same ATPG since the basic circuit is always efficiently encoded.

3.4. Hybrid D-Chains

The previously introduced good-diff D-chain is very cheap for gates at the border of the
fault propagation cone because many clauses do not need to be included. At the same
time, for a gate where many inputs can potentially have a difference, the cost is higher
than for the traditional encoding – even though fewer variables are required.
The hybrid D-chain concept attempts to reduce the overall cost by combining the best

aspects of the conventional and the good-diff encoding. This is achieved by selectively
re-introducing the bad value for some signals in the otherwise good-diff encoded circuit.
These bad values are then used to encode some of the gates in the conventional manner.
Figure 3.13 shows an example for a hybrid D-chain. Here, gate C5 is modeled conven-

tionally. Hence, the bad values at its inputs, B3 and B4, have to be provided. Furthermore,
the D5 value at the output has to be computed again from the G5 and B5 value. In this
small example, the cost for the hybrid D-chain is actually slightly higher (12 clauses) than
the good-diff encoding alone (9 clauses). However, in real circuits the resulting formula
might be smaller if the right gates are encoded conventionally. A backward D-chain is
added to all conventionally modeled gates to allow the solver to keep reasoning about the

41

3. Advanced Modeling Techniques for SAT-Based ATPG

propagation of the difference in all gates.
The selection process for conventionally modeled gates is performed by a heuristic. Two

different heuristics are implemented for the evaluation.

C3

C4

C5

C6

C2

C1

x
x

x

c

b

a

o1

o2

Ga

Gb

Gc

G1

D1 = true

G2

G3, B3 = (G3 ⊕D3)

D3

G4, B4 = (G4 ⊕D4)

D4

G5, B5

D5 = (G5 ⊕B5)

G6

D6

Figure 3.13.: Modeling of the effects of a stuck-at fault with a hybrid D-chain.

3.4.1. Static Node Selection Heuristic

The static node selection heuristic models all gates where more than one input can have a
difference in the conventional manner. Thus, the good-diff encoding is used for the gates
at the border of the fault propagation cone but not for the remaining gates in the cone.
Figure 3.14 indicates the chosen modeling depending on the position of a gate in the cone.
For outputs which are not covered by the good-diff encoding, the difference D is computed
with an XOR-gate again.

Primary
outputs

Secondary
outputs

Support cone Good-diff encodingConventional encoding

Figure 3.14.: The areas of the fault propagation cone that are modeled conventionally and
with the good-diff encoding for the static node selection heuristic.

3.4.2. Dynamic Node Selection Heuristic

The dynamic node selection heuristic uses a three step approach to identify nodes that
are to be modeled conventionally. The general idea is to create the B values only in cases
where many D variables of inputs would have to be used.

42

3.5. Evaluation

In the first step, the number of possible differences at the inputs of each gate is counted.
This gives the score of the gate. Next, the combined successor score (css) is computed for
each gate – this is the sum of the scores of the successor gates the current gate’s output
is connected to. If a gate has a css of two or higher, it is marked. A marked gate has to
provide the B value at the output. This can be achieved in two ways: Firstly, the B value
can be re-created from the G and D variables or, alternatively, the gate can be modeled
in the conventional manner.
In the final step, the actual decision with regard to the modeling is made. A node is

modeled conventionally if it has at least two inputs that can show a difference and if for
either all or all but one of these inputs a B value is available. When a gate is modeled
conventionally, it also provides a B value at its output. Thus, it might occur that the
conventional modeling threshold for one of its successor gates is exceeded. Therefore, the
last step is repeated until a fix point has been reached, but at most three times. All nodes
that are not modeled conventionally are encoded with the good-diff D-chain.
Figure 3.15 shows the effect of the dynamic heuristic. The gates are annotated with

their score and css. The gates C3 and C4 each have a css of at least two and are, therefore,
providing a B value at their output. Gate C5 is modeled conventionally because it has two
inputs that can show a difference and two B values available. On the other hand, gate
C6 has only one input that can show a difference and is, thus, modeled with the good-diff
encoding (which is much cheaper if only a single input can show a difference).

C3

C4

C5

C6

C2

C1

x
x

x

c

b

a

o1

o2

Ga

Gb

Gc

score = 1

css = 2

score = 1

css = 3

score = 2

css = 0

score = 1

css = 0

G1

D1 = true

G2

G3, B3 = (G3 ⊕D3)

D3

G4, B4 = (G4 ⊕D4)

D4

G5, B5

D5 = (G5 ⊕B5)

G6

D6

Figure 3.15.: Node modeling by the dynamic node selection heuristic.

3.5. Evaluation

This chapter discussed six different D-chains, three of which are based on a novel concept
of modeling the good and bad circuit. In addition, there is of course always the option of
not adding a D-chain at all. In this section, a thorough evaluation of the different D-chains
is performed across a wide selection of circuits.
For the first set of experiments the incremental solving mode of the ATPG is disabled

to give a clear picture of the gains of the D-chains.
Normally, ATPG algorithms utilize fault simulation to quickly determine if a test pattern

detects more than just the one fault that it was originally created for. If a fault is detected

43

3. Advanced Modeling Techniques for SAT-Based ATPG

by any test pattern, it is removed (“dropped”) from the list containing all possible faults
in the circuit (the fault list) and not considered further.
Since the goal of this chapter lies with the development and analysis of D-chains for the

ATPG algorithm, a fault simulator is not used for most of the experiments. This allows for
the exact evaluation of the effect of the different D-chains across all possible stuck-at faults
without any faults being dropped by chance. Furthermore, since each D-chain will most
likely produce different test-patterns for the same fault, different faults would be dropped
through fault simulation. Thus, after the first fault each ATPG instance would work on a
different fault set and the results would contain a large amount of random variation. To
allow for a scientifically accurate comparison of the different D-chains, fault simulation is
generally not used during the evaluation.
The evaluation is structured as follows: In Section 3.5.1 the general ATPG performance

without D-chains is shown. Next, Section 3.5.2 evaluates the gains of the different D-chains
for all of the considered circuits and gives an in-depth analysis of some of the performance
parameters. In the subsequent Section 3.5.3 the incremental solving mode of the ATPG is
enabled and the resulting change in solve speed is analyzed.
To show the influence of the D-chains in a more practical and realistic environment the

experiments are repeated with a fault simulator developed by Pascal Raiola with results
shown in Section 3.5.4. These results are only meant to validate that D-chains are useful
in SAT-based ATPG and not as an exact comparison.
In SAT-based ATPG the total runtime is mainly influenced by two factors [47]: The

time that is required to generate a formula and the time that is required to solve that
formula – the solve time. D-chains are a technique to improve the solve time by guiding
the SAT solver. Therefore, this value is the focus of the following evaluations.
All of the tables referenced in the evaluation are printed at the end of the chapter.
For all experiments the previously described SAT-based stuck-at ATPG is used. As SAT

solver, antom [13], [14] with a timeout of 10 s per fault is utilized.

3.5.1. Without D-Chain

Table 3.2 shows an overview of the number of stuck-at faults, solve time, overall memory
consumption and achieved fault coverage (FC) as well as the number of timeouts for each
of the circuits when no D-chain is used. Since all of the circuits are assumed to be full-
scan, the ATPG can achieve a very high fault coverage and a pattern can be computed for
almost every fault within 10 seconds. It should be noted that the ATPG produces a new
pattern for every single fault – there is no fault simulation at all. Thus, while the overall
solve time is close to 1 hour for some of the largest circuits, the average solve time per fault
is still well below 100ms for every circuit. Figure 3.16 shows the average solve time and
formula generation time per fault.
The solve time strongly depends on the difficulty of testing the faults, whereas the

generation time is mostly influenced by the circuit’s structure and size. On some circuits,
the solve time greatly outweighs the generation time (e.g., AES 10-2-4-4_d). On others,
the situation is reversed. It should also be noted that the solve time can vary widely
between different faults for the same circuit. Consider the circuit vga_lcd which has an
average solve time of below 10ms. Nonetheless, 57 timeouts (after 10 s) occurred. These

44

3.5. Evaluation

hard-to-detect faults are of special interest when optimizing an ATPG algorithm and will
be analyzed further in Section 3.5.2.

0

10

20

30

40

50

60

70

80

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8-
d

2-
2-
2-
8-
e

2-
4-
4-
4-
d

2-
4-
4-
4-
e

10
-2
-2
-4
-d

10
-2
-2
-4
-e

10
-2
-4
-4
-d

10
-2
-4
-4
-e

T
im

e
in

m
s

Generation Time Solve Time

Figure 3.16.: Average formula generation and solve time per fault without D-chains or
incremental solving.

3.5.2. With D-Chains

To evaluate the different D-chains, the test pattern generation is repeated once for every D-
chain and circuit. Table 3.3 shows the change in solve time compared to the ATPG without
any D-chains. The results are visualized in Figure 3.17 and summarized per circuit group
in Figure 3.18.
The first major observation is that usually the solve speed is dramatically increased when

a D-chain is added. This holds true for the vast majority of D-chain circuit combinations.
Interestingly, the earliest suggested D-chain, the forward D-chain introduced in [39], [54],
is the only D-chain that is generally not beneficial to the solve speed. This might be
because modern SAT solvers can deduce the knowledge provided by the forward D-chain
more cleverly on their own.
The second observation is that for most circuit groups the gains by the remaining D-

chains are very similar. The average decrease in solve time is about 70-90%. This general
observation is, however, not accurate for the cryptographic AES circuit benchmarks. Here,
the hybrid D-chain with the dynamic heuristic and, to an extend, the normal good-diff D-
chain vastly outperform the remaining D-chains. They reduce the solve time by about 55%
on average, compared to only 17% for the backward D-chain as the best classic D-chain
variant.

45

3. Advanced Modeling Techniques for SAT-Based ATPG

Overall, across all different circuits the hybrid D-chain with the dynamic heuristic pro-
vides the fastest solve times and consistent speedups for every circuit. Nonetheless, de-
pending on the circuit other D-chains might be even better suited. For an optimal solve
speed in a specific application or for a specific class of circuits, a comparison of the different
D-chain techniques should be performed.

Timeouts

The average solve time for the considered faults is well below 100ms as Figure 3.16 clearly
showed. Nonetheless, even with a timeout of 10 s not every fault can be successfully
characterized. This means that there are a couple of faults for which it is more than 100
times harder to find a test pattern than it is for the average fault. Finding a test pattern for
these faults is significant because their difficulty means that they are unlikely to be found
by a simple random pattern. Alternatively, the fault might be untestable and should be
ignored for any further fault coverage optimization.
D-chains not only increase the average solve speed as was highlighted in the previous

section, but they also improve the solve speed for these hard-to-detect faults. This is
evident from Figure 3.19 which shows the total number of timeouts for the different D-
chains.
The total number of timeouts is drastically reduced for all different circuit groups when

adding a D-chain. Only for the complex industrial benchmark circuits from NXP some
timeouts remain. The newly developed good-diff D-chain and especially the hybrid D-chain
with the dynamic heuristic prove to be well suited for the characterization of hard-to-detect
faults. While the backward D-chain provides slightly lower average solve times than any
of the good-diff D-chains on the NXP circuits, all good-diff variants clearly outperform it
on the hard-to-detect faults, reducing the number of timeouts by almost another 50% in
direct comparison.

Formula Size

Adding supplemental information to a formula increases its size. Figure 3.20 shows the
average increase in formula size measured in the number of clauses.
Curiously, the good-diff encoding and its variants – which were developed to reduce the

size of the D-chains by removing redundancies – are actually comparable to the backward
D-chain and larger than the forward D-chain. Furthermore, the hybrid versions are some-
times larger than the original good-diff D-chain. Nonetheless, the experimental results
show that the good-diff encoding provides substantial benefits and is often faster than the
backward D-chain.
Thus, there appears to be no relation between the achieved solve speed and the formula

size. Overall, the results show that the inclusion of additional helpful (but potentially re-
dundant) information clearly helps the SAT solver. On the other hand, not all information
is actually helpful. The forward D-chain shows the smallest increase in formula size but
actually slows down the solver.

46

3.5. Evaluation

Backward
Forward

Backward + Forward
Good-Diff

Hybrid Dynamic
Hybrid Static

Average Backward
Average Forward

Average Backward + Forward
Average Good-Diff

Average Hybrid Dynamic
Average Hybrid Static

−100

−50

0

50

100
b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

C
ha

ng
e
of

So
lv
e
T
im

e
in

%

(a) ITC’99 circuits

−100

−50

0

50

100
ae
s_
co
re

pc
i_
br
idg
e3
2

vg
a_
lcd

wb
_c
on
ma
x

(b) IWLS circuits

−100

−50

0

50

100
p3
5k
p4
5k
p7
8k
p8
1k
p8
9k
p1
00
k
p2
67
k
p2
95
k
p3
30
k
p3
78
k
p3
88
k
p5
33
k

C
ha

ng
e
of

So
lv
e
T
im

e
in

%

(c) NXP circuits

−100

−50

0

50

100
2-2
-2-
8-d

2-2
-2-
8-e

2-4
-4-
4-d

2-4
-4-
4-e

10
-2-
2-4
-d

10
-2-
2-4
-e

10
-2-
4-4
-d

10
-2-
4-4
-e

(d) AES circuits

Figure 3.17.: Change in solve time for each circuit with the different D-chain variants
compared to utilizing no D-chain at all.

47

3. Advanced Modeling Techniques for SAT-Based ATPG

−100

−80

−60

−40

−20

0

20

40

60

Forward
Backward

Backward + Forward

Good-Diff

Hybrid Dynamic

Hybrid Static

A
vg

.
C
ha

ng
e
of

So
lv
e
T
im

e
in

%

ITC’99
IWLS

NXP
AES

Figure 3.18.: Average change in solve time for the different D-chain variants per circuit
class.

0

10

20

30

40

50

60

None
Forward

Backward

Backward + Forward

Good-Diff

Hybrid Dynamic

Hybrid Static

N
um

be
r
of

T
im

eo
ut
s

ITC’99
IWLS

NXP
AES

Figure 3.19.: Total number of timeouts per circuit class for each D-chain.

48

3.5. Evaluation

0

5

10

15

20

25

30

35

Forward
Backward

Backward + Forward

Good-Diff

Hybrid Dynamic

Hybrid Static

A
vg

.
Si
ze

In
cr
ea
se

in
%

ITC’99
IWLS

NXP
AES

Figure 3.20.: Average increase in formula size (measured in the number of clauses) de-
pending on the circuit class and D-chain.

3.5.3. Incremental Solving

Through incremental solving the formula is created in a way such that the fault has to be
visible at exactly one of the outputs in the fault propagation cone. Thus, the number of
possibilities for the fault propagation are greatly reduced. Nonetheless, there might still
be a large number of different paths through the propagation cone, each of which might
carry the fault effect to the output.
To evaluate the effectiveness of D-chains in combination with incremental solving, the

exact same circuits and stuck-at faults as before are analyzed again. The results are
summarized in Figure 3.21 and are shown in detail in Table 3.4, which lists the initial solve
times without a D-chain and the change in solve time for the different D-chain variants.
Generally, solving the formula incrementally greatly decreases the solve time until a test

pattern for a fault is found. For easy-to-test faults where the fault effect can be propagated
to many outputs, the incremental approach quickly guides the solver towards a solution.
Conversely, for hard-to-detect faults an overhead is incurred because the formula is built
up incrementally in many smaller steps. This is especially true for untestable faults – here
the solver has to traverse every single iteration before the fault is proven to be untestable.
In the considered examples with a very high testability, the latter point is negligible.
Nonetheless, for some circuits the total solve time with incremental solving is worse than
it was with the classic approach.
Overall, the effect of D-chains becomes slightly less pronounced because of the often

very simple incremental formulas which only contain the propagation to a single output.
However, for most considered circuits adding a D-chain is still beneficial for the total solve
time. Across all circuits, the hybrid D-chain with the dynamic node selection heuristic
provides the greatest benefit with an average 22.9% decrease in solve time.

49

3. Advanced Modeling Techniques for SAT-Based ATPG

−40

−30

−20

−10

0

10

20

30

40

50

60

Forward
Backward

Backward + Forward

Good-Diff

Hybrid Dynamic

Hybrid Static

A
vg

.
C
ha

ng
e
of

So
lv
e
T
im

e
in

%

ITC’99
IWLS

NXP
AES

Figure 3.21.: Average change in solve time for the different D-chain variants grouped by
the different circuit classes with the incremental solving mode.

3.5.4. Fault Simulation

For the final experiments a fault simulator is added to the ATPG. Once a test pattern
for a fault is found by the ATPG, the simulator checks if this pattern detects any of the
– as of yet – undetected faults. If so, this fault is marked as detected and no additional
test pattern to detect the fault is created. Simulation can reduce both the ATPG runtime
as well as the number of required test patterns by orders of magnitude and is, therefore,
commonly used by ATPG tools.
However, for the analysis of D-chains, simulation might influence the results in a way

that does not allow for any valid conclusions. For an example consider a stuck-at fault
f in a circuit. Assume that the test pattern “0011” is found by the ATPG without D-
chains whereas the ATPG with the backward D-chain finds the test pattern “0110”. Two
different test patterns for the same fault are not unusual and since a SAT solver makes
decisions based on a heuristic, the differences between the two formulas can easily yield this
outcome. Assume further that “0011” does not detect any other fault while “0110” detects
10 so far undetected faults. As a result, depending on the total number of faults, the overall
solve time of the two modes might differ significantly. Clearly, such random influences are
highly problematic when analyzing and comparing different approaches. Therefore, fault
simulation was not considered for any of the previous experiments.
The experimental results in this section are meant to show that D-chains are actually

applicable to real world ATPG scenarios where fault simulation is used.
Table 3.5 shows the solve time as well as the number of SAT solver calls for the different

D-chain variants when fault simulation is used. Note that the SAT solver is used incre-
mentally and might be called many times for a single fault. Clearly, the number of solver
calls differs between the different D-chain modes. Consider, for example, the ATPG for

50

3.5. Evaluation

the circuit p35k. Without any D-chains the solver is called only 5461 times, whereas some
D-chain variants result in up to 1000 additional solver calls. While, in this instance, not
utilizing any D-chain requires the least amount of SAT solver calls, on other circuits (e.g.,
b15) the situation is reversed.
Thus, the previously predicted random influence – due to different test patterns being

found for the same fault – is observed in practice as well. Hence, the average change in
solve time for the different D-chains that is summarized in Figure 3.22 should only be seen
as an indication and most likely contains some noise.
Nonetheless, the results do show that D-chains provide a great improvement to the solve

speed, even when both fault simulation and incremental solving are used.

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

Forward
Backward

Backward + Forward

Good-Diff

Hybrid Dynamic

Hybrid Static

A
vg

.
C
ha

ng
e
of

So
lv
e
T
im

e
in

%

ITC’99
IWLS

NXP
AES

Figure 3.22.: Average change in solve time for the different D-chain variants grouped by
the different circuit classes when utilizing fault simulation.

51

3. Advanced Modeling Techniques for SAT-Based ATPG

3.6. Summary

This chapter introduced, discussed and evaluated different D-chain variants as an improve-
ment to SAT-based ATPG. These include the classic forward and backward D-chain as well
as the good-diff encoding and novel hybrid D-chains which reduces the amount of redun-
dancies. The key points with regard to improving SAT-based techniques in circuit test,
demonstrated by the thorough evaluation, are the following:

• In general, D-chains greatly improve the performance of the SAT solver especially
for hard-to-detect faults.

• The performance of a particular D-chain depends on the circuit (class). Nonetheless,
the hybrid D-chain with a dynamic node selection heuristic works very well as a
general-purpose D-chain across all of the analyzed circuits.

• The final formula size is not related to the solve time. Creating a more detailed
representation of the circuit and of the propagation of the difference between the
faulty and fault-free circuit can provide a much larger benefit than the additional
clauses are a burden.

• D-chains remain important even when utilizing the SAT-based ATPG algorithm in
a highly optimized manner with incremental solving and fault simulation.

Overall, this chapter showed that even relatively minor additions to the formula can be
very helpful in guiding the SAT solver. The knowledge and experience obtained in this
chapter will be applied to the ATPG algorithms presented in the remainder of this work
and should be considered when designing any SAT-based ATPG algorithm.

52

3.6. Summary

Table 3.2.: Results of the test pattern generation without a D-chain.

Circuit #Faults Solve Time (s) Memory (MB) FC (%) #Timeouts

IT
C
’9
9

b15 14 312 267.72 56.1 99.33 0 (0.00%)
b17 43 931 665.41 118.8 98.83 0 (0.00%)
b18 119 701 2 244.66 307.7 99.95 2 (0.00%)
b20 18 560 93.47 69.1 99.83 0 (0.00%)
b21 19 545 114.44 69.8 99.94 0 (0.00%)
b22 26 421 142.15 85.9 99.89 0 (0.00%)

IW
LS

aes_core 38 511 75.73 97.3 100.00 0 (0.00%)
pci_bridge32 33 191 33.00 107.3 100.00 0 (0.00%)
vga_lcd 189 980 1 327.90 472.2 99.97 57 (0.03%)
wb_conmax 73 922 29.82 154.2 99.99 0 (0.00%)

N
X
P

p35k 34 265 2 032.93 114.0 99.99 0 (0.00%)
p45k 42 316 23.46 122.7 99.99 0 (0.00%)
p78k 81 367 38.99 226.3 100.00 0 (0.00%)
p81k 155 394 320.53 321.7 100.00 1 (0.00%)
p89k 96 414 234.37 233.8 99.94 0 (0.00%)
p100k 92 176 63.83 246.7 99.95 0 (0.00%)
p267k 203 137 823.04 512.7 99.99 0 (0.00%)
p295k 240 457 610.60 618.2 99.52 7 (0.00%)
p330k 184 867 3 227.25 497.9 99.83 14 (0.01%)
p378k 422 389 834.49 1 037.9 100.00 0 (0.00%)
p388k 443 483 2 429.06 1 026.2 99.98 3 (0.00%)
p533k 692 727 1 840.57 1 569.0 99.87 5 (0.00%)

A
E
S

2-2-2-8_d 18 795 583.24 70.8 99.99 0 (0.00%)
2-2-2-8_e 15 200 194.58 63.2 100.00 0 (0.00%)
2-4-4-4_d 6 256 27.46 37.7 100.00 0 (0.00%)
2-4-4-4_e 4 888 14.81 35.8 100.00 0 (0.00%)
10-2-2-4_d 5 656 93.30 37.2 100.00 0 (0.00%)
10-2-2-4_e 5 622 60.13 37.1 100.00 0 (0.00%)
10-2-4-4_d 10 586 611.18 46.8 100.00 0 (0.00%)
10-2-4-4_e 10 527 518.18 48.7 100.00 0 (0.00%)

53

3. Advanced Modeling Techniques for SAT-Based ATPG

Table 3.3.: Change in solve time (in %) when utilizing the different D-chains compared to
the ATPG without any D-chains.

Circuit Forward Backward Backward
+ Forward

Good-Diff Hybrid
Dynamic

Hybrid
Static

IT
C
’9
9

b15 48.68 -92.52 -90.70 -93.17 -93.65 -90.46
b17 69.73 -92.02 -89.92 -91.39 -91.59 -87.09
b18 81.90 -87.79 -85.03 -87.41 -87.50 -83.18
b20 40.85 -84.96 -78.56 -84.61 -78.92 -78.04
b21 28.43 -85.52 -80.81 -86.87 -83.59 -80.12
b22 27.11 -86.01 -82.91 -87.67 -84.75 -79.51
Average: 49.45 -88.14 -84.66 -88.52 -86.67 -83.06

IW
LS

aes_core 4.20 -80.76 -69.72 -74.24 -74.70 -64.47
pci_bridge32 129.60 -95.02 -90.56 -94.69 -93.96 -92.67
vga_lcd -11.44 -93.88 -92.31 -94.13 -93.56 -93.46
wb_conmax 59.25 -86.71 -81.34 -82.99 -85.53 -83.85
Average: 45.40 -89.09 -83.48 -86.51 -86.94 -83.61

N
X
P

p35k -36.15 -82.79 -80.01 -83.79 -82.46 -84.41
p45k 15.09 -62.27 -62.82 -54.40 -65.43 -54.86
p78k 0.81 -63.88 -56.99 -66.02 -62.37 -39.76
p81k 14.78 -77.46 -70.66 -73.67 -76.31 -73.84
p89k 6.67 -83.04 -79.45 -79.98 -81.15 -81.21
p100k 20.67 -63.67 -60.00 -38.61 -51.86 -37.93
p267k -0.05 -89.24 -88.75 -90.94 -90.25 -89.59
p295k 16.94 -75.67 -77.00 -69.20 -70.08 -71.00
p330k 33.88 -88.16 -86.95 -90.31 -90.11 -88.18
p378k 21.41 -78.49 -73.89 -81.26 -79.44 -41.26
p388k 41.06 -76.89 -69.87 -80.80 -82.92 -75.84
p533k 26.42 -74.54 -67.86 -61.62 -69.17 -45.12
Average: 13.46 -76.34 -72.85 -72.55 -75.13 -65.25

A
E
S

2-2-2-8_d 91.35 -7.93 81.51 -52.36 -62.79 -5.26
2-2-2-8_e -6.52 -58.35 -42.35 -74.21 -72.99 -26.16
2-4-4-4_d 72.80 47.47 257.47 3.98 -39.79 -11.58
2-4-4-4_e -10.53 -65.99 -61.05 -85.68 -83.87 -58.48
10-2-2-4_d 30.18 -12.95 32.56 10.95 -47.92 21.60
10-2-2-4_e 26.40 -11.52 4.41 -10.60 -36.93 13.30
10-2-4-4_d 36.15 -18.87 63.64 3.93 -51.04 17.08
10-2-4-4_e 28.51 -10.69 15.41 -31.63 -50.72 9.91
Average: 33.54 -17.35 43.95 -29.45 -55.76 -4.95

54

3.6. Summary

Table 3.4.: Initial solve time without any D-chains and change in solve time (in %) when
utilizing the different D-chains in the incremental solving mode.

Circuit Without
(in s)

Forward Backward Backward
+ Forward

Good-Diff Hybrid
Dynamic

Hybrid
Static

IT
C
’9
9

b15 10.54 15.68 -45.79 -37.40 -49.77 -53.64 -50.08
b17 51.20 68.08 -71.66 -68.29 -76.44 -74.56 -72.12
b18 77.55 32.73 -39.25 -35.66 -45.75 -44.90 -50.76
b20 4.24 9.92 -21.81 -23.80 -19.92 -19.64 -21.06
b21 4.82 12.02 -27.45 -21.31 -17.74 -14.01 -22.55
b22 6.08 9.01 -31.69 -21.37 -9.86 -13.08 -16.31
Average: 24.57 -39.61 -34.64 -36.58 -36.64 -38.81

IW
LS

aes_core 2.26 7.08 -38.23 -39.29 -36.11 -38.58 -34.87
pci_bridge32 0.54 9.56 -10.29 15.44 10.29 13.24 8.82
vga_lcd 31.99 -3.33 -30.36 -26.41 -24.36 -28.77 -35.95
wb_conmax 2.26 22.52 -27.48 -11.88 -19.15 -16.13 -15.07
Average: 8.96 -26.59 -15.53 -17.33 -17.56 -19.27

N
X
P

p35k 82.17 -33.81 -4.92 3.45 8.27 7.00 -4.27
p45k 5.72 -5.25 -28.97 -15.89 -23.02 -14.77 -11.76
p78k 5.50 6.98 -10.39 -12.57 -18.24 -13.95 -23.18
p81k 13.70 40.47 21.05 20.32 41.66 12.15 5.78
p89k 10.95 32.87 -10.70 -1.61 -5.66 -16.18 -8.73
p100k 13.77 26.17 -19.81 -19.81 -18.50 -25.53 -24.34
p267k 18.01 21.34 0.29 14.19 -2.73 1.22 1.13
p295k 119.52 2.31 -45.51 62.43 -54.75 -56.97 -57.80
p330k 156.73 -42.43 -43.22 -32.54 -28.99 -32.79 -40.53
p378k 32.24 -4.19 -25.15 -21.59 -28.60 -28.76 -30.77
p388k 100.56 5.38 -28.52 -22.14 -24.12 -23.03 -23.00
p533k 7 303.66 -20.19 -94.05 -93.18 -94.03 -93.92 -81.38
Average: 2.47 -24.16 -9.91 -20.73 -23.79 -24.90

A
E
S

2-2-2-8_d 308.50 75.31 21.54 44.20 -80.64 -79.06 15.06
2-2-2-8_e 28.13 13.95 -26.86 -37.78 -15.24 -23.42 -16.69
2-4-4-4_d 9.48 26.91 49.64 106.41 -78.41 -79.97 -18.47
2-4-4-4_e 1.18 -3.04 -18.58 -11.15 -29.39 -18.58 -19.59
10-2-2-4_d 100.74 55.17 27.77 46.74 51.74 45.56 201.96
10-2-2-4_e 59.84 42.50 6.83 11.80 37.48 -20.19 34.56
10-2-4-4_d 862.52 53.61 37.74 90.27 71.27 52.73 181.63
10-2-4-4_e 560.18 56.62 10.46 43.16 87.97 10.88 55.04
Average: 40.13 13.57 36.71 5.60 -14.01 54.19

55

3. Advanced Modeling Techniques for SAT-Based ATPG

Table 3.5.: Solve time (top row, in s) and number of solver calls (bottom row) for the
different D-chains when fault simulation is used.

Circuit Without Forward Backward Backward
+ Forward

Good-Diff Hybrid
Dynamic

Hybrid
Static

IT
C
’9
9

b15 2.49 3.07 0.73 0.80 0.48 0.53 0.57
9 653 9 538 9 440 9 319 9 554 9 561 9 528

b17 11.70 19.43 2.44 2.94 1.87 2.12 2.23
26 606 26 430 27 019 27 191 27 759 27 951 27 670

b18 9.90 10.54 1.86 2.12 1.64 1.67 1.96
8 908 8 914 9 842 9 982 9 602 9 850 9 709

b20 0.47 0.48 0.23 0.32 0.22 0.21 0.24
1 739 1 775 1 737 1 759 1 759 1 759 1 759

b21 0.61 0.62 0.28 0.32 0.27 0.27 0.28
1 634 1 663 1 695 1 688 1 728 1 678 1 686

b22 0.75 0.91 0.27 0.40 0.38 0.35 0.37
1 848 1 882 1 947 1 919 1 865 1 878 1 893

IW
LS

aes_core 0.03 0.02 0.01 0.02 0.02 0.01 0.02
637 636 645 642 647 647 647

pci_bridge32 0.03 0.01 0.03 0.00 0.01 0.00 0.03
873 860 860 847 867 867 860

vga_lcd 0.33 0.27 0.26 0.19 0.24 0.19 0.20
4 968 5 030 5 027 5 038 5 065 5 051 5 064

wb_conmax 0.03 0.02 0.00 0.00 0.01 0.04 0.02
659 673 638 629 671 649 644

N
X
P

p35k 12.48 13.20 11.32 13.39 12.64 11.56 11.42
5 461 5 554 6 404 6 365 6 397 6 424 6 394

p45k 0.95 0.76 0.44 0.52 0.54 0.52 0.50
2 127 2 088 2 191 2 228 2 149 2 225 2 145

p78k 0.00 0.00 0.00 0.00 0.00 0.01 0.00
96 94 98 94 99 94 100

p81k 0.98 0.92 0.77 0.94 0.82 0.82 0.80
10 928 10 862 11 156 11 151 11 083 11 096 11 068

p89k 0.84 0.90 0.62 0.68 0.58 0.60 0.62
5 793 5 870 6 153 6 018 5 995 6 149 6 141

p100k 1.00 1.22 0.47 0.48 0.49 0.44 0.53
2 688 2 707 2 697 2 724 2 682 2 717 2 697

p267k 1.07 1.33 0.60 0.69 0.56 0.60 0.47
8 016 7 926 8 083 8 068 8 044 8 177 7 981

p295k 17.95 14.26 5.20 5.17 4.52 4.75 4.48
38 548 38 472 38 462 38 430 38 463 38 558 38 491

p330k 19.39 24.63 12.61 12.71 11.14 11.38 12.41
14 898 14 598 14 764 14 934 14 953 15 163 15 048

p378k 0.02 0.02 0.01 0.01 0.00 0.01 0.01
189 187 188 184 185 181 183

p388k 1.99 2.59 1.32 1.62 1.01 1.14 0.99
9 414 9 314 9 529 9 288 9 479 9 259 9 361

p533k 144.59 112.92 2.26 2.40 2.26 2.67 15.89
15 105 15 192 15 343 15 226 15 316 15 178 15 373

A
E
S

2-2-2-8_d 18.67 23.93 18.61 25.58 5.27 4.57 25.19
950 984 1 063 1 071 1 266 1 334 1 074

2-2-2-8_e 3.17 3.51 1.42 1.70 2.00 1.51 1.72
1 022 1 048 1 244 1 244 1 268 1 270 1 249

2-4-4-4_d 0.36 0.53 0.55 0.92 0.08 0.05 0.37
97 92 112 98 176 163 111

2-4-4-4_e 0.12 0.09 0.04 0.08 0.05 0.08 0.04
226 210 249 250 254 263 258

10-2-2-4_d 1.57 1.95 1.29 1.30 1.40 1.35 4.78
58 59 59 57 55 55 58

10-2-2-4_e 0.91 0.89 0.48 0.90 0.64 0.37 0.93
57 53 64 61 59 56 60

10-2-4-4_d 5.87 9.84 4.63 6.11 6.54 8.50 11.52
65 66 63 61 64 67 68

10-2-4-4_e 3.56 3.53 2.85 2.21 3.10 2.58 3.90
60 65 63 63 60 63 65

56

57

4. Testing Transistor Stuck-Open Faults

A SAT-based ATPG approach allows for a large versatility regarding the fault model and
extra conditions that might restrict a test pattern. Furthermore, many general improve-
ments – like the advanced D-chains presented in the previous chapter – can be applied to
almost any SAT-based ATPG algorithm.
The versatility and extendibility of SAT-based test pattern generation approaches is used

in this chapter to develop a transistor stuck-open fault (TSOF) ATPG algorithm. Unlike
the simple stuck-at fault model, the TSOF model is more closely related to real physical
defects. Although classically assumed to be tested by transition-delay fault tests, it has
been shown that such tests fail to detect a high percentage of TSO faults (see Section 2.2.4
as well as [60]). Additionally, being a charge-based fault model, a test might be invalidated
by physical effects like glitches [61], [62] or charge-sharing [63], [64].
The generation of test patterns for TSOFs that are not invalidated by glitches has been

studied extensively. The approaches that have been presented are generally based on one
of two different ideas. The first group of approaches proposes circuit design methods that
make invalidations impossible [65]–[68]. This requires the addition of extra logic to almost
every cell of the circuit, increasing the overall circuit complexity. The result is an increased
size and potentially a reduced speed. Similarly, re-designing the CMOS cells themselves
[62], [63] can achieve the same result but suffers from the same problems. The second
group of approaches focuses on generating test patterns that do not cause any glitches at
the fault site – so called robust tests [69], [70]. While these tests are guaranteed to be
valid, the analysis is pessimistic and patterns for some faults that could actually be safely
tested are not found.
The challenge of glitches is not only relevant for the TSOF model but has also been

considered for the test and diagnosis of transition-delay faults [71]–[73]. However, similar
to the previously discussed methods for TSOFs, these approaches are also not based on
an accurate consideration of the circuit’s timing.

This chapter introduces a deterministic and accurate test pattern generation approach
for TSOFs that does not require any modifications to the circuit but is also not based on
pessimistic assumptions about the propagation of glitches. Instead, the power of SAT-
based ATPG is leveraged to generate a high quality test set. Furthermore, the ATPG is
capable of generating tests that utilize glitches to test faults which are considered to be
untestable because of structural restrictions.

The chapter is structured as follows: Section 4.1 introduces a basic timing-unaware
TSOF ATPG. The challenges that arise in TSOF testing (and that are not considered by
the previously implemented basic ATPG) are discussed in Section 4.2. Thereafter, Sec-
tion 4.3 shows how to automatically compute the detection patterns and characterize each

58

of them with regard to the challenges based solely on the cell library. Section 4.4 focuses on
the handling of glitches in SAT-based ATPG. The subsequent Section 4.5 discusses the im-
plementation of the charge-sharing mitigation techniques. In Section 4.6 the glitch-based
methods are further improved to make them more robust against minor changes in the
circuit’s timing. Next, Section 4.7 introduces the hazard and charge-sharing aware ATPG
algorithm in detail. This algorithm is evaluated extensively in Section 4.8. Section 4.9
concludes the chapter with a summary.

This chapter is partially based on:

[J1] J. Burchard, D. Erb, S. M. Reddy, A. D. Singh, and B. Becker, “On the generation
of waveform-accurate hazard and charge-sharing aware tests for transistor stuck-off
faults in CMOS logic circuits”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2017. doi: 10.1109/TCAD.2017.2772825

[C2] J. Burchard, D. Erb, A. D. Singh, S. M. Reddy, and B. Becker, “Fast and waveform-
accurate hazard-aware SAT-based TSOF ATPG”, in Design, Automation and Test
in Europe (DATE), 2017, Best Paper Award in the Test Category, 2017. doi: 10.
23919/DATE.2017.7927027

[C3] J. Burchard, D. Erb, S. M. Reddy, A. D. Singh, and B. Becker, “Efficient SAT-based
generation of hazard-activated TSOF tests”, in IEEE 35th VLSI Test Symposium
(VTS), 2017. doi: 10.1109/VTS.2017.7928943

The main contributions by the author to this chapter are:

• The development of an automatic detection pattern generation tool that characterizes
a cell library.

• The development and integration of an automatic detection of stability and charge-
sharing requirements in the characterization tool.

• The development of an accurate SAT-based TSOF ATPG algorithm with an efficient
hybrid formula encoding.

• The development and integration of advanced glitch-avoidance stability conditions
into the ATPG.

• The development and integration of glitch-initialization techniques into this ATPG.

• The development and integration of charge-sharing mitigation techniques into this
ATPG.

• The development of a fast preprocessing step to identify faults where timing infor-
mation is not necessary to guarantee a successful test.

• The extensive analysis of the ATPG algorithm on a wide range of different circuits.

59

http://dx.doi.org/10.1109/TCAD.2017.2772825
http://dx.doi.org/10.23919/DATE.2017.7927027
http://dx.doi.org/10.23919/DATE.2017.7927027
http://dx.doi.org/10.1109/VTS.2017.7928943

4. Testing Transistor Stuck-Open Faults

The implementations are built on top of the PHAETON framework [44] by Matthias Sauer
which, among others, provides a circuit and Standard Delay Format (SDF) file parser, logic
generators for the Tseitin transformation, the waveform accurate timing modeling as well
as an interface to the SAT solver antom [13], [14].

60

4.1. Basic Transistor Stuck-Open Fault ATPG

4.1. Basic Transistor Stuck-Open Fault ATPG

The process of creating test patterns for transistor stuck-open faults with a SAT-based
ATPG algorithm is in many ways similar to that of the SAT-based stuck-at fault ATPG
that was introduced in the previous chapter. Nonetheless, there are certain differences
which need to be considered. This section introduces the basic methodology of creating
test patterns for TSOFs which will be extended throughout the chapter to handle all of
the different challenges. The basic algorithm will then be known as the timing unaware
ATPG for the remainder of this chapter.

4.1.1. Modeling Two Time Frames

To test for the presence of a TSOF reliably, a two pattern test is required. Thus, the
ATPG needs to consider two time frames. As previously discussed, the circuit is unrolled
once to create a separate copy for the first and second time frame. Just like in the stuck-at
ATPG the analysis of the cones of influence is essential to produce a smaller formula. The
different necessary parts for a TSOF are shown in Figure 4.1.

Primary
inputs

Primary
inputs

Primary
outputs

Primary
outputs

Secondary
inputs

Secondary
outputs

T1 T2

Justification cone Propagation cone

Support coneSecondary input support cone

Figure 4.1.: Only the marked areas of the circuit in the two time frames are required when
modeling the TSOF marked by the red cross.

In the second time frame, the picture is similar to that for a stuck-at fault: The justifi-
cation of the fault, the propagation of its effect and the support for the side inputs of the
cells in the propagation cone are required. In the first time frame, on the other hand, only
the justification cone of the fault is modeled because the propagation of the cell output
is not relevant. Furthermore, a LOC type test requires that the flip-flop values that are
used in the second time frame are supported in the first time frame. Hence, the cells in
the secondary input support cone also have to be modeled. The faulty cell might be in
this support cone (as shown in the picture). This is, however, not necessarily the case and
irrelevant for the modeling. In the first time frame the initialization pattern is guaranteed
to produce a correct output at the faulty cell’s output – it behaves just like any other cell.

61

4. Testing Transistor Stuck-Open Faults

The cells in the marked areas can then be converted into a mapped circuit and trans-
formed into a Boolean formula in CNF through the Tseitin transformation. The cells in
the fault propagation cone are transformed twice – once to represent the propagation in
the fault-free (good) circuit and once for that in the fault-affected (bad) one.

4.1.2. Modeling the Fault

The SAT-based stuck-at fault ATPG that was presented in Chapter 3 models the fault by
splitting the faulty line into two parts. In the formula, the first part was forced to have the
required activation value (e.g., ‘1’ for a stuck-at-0 fault) whereas the second part had to
have the correct value (‘1’) in the good circuit and the faulty value (‘0’) in the bad circuit
(see Section 2.2.6).
The approach of modeling a TSOF is similar. However, unlike the stuck-at fault model

which considers an input or output of a cell to be stuck, the TSOF model considers part
of a cell itself to be faulty. Thus, instead of splitting the faulty line, the proposed ATPG
algorithm removes the entire fault-affected cell from the circuit (see Figure 4.2).

x

a

b

s

o

(a) A circuit with a TSOF.

x

a

b

s

o

(b) The same circuit as modeled by the ATPG.

Figure 4.2.: Modeling a TSOF in a circuit by removing the faulty cell. The cell’s inputs
and output are then forced to specific values by the ATPG.

The variables representing the inputs and outputs of the faulty cell still occur in the final
formula. However, the functionality of the faulty cell is not modeled. This task is taken
over by the detection pattern which contains the conditions to activate the fault effect (i.e.
the values that have to be present on the lines).
Assume that the TSOF in the multiplexer in Figure 4.2 can be detected by the detection

pattern 〈000, 010〉, which causes the output to be ‘0’ in the first time frame and ‘1’ in the
fault-free case in the second time frame. This detection pattern is encoded into the Boolean
formula by adding the assignments shown in Figure 4.3. The indices of the variable indicate
the time frame of the corresponding signal. In the second time frame, the output is modeled
twice, once for the good and once for the bad circuit. The assignments can then be added
as unit clauses to the formula, immediately forcing the corresponding variables to their
required values.
The last step in the basic formula generation is the addition of the difference-detecting

XOR-cells and the difference-enforcing clause that combines all of the outputs of the
new cells. This step is the same as in the stuck-at ATPG as it is independent from the
fault model. Furthermore, the difference between the good and the bad circuit in the

62

4.1. Basic Transistor Stuck-Open Fault ATPG

a1 = false

b1 = false

s1 = false

o1 = false

a2 = false

b2 = true

s2 = false

o2,good = true

o2,bad = false

Figure 4.3.: List of the conditions that enforce the fault activation and set the output values
for the considered TSOF in the multiplexer.

fault propagation cone can be modeled with the help of D-chains again. Based on the
observations in Chapter 3, the hybrid D-chain with the dynamic node selection heuristic
is utilized as it provides the largest average speedup across all of the benchmarks.

When the variables that correspond to the inputs and output of the – now removed –
faulty cell are forced to the values required by the detection pattern, it is ensured that
any satisfying assignment to the formula will correspond to a valid test pattern. This test
pattern will apply the detection pattern to the fault site and create a difference between
the faulty and the fault-free circuit on at least one of the observable circuit outputs.

4.1.3. Incremental Solving

In chapter 3 the evaluation of the stuck-at ATPG clearly showed that incremental solving
can be very powerful because the solver can re-use some of its previous knowledge. The
presented incremental approach appeared to be especially successful for the easy-to-detect
faults which can be propagated to many outputs.
In the TSOF ATPG, the testability of the faults will probably be much lower because

more difficult conditions (e.g., LOC restraints) need to be satisfied and not one but two
time frames have to be considered. Thus, another incremental solving approach was
selected.

The previous section described how the fault is modeled by removing the faulty cell from
the circuit altogether and, instead, encoding the activation condition and output value of
the cell directly as unit clauses into the formula. For an incremental approach the unit
clauses are replaced by assumptions which can be removed again. Since the difference
between different TSOFs in the same cell (from the ATPG perspective) lies only in the
detection pattern, this allows for the re-use of the formula encoding a particular TSOF.
The ATPG flow is shown in Figure 4.4. The entire formula is only built up once per cell.
Patterns for the different TSOFs in the cell are then generated by incrementally adding
the different detection and propagation properties as assumptions.
Furthermore, some faults might be detectable by different detection patterns. Here,

again, the same basic formula can be re-used. If a test pattern for a particular fault
is detected with a detection pattern, all other detection patterns for the same fault are
skipped.

63

4. Testing Transistor Stuck-Open Faults

Circuit Pick
target
cell

A test pattern for all
testable faults was generated
→ ATPG completed

Create
Boolean
formula

Pick fault

Fault list Detection
pattern
library

Pick
detection
pattern

Add new
assump-
tions

SolveExtract
test

pattern

Ce
ll a
va
ila
ble

All analyzed

Fa
ult

av
ail
ab
le

All analyzed
Pattern availableAll tested

SAT

UNSAT

Figure 4.4.: Overview of the basic SAT-based TSOF ATPG flow. The Boolean formula is
only created once per cell. The different faults and different detection patterns
per fault are then added as assumptions to this formula.

Overall, the proposed incremental approach reduces the formula generation time per fault
significantly while still ensuring that hard-to-detect or untestable faults can be detected
quickly without having to solve a huge number of small incrementally built up formulas.

4.2. Challenges

After the previous section, it might appear that generating test patterns for transistor
stuck-open faults differs little from the generation of test patterns for other fault models.
However, testing a TSOF is challenging because of three effects: Firstly, a glitch might
invalidate an otherwise fine test pattern and mask the effect of a fault. Similarly, a charge-
sharing conflict could have the same effect. Furthermore, applying a detection pattern to
the faulty cell might not be possible because of test infrastructure restrictions like LOC or
LOS. This section discusses the reasons for each of these challenges and gives an example
for each of them. The subsequent sections highlight the novel approaches of overcoming
them that are integrated into the presented ATPG algorithm.
It should be noted that the discussed effects are not restricted to the TSOF model, but

could arise in similar low-level fault models as well. Most notably, the cell-aware fault
model [33] also considers cell internal opens and might be faced with the same kind of
challenges that could be solved similar to those presented here.

64

4.2. Challenges

4.2.1. Glitches

The propagation of a signal change at the input of a cell to its output requires a certain
amount of time. In a circuit which consists of many cells, these delays add up along
the paths through the circuit and can cause signal changes to arrive at a cell at different
times. This, in turn, might result in glitches at the output of the cell. As an example,
consider Figure 4.5 which shows the propagation of the input assignment 〈11, 00〉 through
a circuit. The blue waveforms correspond to the signal propagation. Relevant time points
are annotated with the discrete time step at which the change occurs. Due to the different
delays, there is a glitch at the output of the XOR-cell.

@0

@0

@2

@4

@4 @6

@4

@82

4

2

2

4

a

b
o1

x

x

x

Figure 4.5.: Propagation of signal changes through a circuit. The value in each cell indi-
cates the delay from the inputs to the output.

Assume that the right OR-cell in the circuit in Figure 4.5 (marked with a red cross) has
a TSOF in transistor M2. As previously discussed in Section 2.2.4, applying the detection
pattern 〈00, 10〉 to the OR-cell makes the fault effect visible at its output (cf. Figure 2.11
in Chapter 2).
In a classical two time frame modeling of the circuit, the glitch at the output of the

XOR-cell would not be modeled and it would be assumed that the detection pattern is
successfully applied to the faulty cell (since its inputs are “00” in the first time frame and
“10” after all the changes have stabilized). In reality, three different patterns are applied
to the faulty cell: First “00”, then “11” (from time step 4 to 6 because of the glitch) and,
finally, “10”. Figure 4.6 shows the behavior of the transistors and the stored values in the
cell over the three input assignments.
To detect the TSOF in M2, the cell output must stay at ‘0’ after applying 〈00, 10〉.

Instead, the glitch on the second input A2 charges the output to ‘1’ through M3 (which is
positioned parallel to M2). The result is that the fault effect is masked – the cell appears
to be working correctly although it actually has a TSOF.
This example highlights the importance of considering glitches when testing for TSOFs.

As the conducted experiments will show, test patterns generated without glitch-awareness
have a large probability of failing to detect the considered fault which could result in a
significant DPPM increase. More details will be given in Section 4.4 which discusses the
handling of glitches by the presented ATPG.

65

4. Testing Transistor Stuck-Open Faults

M5

M4

M2 M3

M1

M0

VDD

VDD

VSS VSS VSS

A1

A2

A1 A2

ZN
ZNneg

x x x x
stuck-open

0

0

0

0

1 0

The pattern “00” turns the
transistors M5 and M4 on
(blue).
This creates a conducting
path from VDD to the gate
input ofM0 and turns it on
(green).
By turning on M0, the cell
output ZN is connected to
VSS and, hence, becomes
‘0’ (orange).

M5

M4

M2 M3

M1

M0

VDD

VDD

VSS VSS VSS

A1

A2

A1 A2

ZN
ZNneg

x x x x

1

1

1

1

0 1stuck-open

The pattern “11” turns on
the transistorsM2 andM3
(blue). However, because
of the TSOF M2 stays off.
Nonetheless, a conducting
path from VSS to the gate
input of M1 still exists
through M3 (green).
By turning on M1, the cell
output ZN is connected to
VDD and, hence, becomes
‘1’ (orange).

M5

M4

M2 M3

M1

M0

VDD

VDD

VSS VSS VSS

A1

A2

A1 A2

ZN
ZNneg

x x x x

1

1

0

0

0 1stuck-open

The pattern “10” turns on
the transistorsM4 andM2
(blue). However, because
of the TSOF M2 stays off.
Thus, the internal signal
ZNneg is connected to nei-
ther VDD nor VSS . The sig-
nal is floating and retaining
its previous value (‘0’).
Therefore, M1 stays ac-
tive, the cell output ZN is
still connected to VDD and
stays ‘1’ (orange).

Figure 4.6.: Applying “00”, then “11” and, finally, “10” to an OR-cell with a TSOF in M2.

66

4.2. Challenges

4.2.2. Charge-Sharing

The second challenge when testing TSOFs is charge-sharing. Charge-sharing occurs when
the propagation pattern connects intra-cell lines with an opposite charge to the floating
line. The outcome is a charge that corresponds to a voltage that is neither clearly ‘1’ nor
‘0’. Depending on the interpretation of the voltage by the subsequent transistors the fault
effect might be masked.

M7

M6

M0

M3

M5

M4

M1

M2

VDD VDD

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

Figure 4.7.: Transistor layout of an OR-AND-Invert-cell.

As an example, consider the OR-AND-Invert-cell in Figure 4.7 with a TSOF inM3. The
pattern 〈1100, 1010〉 appears to be a valid detection pattern – “1100” connects the output
to VDD, while “1010” makes it float and retain its previous value instead of switching to
‘0’ (see Figure 4.8).
However, in the first time frame there is another line that is floating: the interconnect

between M4 and M5 (shown in orange). In the second time frame, this line is then
connected to the cell’s output through M4 and the charges of the two floating lines are
shared. If the M4-M5 interconnect has a charge equivalent to ‘0’, the ‘1’ charge of ZN is
reduced because some of it is transfered to the interconnect. Whether the corresponding
voltage on ZN is still interpreted as ‘1’ depends on the remaining charge which, in turn,
depends on the capacitances of the different interconnects and transistors.
While in this example the number of nodes that have a charge of ‘1’ is rather large and

the test would most likely be successful1, avoiding the conflict (and the chance of test
invalidation) altogether is still desirable. This could, for example, be achieved through
another detection pattern: By applying “1000” to the cell in the first time frame the M4-
M5 interconnect would definitely be charged to ‘1’ and no charge-sharing conflict could
arise.

1In [67], the authors even noted that charge-sharing conflicts are generally improbable.

67

4. Testing Transistor Stuck-Open Faults

M7

M6

M0

M3

M5

M4

M1

M2

VDD VDD

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

1

1

1

1

0

0

0

0

1

?

stuck-open

(a) Applying “1100” to the cell.

M7

M6

M0

M3

M5

M4

M1

M2

VDD VDD

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

1

1

0

0

1

1

0

0

1 ?

?

stuck-open

(b) Applying “1010” to the cell.

Figure 4.8.: The problem of charge-sharing in TSOF-testing: In the second time frame, the
charge of ZN is shared with an unknown charge from theM4-M5 interconnect.

Section 4.3 discusses the generation of detection patterns that are guaranteed to be
without a charge-sharing conflict or for which the charge-sharing conflict can be mitigated.

4.2.3. Test Infrastructure Restrictions

The final challenge in TSOF testing stems from the test infrastructure itself. Generally, the
flip-flop values for the second time frame cannot be chosen freely due to test infrastructure
and cost constraints. Instead, methods like LOC and LOS are used. Here, the values of
the flip-flops in the second time frame originate from their inputs in the first time frame.
While this gives a tremendous test time reduction, it also restricts the input values of the
second time frame. In the worst case, some faults cannot be tested at all because their
detection pattern cannot be justified through the first time frame.

However, it might be possible to apply the required initialization pattern through glitches
while switching from T1 to T2. In this case, the pattern T1 is used to justify the flip-flop
values that are required in the second time frame but does not initialize the fault. The
initialization only occurs while switching from T1 to T2. Such a glitch-initialization of the
fault allows for the testing of faults which would otherwise be considered as untestable.
This will be analyzed further in Section 4.4.

68

4.3. Detection Library

4.3. Detection Library

To test for the existence of a TSOF, a special detection pattern has to be applied to the
inputs of the faulty cell. This detection pattern must satisfy certain properties and might
have special requirements.
The basic property of a detection pattern is that it makes the fault effect visible at

the cell’s output. For some TSOFs, this might only be possible if some of the inputs are
without glitches (stable). Furthermore, the detection pattern must also ensure that no
charge-sharing conflict arises or that the conflict is mitigated.
The possible detection patterns for a fault are computed in a preprocessing step that

needs to be performed only once for each cell in a cell library. The overall flow in creating
a list of detection patterns for a single cell is shown in Figure 4.9.
The analysis is based on a transistor level description of the cell in question that is

provided with the cell library. This file contains a textual representation of the transistor
circuits shown throughout the chapter in the spice format. The detection pattern compu-
tation itself works as a very basic ATPG algorithm that is based on simulation and can be
split into the following four steps:

1. Simulation of all possible 〈T1, T2〉 patterns in a fault-free and faulty version of the
cell. Patterns that produce a difference between the two versions at the output of
the cell are stored as detection pattern candidates.

2. Simulation of all possible switching orders for each detection pattern candidate. This
step ensures that no matter in which order the signal transitions arrive at the faulty
cell, the detection pattern will always detect the fault. In the considered example,
the detection pattern candidate 〈1010, 0100〉 is dropped because there is a switching
order that hides the fault effect: 1010 → 0010 → 0000 → 0100. The intermediate
pattern “0000” opens a path in parallel to the faulty M7 (through M4 and M5) that
charges the output to ‘1’, masking the fault effect.

3. For each detection pattern candidate, check if it can be invalidated by glitches. To
this end, the switching from T1 to T2 is simulated with additional glitches on all of
the not switching inputs. Again, all possible switching orders are considered. Thus,
glitches of any length and time of occurrence are covered. As an example, consider
the detection pattern candidate 〈1111, 1100〉 where both A1 and A2 do not switch.
One possible switching order with a glitch on both A1 and A2 is: 1111 → 0111 →
0011 → 0001 → 0000 → 0100 → 1100 (switches due to a glitch are highlighted in
red). As shown in the previous step, the intermediate pattern “0000” hides the fault
effect. Thus, a glitch at both A1 and A2 must be avoided to ensure a successful
test of the fault. However, it is sufficient if one of the two inputs is glitch free (also
referred to as stable) to ensure a successful test. Any stability requirement is added
to the detection pattern candidate.

4. The final analysis step checks if there is a charge-sharing conflict for the detection
pattern candidate. To this end, all possible switching orders are simulated again.
While propagating the induced changes through the cell, it is checked whether the
charge of the floating signal line is connected to any other floating line that was not

69

4. Testing Transistor Stuck-Open Faults

Spice file

M7 : S = VDD, D = s1, G = B1

M6 : S = s1, D = ZN,G = B2

M0 : S = s2, D = ZN,G = A1

M1 : S = VSS , D = s2, G = A2

. . .

M7

M6

M0

M3

M5

M4

M1

M2

VDD VDD

s1

s2

s3

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

M7

M6

M0

M3

M5

M4

M1

M2

s1

s2

s3

VDD VDD

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

Simulate all patterns

〈0000, 0000〉 → 7

〈0000, 0001〉 → 7
. . .

〈1010, 0100〉 → 3
. . .

〈1110, 1000〉 → 3

. . .

Simulate all switching orders. . .
〈1010, 0100〉 → 7

〈1110, 1000〉 → 3

〈1111, 1100〉 → 3
. . .

Check for glitch-invalidations. . .
〈0110, 0100〉 → A2 stable

〈1110, 1000〉 → A1 stable

〈1111, 1100〉 → A1 or A2 stable
. . .

Check for charge-sharing. . .
〈0110, 0100〉 → 3

〈1110, 1000〉 → 7 : conflict at s3

〈1111, 1100〉 → 3
. . .

Resolve charge-sharing conflict

Detection pattern library. . .
TSOF in M7 : 〈0110, 0100〉 − requirements : A2 stable

TSOF in M7 : 〈1110, 1000〉 − requirements : A1 stable, glitch at A1

TSOF in M7 : 〈1111, 1100〉 − requirements : A1 or A2 stable
. . .

Add fault

Passing patterns

Passing patterns

7 3

Figure 4.9.: Overview of the developed detection library computation flow.

70

4.3. Detection Library

charged to the right value in T1 or not charged at all. If so, the pattern is marked
and the charge-sharing conflict has to be resolved in an extra step which is discussed
below. Otherwise, the detection pattern candidate is added to the detection pattern
library directly.

Overall, the computation of the detection library depends on different simulations to
compute valid detection patterns, to test their vulnerability to glitches and to check for
any charge-sharing conflicts. This simulation-heavy approach is feasible because even the
most complex cells in the considered cell libraries have only six inputs and the total number
of different possible input assignments is, therefore, very low.
If a cell library contains very complex cells with a large number of inputs, the simulation

could also be replaced by a transistor level ATPG algorithm for detection patterns. Since
the utilized cell library does not contain any such cells, this was not pursued further in
this work.

4.3.1. Resolving Charge-Sharing Conflicts

When a detection pattern is susceptible to charge-sharing, this conflict can be resolved
by different means. These aim at charging the conflicting line (referred to as cl in this
section) to the correct value before it is connected with the line that is storing the relevant
charge between T1 and T2. In this work, three different techniques for the resolution of
charge-sharing conflicts are considered and implemented:

1. Charge the cl by ensuring a certain switching order.

2. Charge the cl by a glitch before switching from T1 to T2.

3. Charge the cl in an additional time frame T0.

The first two techniques can be considered as additional requirements for the detection
pattern itself and are referred to as mitigation techniques, while the third technique requires
an entire additional time frame.

Mitigating the Conflict

The idea of the mitigation techniques is to utilize the switching activity of the circuit to
charge the cl. As an example, consider the detection pattern 〈1100, 1010〉 for a TSOF in
transistor M3 of an OR-AND-Invert-cell as discussed in Section 4.2.2 again. Here, the
M4-M5 interconnect is the cl with an unknown charge. There are two ways of charging
the cl: Either the input A2 switches from ‘1’ to ‘0’ first. This opensM4 and charges the cl
to the required value, ‘1’ (see Figure 4.10a). Alternatively, a glitch on the input A1 opens
M5 and has the same effect (see Figure 4.10b).
If a mitigation technique was found to work for a detection pattern that suffers from

a charge-sharing conflict, it is added as a requirement to the pattern. For example, in
Figure 4.9 the pattern 〈1110, 1000〉 has the requirement of a glitch at input A1 to mitigate
the charge-sharing conflict and, furthermore, a stability requirement at input A1. This
combination can indeed occur and lead to a valid test but necessitates the combination

71

4. Testing Transistor Stuck-Open Faults

of glitch-initialization and the weak stability condition that will be introduced in Sec-
tion 4.4.1. The implementation of the mitigation techniques themselves will be discussed
in Section 4.5.
To simplify the modeling of the mitigation conditions in the SAT formula, only perma-

nent charge-sharing resolutions – where the conflicting line cannot be discharged through
a glitch again – are added to the detection library.

M7

M6

M0

M3

M5

M4

M1

M2

VDD VDD

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

1

1

1→0

1→0

0

0

0

0

1

?→1

stuck-open

(a) By switching A2 first.

M7

M6

M0

M3

M5

M4

M1

M2

VDD VDD

VSSVSS

B1

B2

A1

B1

A1

A2

A2

B2

ZNxx

x x

1→0

1→0

1

1

0

0

0

0

1

?→1

stuck-open

(b) Through a glitch on A1.

Figure 4.10.: Mitigating the charge-sharing conflict by charging the M4-M5 interconnect.

Adding a Pre-Charging Time Frame

A pre-charging time frame can provide another option to charge a cl to the required value.
Here, the two pattern test 〈T1, T2〉 is extended into a three pattern test 〈T0, T1, T2〉 where
T0 must charge the cl. Considering a three pattern test during the test pattern generation
greatly increases the difficulty of the problem. Thus, the approach only considers pre-
charging patterns that reliably charge the cl independent of the switching order from T0
to T1 or any occurring glitches.
To find the pre-charging patterns for a detection pattern every input combination is

tested for its validity as a T0 pattern. Again, all possible switching orders with all pos-
sible glitches are simulated for each T0 candidate. Only if the cl is charged for any such
possibility, the pattern is added as a pre-charging pattern.
The implementation the of pre-charging time frame will be discussed in combination

with the overall ATPG flow in Section 4.7.

72

4.4. Handling Glitches

4.4. Handling Glitches

Recall that a detection pattern defines the input assignment that is required at the inputs
of the fault-affected cell to make the fault effect visible whereas a test pattern is applied to
the circuit inputs. While the detection library defines the requirements of each detection
pattern, these requirements still have to be fulfilled by the test patterns generated by
the ATPG algorithm. The main challenge lies with computing test patterns that satisfy
the stability conditions of a detection pattern. This part demands advanced modeling
techniques and explains why no other TSOF ATPG supports glitch-aware test pattern
generation.
In this section and the subsequent subsections the newly developed techniques which

allow the presented TSOF ATPG to generate valid test patterns are described. The effort
can be grouped into two areas: glitch-avoidance and glitch-initialization. Glitch-avoidance
focuses on ensuring that glitches do not occur when they might be harmful, whereas glitch-
initialization attempts to utilize glitches to mitigate charge-sharing conflicts or to circum-
vent test infrastructure restrictions.
All of the presented techniques are based on the waveform accurate circuit model in-

troduced by [48] and discussed in Section 2.2.7. Thus, for every modeled signal there is
a list Tvars, containing one variable for each time step in which the signal value might
change. The earliest time at which a signal can change is tfirst. Accordingly, the latest
time is tlast. For a nicer representation it is assumed that the Tvars of the inputs of the
cell always have the same tfirst and the same length. In reality, mismatching Tvars can
be adapted by repeating the first and/or last value (since there are no changes before or
after the Tvar list) until all Tvars are matched. For the handling of the glitches, it can
be assumed that the entire circuit is modeled with waveform accuracy. Exact details on
the overall construction of the ATPG will be given in Section 4.7.

4.4.1. Glitch-Avoidance

A test pattern can have stability requirements for some of the inputs which do not change
from T1 to T2. The goal is to encode these requirements into the formula used by the SAT-
based ATPG algorithm which ensures that the requirements are satisfied by any generated
pattern automatically. To this end, the formula Φ created by the basic, timing-unaware
TSOF ATPG algorithm presented in Section 4.1 is extended with stability conditions.
In the ATPG, stability can be enforced in two different manners: Through the cheap

but more pessimistic strong stability condition or through the more complex but also more
exact weak stability condition. The latter also requires a more complex modeling of the
fault activation condition which is discussed in combination with glitch-initialization in the
next section.

Strong Stability Condition

The strong stability condition enforces strict glitch freedom for any input i with a stability
requirement. This means that i must stay at its T1 value without any transitions during
the propagation of the changes induced by applying T2 to the circuit. Transferred to the

73

4. Testing Transistor Stuck-Open Faults

Boolean formula that models the signal propagation, this implies that all of the Tvarsi
from tfirst until tlast must have the same value.
Since Φ is utilized incrementally for different faults and detection patterns, each of which

might have different stability requirements, the strong stability condition is encoded with
an extra variable stableStrongi which controls whether stability is enforced at input i.
When stableStrongi is set to true by an assumption, any solution to the Boolean formula
corresponds to a test pattern that does not produce a glitch at cell input i. If stableStrongi
is set to false, the stability condition can be ignored and all of the corresponding clauses
are satisfied already.
The strong stability condition and the controlling variable can be efficiently encoded into

the Boolean formula:
tlast∧

t=tfirst

stableStrongi ⇒
(
Tvarsi[t]⇒ Tvarsi[(t+ 1)mod (tlast + 1)]

)
(4.1)

Here,mod describes the modulus operation which gives the remainder after integer division.
As Figure 4.11 shows, the implications form a circular dependency which ensures that all
variables are assigned to the same value: Whenever any one of the Tvarsi is assigned to
true, all other Tvarsi must also become true. Conversely, it is only possible to assign one
of the Tvarsi to false when all other Tvarsi are also assigned to false.

stableStrongi

Tvarsi[tfirst]

Tvarsi[tfirst + 1]

Tvarsi[tfirst + 2]

Tvarsi[tfirst + 3]

Tvarsi[tfirst + 4]

. . .

Tvarsi[tlast − 1]

Tvarsi[tlast]

Figure 4.11.: The circular implication which ensures total glitch freedom at input i of the
fault-affected cell when stableStrongi = true.

Formula 4.1 can be transformed into CNF easily because it consists only of implications.
The final list of clauses that encode strong stability at input i is shown in Figure 4.12.
When stableStrongi is assumed to be false, all of the clauses become satisfied right away
and will be ignored by the solver for the remainder of the solve process. Thus, if a stability
condition is not required for a particular detection pattern it only adds a minimum burden
onto the SAT solver.

Weak Stability Condition

The weak stability condition is based on a more detailed look at the glitches that occur at
a cell. Recall that glitches are a problem because they might charge the line that should

74

4.4. Handling Glitches

(
¬stableStrongi ∨¬Tvarsi[tfirst] ∨ Tvarsi[tfirst + 1]

)
(4.2)(

¬stableStrongi ∨¬Tvarsi[tfirst + 1] ∨ Tvarsi[tfirst + 2]
)

(4.3)(
¬stableStrongi ∨¬Tvarsi[tfirst + 2] ∨ Tvarsi[tfirst + 3]

)
(4.4)(

¬stableStrongi ∨¬Tvarsi[tfirst + 3] ∨ Tvarsi[tfirst + 4]
)

(4.5)
. . .(

¬stableStrongi ∨¬Tvarsi[tlast − 1] ∨ Tvarsi[tlast]
)

(4.6)(
¬stableStrongi ∨¬Tvarsi[tlast] ∨ Tvarsi[tfirst]

)
(4.7)

Figure 4.12.: List of the clauses that encode the strong stability condition.

be floating due to the TSOF to the value it would have in the correct circuit by opening a
path in parallel to the faulty transistor – and, hence, masking the fault. Thus, if the line
should stay at ‘0’ due to the fault, the glitch would charge it to ‘1’ and vice versa. The
initial charging of the line to ‘0’ is the sole task of the initialization pattern in the first
time frame. Hence, every time the initialization pattern is applied to the faulty cell, the
internal line will be charged to the necessary value (again).
The weak stability condition uses this fact and allows some glitches to occur. It only

enforces stability from the point in time onward where a glitch might actually permanently
mask the fault effect. Every application of the initialization pattern re-charges the rele-
vant internal line to the correct value. Thus, the weak stability condition allows for the
occurrence of glitches before the last time at which the initialization pattern is applied
to the cell. It should be noted that the weak stability condition is a replacement for the
previously introduced strong stability condition.
As an example, consider a NAND-cell with a TSOF in transistor M3 which needs the

detection pattern 〈11, 10〉 and stability on the first input. Figure 4.13 shows two different
signal traces at the inputs of the cell.

7

(a) The glitch occurs after the initialization and
hides the fault effect.

3

(b) The glitch occurs before the last initializa-
tion and the test is valid.

Figure 4.13.: Advanced glitch timing considerations that are modeled by the weak stability
condition.

Marked in green are the time points at which the initialization pattern is applied to
the cell. In Figure 4.13a the glitch occurs after the initialization pattern and a successful
test cannot be guaranteed. In Figure 4.13b, on the other hand, the initialization pattern
is again applied to the cell after the glitch and the test is successful. While the strong
stability condition would consider both of these examples as a violation of the input stabil-

75

4. Testing Transistor Stuck-Open Faults

ity requirement, the weak stability condition allows for the case sketched in Figure 4.13b.
Nonetheless, the weak stability condition still ensures that the case of Figure 4.13a does
not occur.
To model if a glitch occurred before or after the last initialization a new variable vector

stableWeaki of the same size as Tvarsi is introduced. The variable stableWeaki[t] indi-
cates if the input i will be stable from t onwards. If the variable at point t is assigned
to true, then all subsequent variables at t + 1, t + 2, . . . must also be assigned to true.
Furthermore, the signal may of course not change between any of the subsequent time
steps. Because stableWeaki cannot simply consider all of the Tvarsi, the encoding of
these properties as a Boolean formula is more complex:

stableWeaki[tlast] = true (4.8)
tlast−1∧
t=tfirst

stableWeaki[t]⇒

(
stableWeaki[t+ 1] ∧

(
Tvarsi[t]⇔ Tvarsi[t+ 1]

))
(4.9)

The recursive definition starts at the last point of activity (after which the signal will
definitely be stable) and works backwards until covering the entire Tvar vector. Figure 4.14
shows the scope and implications for each single stableWeaki[t] variable.

Tvarsi
[tfirst]

Tvarsi
[tfirst+1]

. . . Tvarsi
[tlast − 2]

Tvarsi
[tlast − 1]

Tvarsi
[tlast]

st
ab
le
W
ea
k i

[t f
ir
st
]

st
ab
le
W
ea
k i

[t f
ir
st

+
1] . . .

st
ab
le
W
ea
k i

[t l
as
t
−

2]

st
ab
le
W
ea
k i

[t l
as
t
−

1]

st
ab
le
W
ea
k i

[t l
as
t
]

∧ ∧ ∧ ∧ ∧

Figure 4.14.: The implications that are required to model the weak stability condition. To
assign a stableWeaki variable to true, all outgoing implications need to be
satisfied.

Due to its more complex structure, more clauses are necessary to model the weak stability
condition as shown in Figure 4.15. For each time step at which the signal might be active,
three clauses have to be added to the formula (compared to only one clause per time step
for the strong stability condition).
Furthermore, by itself the vector stableWeaki is insufficient to ensure that there are

no more glitches after the initialization pattern has been applied for the last time. For
this task a second vector init, which stores when the fault is initialized, is indispensable.
While the total cost to model the weak stability condition is higher than the cost for the

76

4.4. Handling Glitches

(
stableWeaki[tlast]

)
(4.10)(

¬stableWeaki[tlast − 1] ∨stableWeaki[tlast]
)

(4.11)(
¬stableWeaki[tlast − 1] ∨ Tvarsi[tlast − 1] ∨ ¬Tvarsi[tlast]

)
(4.12)(

¬stableWeaki[tlast − 1] ∨¬Tvarsi[tlast − 1] ∨ Tvarsi[tlast]
)

(4.13)(
¬stableWeaki[tlast − 2] ∨stableWeaki[tlast − 1]

)
(4.14)(

¬stableWeaki[tlast − 2] ∨ Tvarsi[tlast − 2] ∨ ¬Tvarsi[tlast − 1]
)

(4.15)(
¬stableWeaki[tlast − 2] ∨¬Tvarsi[tlast − 2] ∨ Tvarsi[tlast − 1]

)
(4.16)

. . .(
¬stableWeaki[tfirst] ∨stableWeaki[tfirst + 1]

)
(4.17)(

¬stableWeaki[tfirst] ∨ Tvarsi[tfirst] ∨ ¬Tvarsi[tfirst + 1]
)

(4.18)(
¬stableWeaki[tfirst] ∨¬Tvarsi[tfirst] ∨ Tvarsi[tfirst + 1]

)
(4.19)

Figure 4.15.: List of the clauses that encode the weak stability condition for input i.

strong stability condition, init can also be used to model the glitch-initialization of the
fault. Thus, the details of init are described in the next section.

4.4.2. Glitch-Initialization

When a fault cannot be initialized by the T1 pattern, it might still be possible to initialize
it through a glitch while switching from T1 to T2. To test a TSOF only two requirements
are relevant:

1. The fault has to be initialized at some point in time.

2. When switching to the propagation pattern, the test must not be invalidated through
a glitch.

These conditions are exactly what is encoded by the weak stability condition. Thus,
when modeling the weak stability condition, glitch-initialized faults are also automatically
considered and vice-versa. Figure 4.16 shows an example for a fault which can be tested
because of considering weak stability as well as an example for a fault that can be tested
because it is initialized by a glitch.

3

(a) Weak stability

3

(b) Glitch-initialization

Figure 4.16.: Comparison of the weak stability condition and glitch-initialization.

77

4. Testing Transistor Stuck-Open Faults

In both cases, only the latest application of the initialization pattern “11” (shown in
green) is relevant and sufficient to charge the internal lines to the required values. Thus,
even though the initial signal values in Figure 4.16b are “10” instead of the initialization
pattern “11”, the fault can still be tested.

As was discussed in the previous section, the vector stableWeaki is utilized to model
the point in time from which on the input i does not change anymore and remains stable.
Hence, the second condition (no glitch-invalidations) is covered by these variables.
For the first condition (initialization) a vector init with the same size as Tvars is intro-

duced. Unlike stableWeaki, the vector init is only encoded once for the entire fault-affected
cell. When the variable init[t] is assigned to true, the initialization condition is applied to
the cell at time step t. This is modeled as follows:

tlast∧
t=tfirst

#inputs∧
i=0

init[t]⇒ (¬)Tvarsi[t] (4.20)

The exact encoding of init depends on the necessary initialization condition: When the
input i needs to be ‘1’ for the initialization, the negation in front of the Tvarsi is omitted,
otherwise it is added. As an example, consider the clauses in Figure 4.17 that encode the
initialization condition for the NAND-cell with the initialization pattern “11” from the
previous example.

(
¬init[tfirst] ∨ Tvars0[tfirst]

)
(4.21)(

¬init[tfirst] ∨ Tvars1[tfirst]
)

(4.22)(
¬init[tfirst + 1] ∨ Tvars0[tfirst + 1]

)
(4.23)(

¬init[tfirst + 1] ∨ Tvars1[tfirst + 1]
)

(4.24)
. . .(

¬init[tlast − 1] ∨ Tvars0[tlast − 1]
)

(4.25)(
¬init[tlast − 1] ∨ Tvars1[tlast − 1]

)
(4.26)(

¬init[tlast] ∨ Tvars0[tlast]
)

(4.27)(
¬init[tlast] ∨ Tvars1[tlast]

)
(4.28)

Figure 4.17.: List of the clauses encoding the init vector for the initialization pattern “11”.

At this point the weak stability condition and the initialization are modeled with the
vectors stableWeaki and init. These vectors are now combined to indicate whether the
applied input values are “valid”. The input values are considered to be valid when they
satisfy both of the initially defined conditions: Initialize the fault and ensure stability from
the last initialization onwards.

78

4.4. Handling Glitches

To encode validity yet another variable vector, valid, with the size of Tvars is utilized.
The variable valid[t] encodes that both conditions are either satisfied at the time step t or
that they were satisfied at a previous point in time:

valid[tfirst]⇒
(
init[t] ∧

∧
i∈Stable inputs

stableWeaki[t]
)

(4.29)

tlast∧
t=tfirst+1

valid[t]⇒

(
valid[t− 1] ∨

(
init[t] ∧

∧
i∈Stable inputs

stableWeaki[t]
))

(4.30)

Note that the weak stability condition is only added for inputs that actually have a
stability requirement (which is defined in the detection library). By forcing valid[tlast]
to be true through an assumption, any satisfying assignment that the SAT solver finds
will correspond to a valid test pattern. This test pattern not only creates a waveform at
the faulty cell input which will initialize the fault but also ensures that the test is not
invalidated through a glitch. The valid[tlast] assumption replaces the hard assumptions for
the input values in T1 that were encoded in the timing-unaware TSOF ATPG described in
Section 4.1. The assumptions for the application of the propagation pattern in T2 remain
unaffected by this change.
Figure 4.18 shows the modeled implications for the considered NAND-cell with detec-

tion pattern “11” and a stability condition for the first input.

valid
[t
first]

valid
[t
first +

1]

. . .
valid

[t
last −

2]

valid
[t
last −

1]

valid[t
last]∨ ∨ ∨ ∨⇐ ⇐ ⇐ ⇐ ⇐

==⇒
init

[tfirst]

∧
stableWeak0

[tfirst]

==⇒

init
[tfirst + 1]

∧
stableWeak0
[tfirst + 1]

==⇒

init
[tlast − 2]

∧
stableWeak0
[tlast − 2]

==⇒

init
[tlast − 1]

∧
stableWeak0
[tlast − 1]

==⇒

init
[tlast]

∧
stableWeak0

[tlast]

Figure 4.18.: The implications that model whether the applied input assignment is valid.
valid[t] can be assigned to true if one of the outgoing implications is satisfied.

Although the proposed modeling is rather complex and necessitates the addition of
multiple new variable vectors, the overall cost is still very low. This is because all of the
presented clauses are only required once and only for the fault-affected cell. For all other
cells, the normal timing-aware modeling is sufficient. Furthermore, all of the presented
formulas are designed to be easy to solve by utilizing only implications. If, for example,
the signal is initialized and stable at time step tlast−1, the solver does not need to consider
any additional stability constraints or initialization computations for the preceding time
steps. The corresponding variables can simply be set to false.

While the presented encoding was developed with weak stability and glitch-initialization
in mind, it of course also permits a normal initialization without any glitches and strong

79

4. Testing Transistor Stuck-Open Faults

stability at the inputs. Figure 4.19 gives a final overview of the assignments of the
stableWeaki, init and valid variables for different input assignments. The stability vari-
ables are only encoded for the first input since the second input does not have a stability
requirement. Fields marked in red are blocking valid from being assigned to ‘1’ in this time
step. Similarly, a yellow field blocks init from being assigned to true. At time t, init[t] can
only be assigned to true when there is no yellow field at t. Accordingly, valid[t] can only
be assigned to true when there is no red field at t. A green marking in valid indicates that
valid was assigned to true in a previous time step and will, therefore, simply stay true.
Clearly, the proposed glitch modeling accurately reflects whether the fault effect will

be masked. The test pattern that produces the invalid input assignment of Figure 4.19d
would not be generated by the ATPG algorithm since the fault effect is masked by the
glitch. This case is only shown for further clarification.

valid: 1 1 1 1 1 1 3

init: 1 1 0 0 0 0

StableWeak0: 1 1 1 1 1 1
Tvars0: 1 1 1 1 1 1

Tvars1: 1 1 0 0 0 0

(a) There is no glitch. This pattern also satisfies
the strong stability condition.

valid: 0 0 0 1 1 1 3

init: 1 0 0 1 1 0

StableWeak0: 0 0 0 1 1 1
Tvars0: 1 0 0 1 1 1

Tvars1: 1 1 1 1 1 0

(b) The fault is re-initialized after the glitch, the
pattern satisfies the weak stability condition.

valid: 0 0 0 1 1 1 3

init: 0 0 0 1 1 0

StableWeak0: 0 0 0 1 1 1
Tvars0: 1 0 0 1 1 1

Tvars1: 0 0 1 1 1 0

(c) The fault is initialized because of the glitch
at the second input.

valid: 0 0 0 0 0 0 7

init: 1 1 0 0 0 0

StableWeak0: 0 0 0 0 0 1
Tvars0: 1 1 1 0 0 1

Tvars1: 1 1 0 0 0 0

(d) The glitch occurs after the initialization and
hides the fault effect.

Figure 4.19.: Examples of how the proposed modeling of glitches handles the different ways
a faulty cell might be initialized.

80

4.5. Charge-Sharing Mitigation

4.5. Charge-Sharing Mitigation

Resolving a charge-sharing conflict involves charging a certain line in the circuit to a special
value before the propagation pattern is applied. In Section 4.3.1 two different mitigation
techniques for charge-sharing conflicts were proposed: ensuring a certain switching order
or utilizing a glitch. Both techniques aim at providing a special detection pattern for the
faulty cell that will ensure that the line is correctly charged.
In this section, the encoding of the two mitigation techniques into a Boolean formula

is discussed. Just like before, the goal is to teach the ATPG algorithm to only produce
patterns that mitigate the charge-sharing conflict by one of the proposed methods. The
necessary mitigation procedure is stored along with the detection pattern in the detection
library just like the stability requirements that were encoded in the previous section. The
discussed techniques are based on the encoding of the weak stability condition and assume
that the corresponding variables are present in the Boolean formula.

4.5.1. Switching Order

In the switching order mitigation technique, the conflicting line is charged by ensuring
that the inputs of the faulty cell switch in a certain order. This broad requirement is
further refined by only considering detection patterns where switching a single input first
is sufficient to resolve the charge-sharing conflict.
Assume that input i is the input that has to switch first. For a valid test there must be a

time t where all inputs still have their T1 value and at t+ 1 all inputs but i still have their
T1 value while i already has its T2 value. Figure 4.20 shows an example for the mitigation
of a charge-sharing conflict during the test of an OR-AND-Invert-cell with the detection
pattern 〈1100, 1010〉 by switching the input A2 first. The green area marks the two time
steps t and t+ 1.

A1

A2

B1

B2

O
A
I2
2

Figure 4.20.: Mitigating a charge-sharing conflict during the test of an AND-OR-Invert-cell
by switching the input A2 first.

To incorporate the switching order condition into the Boolean formula of the solver, two
new vectors with the same size as Tvars are required.
The first new vector, switchAct, is built up just like the init vector in the previous

section. However, instead of indicating whether the initialization pattern is applied to the
circuit in time step t, switchAct[t] indicates that at time step t all inputs apart from i still
have their T1 value whereas i has already switched to its T2 value.

81

4. Testing Transistor Stuck-Open Faults

The second new variable vector, switchMit, encodes whether the charge-sharing conflict
was successfully resolved. When switchMit[t] is assigned to true, the conflict was either
resolved in a previous time step or the correct switching order is applied at the current
time step:

switchMit[tfirst] = false (4.31)
tlast∧

t=tfirst+1

switchMit[t]⇒
(
switchMit[t− 1] ∨

(
init[t− 1] ∧ switchAct[t]

))
(4.32)

Figure 4.21 shows how the variable vectors are assigned for the example from Figure 4.20.
The fields marked in green are those that are relevant for a successful charge-sharing
mitigation.
By adding the assumption that switchMit[tlast] must be true when solving the formula,

it is assured that any generated pattern will resolve the charge-sharing conflict through
the correct switching order.

init: 1 1 0 0 0 0
switchAct: 0 0 1 1 0 0
switchMit: 0 0 1 1 1 1

A1

A2

B1

B2

O
A
I2
2

Figure 4.21.: The assignment of the new variables when encoding a switching order initial-
ization.

4.5.2. Glitch-Charging

Utilizing a glitch to charge the line that causes the charge-sharing conflict is similar to
the glitch-initialization that was discussed in Section 4.4.2. However, there are two differ-
ences: Firstly, the glitch that resolves the charge-sharing conflict can occur at any time,
independent from the stability of any other line. Secondly, the required signal values are
different than the initialization values. The resolution of the charge-sharing conflict must
occur before the fault is initialized for the last time.
These conditions are encoded by two new variable vectors with the same size as Tvars.

The first vector, glitchAct is similar to the vector switchAct used for the switching order
activation and is true at time step t when the cell inputs have the values that are required to
resolve the charge-sharing conflict. The second new variable vector, glitchMit, is assigned
to true when the charge-sharing conflict was either resolved at an earlier time step, or
when the current input assignment at time step t corresponds to the required assignment
that resolves the conflict:

82

4.5. Charge-Sharing Mitigation

glitchMit[tfirst]⇒ glitchAct[tfirst] (4.33)
tlast∧

t=tfirst+1

glitchMit[t]⇒
(
glitchMit[t− 1] ∨ glitchAct[t]

)
(4.34)

To ensure that the charge-sharing conflict is solved before the initialization pattern is
applied for the last time, glitchMit is added as a requirement to valid:

tlast∧
t=tfirst

valid[t]⇒ glitchMit[t] (4.35)

Therefore, to assign valid to true the charge-sharing conflict must have been previously
resolved.
Figure 4.22 shows an example of the mitigation of a charge-sharing conflict during the

test of a TSOF in an OR-AND-Invert-cell with the detection pattern 〈1100, 1010〉 through
a glitch at the input A1. For this final example it is further assumed that there is a stability
condition for input A1. For this reason, all of the variables of the weak stability encoding
are shown. Fields marked red are blocking valid[t] from being assigned to true at the
corresponding time step.
Note that in this example the initialization pattern is applied to the cell twice. However,

the first time the stability requirement for input A1 is not satisfied. Furthermore, the
glitch on input B2 – although not violating any stability requirements – is delaying the
application of the initialization pattern by one time step. If this glitch would be any longer,
the test would be unsuccessful because the initialization pattern could not be applied at
all.

stableWeak0: 0 0 0 0 1 1 1

init: 1 1 0 0 0 1 0
glitchAct: 0 0 1 0 0 0 0
glitchMit: 0 0 1 1 1 1 1

valid: 0 0 0 0 0 1 1

A1

A2

B1

B2

O
A
I2
2

Figure 4.22.: Mitigating a charge-sharing conflict during the test of an AND-OR-Invert-cell
by a glitch on input A1.

83

4. Testing Transistor Stuck-Open Faults

4.6. Minimum Event Durations

So far, all of the glitch-based techniques were considered to work instantaneously: A glitch
immediately initializes the fault and a line that causes a charge-sharing conflict is charged
immediately when the right pattern is applied to the inputs. As a result, detection patterns
where very short glitches are responsible for the necessary effect are considered as valid
patterns. Similarly, patterns in which the initialization pattern is only applied for a short
time before the signals switch again are considered to be valid.
These effects can be observed in the previous example in Figure 4.22: The glitch on

input A1 which mitigates the charge-sharing conflict only has a duration of two time steps.
Furthermore, the initialization pattern is only applied for a single time step before the
inputs switch to the propagation pattern. This might not be sufficient.
While this picture is accurate on an abstract circuit, it is more difficult in reality.
On the part of very short glitches, there are three main problems: Firstly, a very short

glitch might simply not cause the desired effect to occur because not enough charge is
transferred. Secondly, very short glitches might not be propagated through a real circuit
due to the inherent delays of the cells and basic laws and limitations of physics. Thirdly,
slight variations in the circuit’s timing – which always occur due to process variations [74],
[75] – might result in a timing in which the glitch does not even occur at all.
When the initialization pattern is applied for only a short amount of time, the de-

sired effect might not occur because there might not have been enough time to transfer
the needed charge. Furthermore, a slight variation in the timing might change the arrival
times of the transitions and the initialization pattern might not be applied to the cell at all.

To tackle these challenges, the previous glitch-based requirements are extended with
minimum duration requirements. These requirements ensure that a valid test pattern
generates the desired effect for at least a minimum amount of time. Although this is
no guarantee that process variations definitely will not invalidate the test pattern, the
probability of this to occur is much lower.

4.6.1. Initialization

The minimum duration condition for the initialization is encoded directly into the init
variable. This encoding covers both short glitch-initializations and short duration initial-
ization pattern applications. With regard to the latter it should be noted that this problem
only occurs in combination with the weak stability condition and init is, therefore, always
present. For the strong stability condition it is ensured that the faulty cell is initialized
in the first time frame and never discharged again by the switching activity. Hence, the
initialization pattern is definitely applied for a sufficiently long time.

In the original encoding, when init[t] was assigned to true, all of the input Tvars had
to have the initialization value. This definition is further extended by enforcing that the

84

4.7. Glitch- and Charge-Sharing Aware TSOF ATPG

inputs must have had the initialization value for the past δ time steps as well. Thus, the
encoding of init becomes:

tlast∧
t=tfirst

#inputs∧
i=0

init[t]⇒
t∧

t2=t−δ
(¬)Tvarsi[t2] (4.36)

4.6.2. Charge-Sharing Mitigation

Similar to the minimum duration condition for the initialization, the minimum duration
condition for the charge-sharing mitigation techniques is encoded by modifying the defini-
tion of the previously defined variables. The goal is to ensure that the conflicting line is
charged for at least µ time steps.

Switching Order

For the switching order mitigation technique, the variables switchMit are modified. In-
stead of only requiring that the necessary intermediate pattern (encoded by switchAct) is
active at the current time step, it has to be active for the last µ time steps. In addition,
init has to be true at the time step µ − 1, which is only the case if the signals had the
initialization value for the past δ time steps. Thus, switchMit is redefined as follows:

switchMit[tfirst] = · · · = switchMit[tfirst + µ] = false (4.37)
tlast∧

t=tfirst+µ+1

switchMit[t]⇒
(
switchMit[t− 1]∨(

init[t− µ− 1] ∧
t∧

t2=t−µ
switchAct[t2]

))
(4.38)

Glitch Charging

For the glitch charging mitigation technique, it has to be ensured that the glitch that
charges the conflicting line has a certain length. To this end, the definition of the variables
glitchAct is modified. Recall that glitchAct works similar to init but instead of requiring
the initialization pattern to become true, it enforces the input assignment that mitigates
the charge-sharing conflict. For this condition to hold, the definition is modified similar to
that of init. This ensures that the Tvars have the correct value for the last µ time steps.

4.7. Glitch- and Charge-Sharing Aware TSOF ATPG

In this chapter, a multitude of different techniques to solve the challenges that arise when
testing transistor stuck-open faults were introduced. All of these techniques are combined
into an ATPG flow that attempts to create a test pattern for every possible TSOF with as
little computational effort as possible. Section 4.7.1 introduces the basic structure of the
proposed efficient timing-aware ATPG. The subsequent Section 4.7.2 discusses the overall
ATPG flow used for the test pattern generation.

85

4. Testing Transistor Stuck-Open Faults

4.7.1. Timing-Aware ATPG

The timing-aware ATPG is based on the timing unaware ATPG that was presented at the
beginning of this chapter. However, unlike this basic ATPG all of the timing information
of the circuit needs to be encoded into the ATPG model to accurately reason about glitches
and charge-sharing and to encode all of the advanced techniques presented in the previous
sections. It would be possible to simply model the entire circuit with waveform accuracy
(as presented in Section 2.2.7). This would result in a very complex circuit model and very
large formulas.
On further analysis, it becomes apparent that timing information is not required for

most parts of the circuit. Only in the justification cone of the fault the timing information
is relevant. Only here the exact arrival time of a transition as well as glitches, can actually
have an influence on the testability of a fault. Once the faulty cell was initialized and
activated, the fault effect will definitely be propagated no matter what kind of glitches
occur in the propagation or support cone.
Therefore, the ATPG utilizes an efficient hybrid circuit encoding: The justification cone

of the cell is implemented with waveform accuracy, whereas all of the other parts of the
circuit are modeled conventionally. The resulting formula is much smaller in size but still
represents the exact same problem as it would have had the entire circuit been modeled
with timing-awareness.

Transferring Timing Information to the Mapped Circuit

To handle complex cells in the circuits, in the proposed TSOF ATPG all cells are replaced
by their logic gate definition. While this produces a mapped circuit with the same func-
tionality, the timing information would be lost. To preserve the timing information it has
to be transferred to the logic gates as well.
Figure 4.23 shows the transfer of the timing information of a multiplexer to its gate

definition. The arrows indicate the delay from the corresponding input to the output of
the cell or gate. If no arrow is shown, the delay is assumed to be 0. For each path from
the input to the output of the cell, the timing is transferred to the first gate on that path
in the gate definition. If multiple paths exist, the timing is added to all of them. After the
transfer, the mapped circuit behaves just like the original circuit.

a

b

s

o

4

3

2

x

a

b

s

o

4

4

3

2

Figure 4.23.: Transferring the timing of a complex cell to its logic gate definition.

86

4.7. Glitch- and Charge-Sharing Aware TSOF ATPG

Modeling a Pre-Charging Time Frame

One of the proposed charge-sharing resolution techniques utilizes a third time frame to
charge the conflicting line to the required value. This time frame is modeled by unrolling
the circuit one more time. Since the pre-charging pattern in the time frame T0 is created
to be valid even in the presence of glitches, it is sufficient to model this unrolled circuit
copy without timing information.
Figure 4.24 shows the two areas of the circuit that need to be modeled for the additional

pre-charging time frame. In addition to the justification cone, which is needed to ensure
that the fault is initialized, this is the support cone for the LOC type test.

Primary
inputs

Primary
outputs

Secondary
inputs

T0

Justification cone

Secondary input support cone

Figure 4.24.: Only the marked areas of the circuit are required when modeling an additional
pre-charging time frame.

4.7.2. ATPG Flow

The overall aim of the presented glitch and charge-sharing aware transistor stuck-open fault
ATPG is to compute a test pattern for a TSOF with as little effort as possible. Usually,
there are multiple different detection patterns for a fault each of which has its own set of
requirements of different difficulties and modeling cost. Since it is sufficient to find one
test pattern for a fault, the detection patterns are tried in ascending order of difficulty.
Figure 4.25 shows the overall ATPG flow.
Detection patterns without any charge-sharing conflicts can be modeled more easily

and are less complex to compute. These are considered first. If the detection pattern
does not have any stability requirements, it is handled by the timing-unaware ATPG
algorithm presented in Section 4.1 which is marked as node 1 in Figure 4.25. Otherwise,
the timing-aware ATPG first attempts to find a test pattern which satisfies the strong
stability condition (node 2). If there is no test pattern that satisfies the strong stability
condition, weak stability (node 3) and finally glitch-initialization are considered (node 4).
Secondly, detection patterns with a charge-sharing conflict that can be mitigated are

87

4. Testing Transistor Stuck-Open Faults

Circuit

Fault listFaults in
current
cell

Pick
target
cell

A test pattern for all
testable faults was generated
→ ATPG completed

Charge-sharing aware

T
im

in
g-
aw

ar
e

G
lit
ch
-in

it
ia
liz
at
io
n

Timing-
unaware ATPG

Timing-aware
ATPG, strong

stability

Timing-aware
ATPG, weak

stability

Timing-aware
ATPG, glitch-
initialization

Mitigate
charge-sharing
conflict, weak

stability

Mitigate
charge-sharing
conflict, glitch-
initialization

Pre-charging +
Timing-

unaware ATPG

Pre-charging +
Timing-aware
ATPG, strong

stability

Pre-charging +
Timing-aware
ATPG, weak

stability

Pre-charging +
Timing-aware
ATPG, glitch-
initialization

1

2

3

4

5

6

7

8

9

10

All analyzed

Figure 4.25.: Overview of the complete TSOF ATPG flow. The list of undetected faults in
the current cell is continuously updated to avoid the creation of multiple test
patterns for the same fault. The black arrows indicate the program flow, the
green arrows the flow of information.

88

4.8. Evaluation

considered. Again, the ATPG first attempts to create patterns with the weak stability
condition (node 5) and only considers glitch-initialization (node 6) when the previous
approach fails. Note that the glitch-mitigation techniques are based on the modeling of
the weak stability condition. Hence, the strong stability condition is not applicable in
combination with these techniques and is skipped. However, any pattern that satisfies
the strong stability condition also satisfies the weak stability condition. Thus, by only
considering the weak stability condition, all possible test patterns are found nonetheless.
Finally, detection patterns with a charge-sharing conflict that can be resolved through

a pre-charging time frame are considered. The ATPG flow is similar to that without any
charge-sharing conflicts but with an additional initial time frame (nodes 7 to 10).

In addition to attempting to find a test pattern for the easiest detection pattern first,
the ATPG also utilizes incremental solving. To this end, all of the faults in a cell are
considered. In each previously discussed ATPG step, the generated Boolean formula is re-
used for every detection pattern with the same requirements that could detect an, as of yet,
undetected fault in the cell. If a fault was detected by a previous step it is not considered
any further. Thus, for every cell the ATPG creates at most ten different Boolean formulas,
no matter how many different transistors (and, therefore, potential faults) the cell has.
The presented approach offers yet another benefit: By first considering detection patterns

without stability requirements and strong stability, the ATPG creates test patterns which
are more robust to process variations. Only afterwards the more complex, and potentially
more vulnerable, glitch-based methods are used. The overall aim of the presented approach
is to test as many TSOFs as possible. To this end, in addition to using modeling techniques
of different granularity, it even utilizes glitch-initialization or a pre-charging time frame to
test faults which would be considered to be untestable by a traditional ATPG approach.

4.8. Evaluation

This chapter introduced an advanced glitch and charge-sharing aware TSOF ATPG algo-
rithm that contains ten different modes to handle the different requirements of a detection
pattern while still creating a test pattern with as little computational effort as possible. In
this section, a thorough evaluation of the algorithm is performed.
Section 4.8.1 highlights the general performance of the ATPG. In the subsequent sec-

tions, the different aspects of the ATPG are analyzed in detail. Section 4.8.2 focuses on the
timing-awareness, Section 4.8.3 on glitch-initialization and Section 4.8.4 on charge-sharing.
Furthermore, in Section 4.8.5 minimum event durations are analyzed. In Section 4.8.6 the
importance of considering glitches and charge-sharing during the pattern generation is il-
lustrated. Finally, Section 4.8.7 shows the influence of the utilized D-chain implementation
on the solve speed.
All of the tables referenced in the evaluation are printed at the end of the chapter.

4.8.1. General ATPG Performance

Table 4.1 shows the overall results of the test pattern generation with a timeout of 10 s
for each mode. Furthermore, Table 4.2 gives a more detailed look at the achieved fault

89

4. Testing Transistor Stuck-Open Faults

coverage for the different modes of the TSOF ATPG which is summarized in Figure 4.26.
To increase the readability, some of the modes are combined and more detailed results are
given in the subsequent sections. The timing-aware modes with strong and weak stability
(nodes 2 and 3 in Figure 4.25) are combined into the “glitch-free” category. Furthermore,
all of the pre-charging techniques (nodes 7 to 10 in Figure 4.25) are combined into the “CS
pre-charged” category.

0

20

40

60

80

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

%
of

al
lF

au
lt
s

Timing-Unaware
Glitch-Free

Glitch-Initialized
CS Mitigated

CS Pre-Charged

Figure 4.26.: Achieved fault coverage with the different TSOF ATPG modes.

On average across all circuits, about 21.6% of faults can be tested by the timing-unaware
ATPG because of a detection pattern without stability requirements. In addition, 59.4%
of faults can be tested by ensuring glitch freedom by a carefully crafted pattern through
the timing-aware ATPG. The faults that are detected by the timing-unaware or normal
timing-aware ATPG are considered to be conventionally testable as they do not require
any advanced reasoning about glitches. This is because the initialization pattern and the
propagation pattern are applied to the faulty cell in the normal manner.
Nonetheless, it is unlikely that all of these faults would actually be successfully tested by

patterns generated by a timing-unaware ATPG algorithm because of glitch-invalidations.
This topic is discussed further in Section 4.8.6.
The remaining faults are considered to be conventionally untestable faults as they can-

not be tested by conventional test patterns. They might, however, be testable by actively
utilizing glitches. The presented ATPG algorithm supports multiple methods to generate
patterns for these faults which are beyond the reach of a conventional ATPG algorithm: By
using advanced methods which utilize glitches or the switching order of signals to initialize
the fault or to mitigate a charge-sharing conflict, another 2.3% and 0.5% (respectively)
of faults can be tested. Finally, by extending the test pattern into a third time frame to
pre-charge lines that cause a charge-sharing conflict, the fault coverage is increased by
another 1.1%.

90

4.8. Evaluation

In Figures 4.27 and 4.28 the average runtime per fault for the different modes is shown.
This time includes both the formula generation time as well as the solve time itself. For
the ITC’99, IWLS and NXP circuits the average runtime per fault is below 200ms. For the
AES circuits, on the other hand, the average runtime can be as high as almost 7 seconds
per fault. The differences of the AES circuits will be discussed further at the end of this
section.

0
20
40
60
80

100
120
140
160
180
200

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

A
ve
ra
ge

T
im

e
pe

r
Fa

ul
t
in

M
ill
is
ec
on

ds Timing-Unaware
Glitch-Free

Glitch-Initialized
CS Mitigated

CS Pre-Charged

Figure 4.27.: Average runtime per fault for the ITC’99, IWLS and NXP circuits with
the different TSOF ATPG modes.

Because of the much simpler formulas the average runtime of the timing-unaware ATPG
mode is much shorter than that of the timing-aware modes. Nonetheless, the presented
efficient hybrid circuit modeling still results in very fast computation times per fault given
that the ATPG considers glitches and advanced initialization properties. Overall, the
ATPG can quickly and successfully generate a test pattern even for the large industrial
circuits (NXP).

Across all circuits, the number of timeouts (shown in the last column in Table 4.1) is
very low. Thus, a test pattern can be computed for almost every fault. The algorithm did
not find a test pattern due to a timeout for at most 0.03% of faults.

The number of timeouts for the AES circuits is very low (two timeouts in total). Hence,
although they are difficult to solve, the AES circuits can still easily be handled by the
proposed algorithm.

91

4. Testing Transistor Stuck-Open Faults

0

1000

2000

3000

4000

5000

6000

7000

2-
2-
2-
8_

d

2-
2-
2-
8_

e

2-
4-
4-
4_

d

2-
4-
4-
4_

e

10
-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

A
ve
ra
ge

T
im

e
pe

r
Fa

ul
t
in

M
ill
is
ec
on

ds

Timing-Unaware
Glitch-Free

Glitch-Initialized
CS Mitigated

CS Pre-Charged

Figure 4.28.: Average runtime per fault for the AES circuits with the different TSOF
ATPG modes.

AES Circuits

The AES circuits were generated for [W2] as artificial benchmarks for research purposes.
The circuits are purely combinational and encode up to 10 rounds of a slightly reduced
version of the advanced encryption standard. Therefore, the combinational complexity and
path length is much higher than in the remaining benchmark and industrial circuits and the
justification, support and propagation cone will cover a much larger portion of the circuit
for most faults. Because of the high combinational complexity and many parallel paths
which do not diverge, the window of possible activity (the distance between tfirst and tlast)
at the faulty cell is much larger. Thus, encoding the stability requirements becomes much
more expensive and the formulas are harder to solve. Figure 4.29 shows the average and
maximum number of Tvars for each input with a stability requirement across all formulas
and faults.

Clearly, the average number of Tvars on these inputs is much higher for the AES cir-
cuits, often even surpassing the maximum number of Tvars of other circuits. The most
extreme case, 10-2-4-4_d, has about 507 Tvars that represent the signals with a stability
requirement on average. This is more than the maximum number of Tvars for any other
circuit class.

Because of the long paths without any flip-flops, the AES circuits might not represent
high speed industrial designs. Nonetheless, such designs can occur when the maximum
path length is not the limiting factor. The results show that even in such highly complex
circuits the presented ATPG algorithm still successfully computes test patterns for the
TSOFs.

92

4.8. Evaluation

0

200

400

600

800

1000

1200

1400
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
eN
um

be
r
of
T
v
a
rs

on
st
ab

le
in
pu

ts

Average Maximum

Figure 4.29.: Average and maximum number of Tvars for inputs with a stability require-
ment.

4.8.2. Timing-Aware ATPG

This section focuses on the coverage of faults with a stability requirement but without any
charge-sharing conflicts. The test pattern generation is performed by the steps marked
as nodes 2 and 3 in Figure 4.25. The fault coverage with the strong and weak stability
condition is shown in Figure 4.30.
For most circuits, the vast majority of faults with a stability requirement can be tested

by ensuring strong stability. Hence, there is a test pattern which does not generate any
glitches at the stable inputs at all. For the AES circuits, on the other hand, this does
not hold true: Here, many faults (on average 21.6%) can only be tested when the more
exact weak stability condition is utilized. For these faults there is no test pattern that
ensures total glitch freedom at the stable inputs. However, there is a test pattern which
still applies the initialization pattern after any dangerous glitches have subsided. For the
remaining circuits, only 0.2% of faults require the more exact modeling. This is, again,
due to the more complex structure of the AES circuits which facilitates glitches.

4.8.3. Glitch-Initialization

By utilizing glitches to initialize faults the fault coverage can be extended beyond that of a
traditional ATPG algorithm. Figure 4.31 shows the coverage of conventionally untestable
faults through glitch-initialization.
On average, about 15,6% of conventionally untestable faults can be tested by utilizing

glitch-initialization. Generally, the coverage of the ITC’99 and AES circuits is higher than
that of the remaining circuits. This is due to the larger window of activity at the faulty

93

4. Testing Transistor Stuck-Open Faults

0

10

20

30

40

50

60

70

80

90

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

%
of

Fa
ul
ts

w
it
h
St
ab

ili
ty

R
eq
ui
re
m
en
t

Strong Stability Weak Stability

Figure 4.30.: Coverage of faults with a stability requirement.

0

20

40

60

80

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

%
of

C
on

ve
nt
io
na

lly
U
nt
es
ta
bl
e
Fa

ul
ts Glitch-Initialized

Figure 4.31.: Coverage of conventionally untestable faults through glitch-initialization.

94

4.8. Evaluation

cell: As shown in Figure 4.29, for these circuits the average number of Tvars at the faulty
cell’s inputs is larger and, hence, more glitches can occur. Therefore, when utilizing the
presented advanced approach to testing TSOFs, glitches can actually be beneficial and
might turn otherwise untestable faults into testable ones.
Since it is possible to initialize the newly testable faults through a glitch, this initializa-

tion could also occur during the normal circuit application. Thus, simply considering them
as untestable – like a conventional ATPG algorithm does – would increase the DPPM if
the fault is not found by other means.

4.8.4. Charge-Sharing

In addition to avoiding dangerous glitches and utilizing beneficial ones for fault initializa-
tion, the presented TSOF ATPG algorithm also contains advanced means of mitigating
charge-sharing conflicts and considers a pre-charging time frame to resolve the conflict.
Figure 4.32 shows the coverage of conventionally untestable faults through the resolution
techniques.
Depending on the circuit, up to 10% of conventionally untestable faults can be tested

through one of the two mitigation techniques (shown in dark violet). As Figure 4.33 shows,
most of these faults become testable because the test pattern ensures a certain switching
order, while the remaining 14.7% utilize a glitch.
Furthermore, Figure 4.32 shows that up to 16% of conventionally untestable faults can

be tested by adding a pre-charging time frame (shown in pink).

0

2

4

6

8

10

12

14

16

18

20

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

%
of

C
on

ve
nt
io
na

lly
U
nt
es
ta
bl
e
Fa

ul
ts CS Mitigated CS Pre-Charged

Figure 4.32.: Coverage of conventionally untestable faults by resolving the charge-sharing
conflict.

Unlike dangerous glitches which have a high probability of invalidating a test by hiding
the fault effect, a charge-sharing conflict might actually be unproblematic. This is espe-

95

4. Testing Transistor Stuck-Open Faults

85.28%

14.72%

Switching Order

Glitch

Figure 4.33.: Average portion of charge-sharing sensitive faults that can be tested
because of the switching order or by glitches.

cially the case if the floating charge is stored by the output line. Since the output usually
has a higher capacitance than any of the internal lines, sharing the charge between an
internal line and the output will most likely have only a small effect on the floating charge.
While it is definitely beneficial to generate test patterns with charge-sharing awareness

that are guaranteed to avoid any such conflict, one should also attempt to test the faults for
which the conflict cannot be avoided. Figure 4.34 shows the overall fault coverage that is
obtained by first utilizing the presented ATPG algorithm and then creating test patterns for
all the previously untestable faults without considering charge-sharing. Overall, the fault
coverage is increased by only about 0.7%. on average. Therefore, for the vast majority
of faults the charge-sharing conflict can be avoided by first utilizing the presented charge-
sharing aware ATPG which guarantees a high quality of the generated patterns.

0

20

40

60

80

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

%
of

al
lF

au
lt
s

CS-Aware Fault Coverage Ignore CS

Figure 4.34.: Additional fault coverage when ignoring all charge-sharing conflicts.

96

4.8. Evaluation

4.8.5. Minimum Event Durations

So far, all of the generated test patterns were created without any minimum event duration
requirements. The presented ATPG algorithm contains the parameters δ and µ to define
the minimum fault initialization and charge-sharing mitigation length. By increasing the
minimum event duration requirements, the generated test patterns will become more robust
against slight changes in timing due to process variations. Figure 4.35 shows the effect of
different minimum event durations on the overall fault coverage. For these experiments δ
and µ are set to the same value.

0

20

40

60

80

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

%
of

al
lF

au
lt
s

≥ 800 ps
≥ 400 ps

≥ 200 ps
≥ 100 ps

No Restrictions

Figure 4.35.: Achieved fault coverage when enforcing different minimum event duration
requirements.

As expected, a more robust pattern could not be generated for all of the detectable
faults. Nonetheless, even for very long requirements, many faults still remain testable.
In practice, a minimum duration requirement that is longer than the delay of the cell in
question is probably not necessary. In the considered circuits, most cells have a delay of
below 400 ps. With a minimum duration requirement of 400 ps the fault coverage is reduced
by only 6.8%. on average. The AES circuits are affected more strongly than the remaining
circuits due to their higher combinational complexity which results in more glitches.
Similar to the charge-sharing requirements, it might be beneficial to first generate test

patterns with a fitting minimum duration length requirement. In a second step, test
patterns without any duration requirements for the remaining faults can be generated.
While these test patterns are less robust, they might still successfully detect the fault.
Furthermore, these patterns still outperform conventional patterns that were generated
without glitch-awareness.

97

4. Testing Transistor Stuck-Open Faults

4.8.6. The Importance Of Considering Glitches and Charge-Sharing

One of the main innovations of the presented ATPG algorithm lies with its glitch-awareness.
To evaluate the importance of considering glitches and charge-sharing during the test
pattern generation the following experiment is performed: For each fault with a stability
requirement ten different test patterns are generated through the timing-unaware ATPG
without considering charge-sharing. These patterns might, therefore, result in malicious
glitches or fail to charge all of the cell internal lines to the necessary value. In the next
step, the generated patterns are tested for the occurrence of glitch-invalidations or charge-
sharing conflicts.

Valid (74.29%)

Charge-Sharing Conflict (0.65%)

Both (1.41%)

Invalidated by Glitch (23.65%)

Figure 4.36.: Share of test patterns, generated without timing-awareness, that have a
charge-sharing conflict or are invalidated by a glitch.

Figure 4.36 shows the share of patterns that were valid as well as the share of patterns
that were invalidated by a charge-sharing conflict, by a glitch, or by both. For only about
74.3% of the generated patterns it is ensured that the fault is definitely found. Of the
remaining patterns, the 25.1% that are potentially invalidated by a glitch are especially
hazardous. While a charge-sharing conflict might not be a problem in a real circuit, a
glitch-invalidation will most likely mask the fault effect. Thus, the real fault coverage is
significantly reduced and the number of defective shipped parts significantly increased.

4.8.7. D-Chains in the TSOF ATPG

The previous chapter introduced and evaluated different D-chain variants in the scope
of a SAT-based stuck-at ATPG. The lower complexity of the fault model allowed for a
thorough evaluation of a large amount of different D-chains across all of the circuits. Since
the presented TSOF ATPG is also SAT-based, the hybrid D-chain with the dynamic node
selection heuristic was used to speedup the solve time. This D-chain was selected because
it provided the fastest overall solve speed improvement in the stuck-at ATPG.
This section furthermore analyzes the solve time of the TSOF ATPG without any D-

chains and with the backward D-chain. Due to the higher complexity and overall run
times, the experiments are restricted to these two D-chains which had the highest gains

98

4.9. Summary

on the stuck-at ATPG. Figure 4.37 shows the change in solve time for the two different
D-chains in comparison to utilizing no D-chain at all.

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k
2-
2-
2-
8_

d
2-
2-
2-
8_

e
2-
4-
4-
4_

d
2-
4-
4-
4_

e
10

-2
-2
-4
_
d

10
-2
-2
-4
_
e

10
-2
-4
-4
_
d

10
-2
-4
-4
_
e

C
ha

ng
e
of

So
lv
e
T
im

e
in

%

Backward D-Chain Hybrid Dynamic D-Chain

Figure 4.37.: Change in solve time when using the backward or the hybrid dynamic
D-chain in comparison to using no D-chain.

The speedup of the D-chains is generally similar to that obtained in the stuck-at ATPG.
Again, the hybrid D-chain with the dynamic node selection heuristic slightly outperforms
the backward D-chain. On average across all circuits, the hybrid D-chain reduces the solve
time by about 42%.
For the AES circuits, the gains of the different D-chains are minimal. This can be

explained with the much higher combinational complexity, again. The difficulty of the
TSOF ATPG for these circuits lies not with the propagation of the fault but instead with
the stability requirements and successful fault initialization.
Nonetheless, the overall results clearly show that considering D-chains is of great impor-

tance when creating an efficient SAT-based ATPG algorithm. The additional information
appears to be vital no matter what fault model is used. This is not surprising as the
propagation of the fault effect is the same no matter how the fault itself is defined.

4.9. Summary

This chapter presented and evaluated a SAT-based, glitch and charge-sharing aware tran-
sistor stuck-open ATPG algorithm. Conventionally, tests for TSOFs have been difficult
to generate because of the possibility of glitch-invalidations and charge-sharing conflicts.
The presented algorithm not only allows for the generation of glitch and charge-sharing
aware test patterns but also utilizes glitches and the circuit’s timing to increase the fault
coverage beyond that possible with a traditional ATPG.

99

4. Testing Transistor Stuck-Open Faults

The key points of the chapter are the following:

• When testing TSOFs glitch-invalidations and charge-sharing conflicts have to be
taken into account to ensure a successful test. These problems do not occur in the
more basic stuck-at and transition-delay fault models (because they are defined at
the circuit level) but are relevant for advanced fault models which take cell-internal
effects into account.

• Considering glitches during the test pattern generation is of high importance as many
(in the conducted experiments over 25% on average) patterns that are generated
without glitch-awareness are invalidated.

• The presented approach reliably and deterministically generates test patterns for the
TSOFs. By utilizing a SAT-based hybrid modeling, incremental solving as well as by
ordering the different ATPG modes in ascending order of difficulty, the approach is
scalable even to large industrial circuits and highly complex combinational circuits.

• By accurately considering the arrival time of signals as well as glitches, the fault
coverage can be extended beyond that of traditional ATPG algorithms.

• By requiring minimum event durations for glitches and the length of the fault ini-
tialization, the robustness against process variations can be increased. Such a more
robust test pattern can be generated for almost all of the detectable faults.

This chapter not only presented a novel and highly effective ATPG algorithm but also
highlighted the versatility and power of SAT-based modeling in general. The created model
can easily be extended to incorporate additional requirements or can even be transformed
to completely different fault models. This is especially important as many other advanced
fault models (e.g., cell-aware test) might also be susceptible to glitch-invalidations or similar
effects. In addition to analyzing different advanced fault models, the presented algorithm
itself could be further improved with the addition of a fault simulator. This simulator
would have to be timing-aware by itself to accurately model glitches and to consider charge-
sharing conflicts.
Overall, the presented results show the importance of considering complex effects like

glitch-invalidations and charge-sharing conflicts when utilizing advanced fault models. At
the same time, they also highlight how the circuit’s timing characteristics can be used to
further increase the overall fault coverage through glitch-initializations and similar effects.

100

4.9. Summary

Table 4.1.: Results of the test pattern generation by the TSOF ATPG with a timeout of
10 s per fault.

Circuit #Faults Runtime (s) Memory (MB) FC (%) #Not Detected
due to Timeout

IT
C
’9
9

b15 23 374 1 894.04 97.9 81.12 0 (0.00%)
b17 77 984 5 502.68 183.2 79.82 0 (0.00%)
b18 228 636 27 651.19 409.3 78.81 29 (0.01%)
b20 37 970 2 383.86 115.9 89.36 0 (0.00%)
b21 38 182 2 323.95 114.7 88.51 0 (0.00%)
b22 53 612 2 979.41 128.7 88.19 0 (0.00%)

IW
LS

aes_core 71 060 2 838.20 144.4 98.89 0 (0.00%)
pci_bridge32 58 514 267.06 168.5 70.97 0 (0.00%)
vga_lcd 315 264 6 232.50 815.7 68.62 0 (0.00%)
wb_conmax 108 444 629.55 228.2 95.68 0 (0.00%)

N
X
P

p35k 74 230 14 258.72 212.7 83.54 4 (0.01%)
p45k 78 838 609.09 186.1 82.32 0 (0.00%)
p78k 209 950 1 311.30 330.2 96.85 0 (0.00%)
p81k 258 576 8 562.81 458.5 86.34 0 (0.00%)
p89k 170 922 3 177.08 365.1 85.08 0 (0.00%)
p100k 182 354 3 318.53 440.4 82.95 2 (0.00%)
p267k 377 210 12 045.10 769.7 80.45 2 (0.00%)
p295k 432 420 13 926.36 912.5 74.60 0 (0.00%)
p330k 395 182 23 843.88 799.3 83.57 114 (0.03%)
p378k 1 088 518 18 674.85 1 503.7 94.92 0 (0.00%)
p388k 843 628 45 153.60 1 527.4 78.30 10 (0.00%)
p533k 1 339 698 63 130.71 2 313.2 83.10 6 (0.00%)

A
E
S

2-2-2-8_d 33 996 122 026.46 165.0 81.13 2 (0.01%)
2-2-2-8_e 30 588 8 448.61 92.0 99.67 0 (0.00%)
2-4-4-4_d 15 174 22 552.60 55.8 93.07 0 (0.00%)
2-4-4-4_e 12 390 160.70 50.6 100.00 0 (0.00%)
10-2-2-4_d 12 768 49 818.25 163.4 80.78 0 (0.00%)
10-2-2-4_e 13 144 20 785.92 51.9 96.02 0 (0.00%)
10-2-4-4_d 23 228 161 871.10 190.3 60.43 0 (0.00%)
10-2-4-4_e 24 236 81 064.15 88.4 80.41 0 (0.00%)

101

4. Testing Transistor Stuck-Open Faults

Table 4.2.: Fault coverage for the different modes of the TSOF ATPG.

Fault Coverage (%)
Circuit Timing-

Unaware
Glitch-

Free
Glitch-

Initialized
CS Miti-

gated
CS Pre-
Charged

IT
C
’9
9

b15 19.61 55.81 4.53 0.32 0.84
b17 19.34 54.10 4.78 0.24 1.35
b18 20.86 52.31 4.11 0.17 1.37
b20 22.34 59.29 6.44 0.13 1.16
b21 22.29 59.22 6.17 0.24 0.58
b22 21.26 59.60 6.28 0.14 0.91
Average 20.95 56.72 5.39 0.21 1.03

IW
LS

aes_core 27.02 71.79 0.04 0.01 0.03
pci_bridge32 17.36 45.38 2.27 0.02 5.93
vga_lcd 15.90 50.04 2.00 0.02 0.66
wb_conmax 19.51 75.21 0.79 0.05 0.13
Average 19.95 60.60 1.28 0.02 1.69

N
X
P

p35k 18.65 64.37 0.29 0.10 0.12
p45k 19.57 61.28 0.41 0.04 1.01
p78k 16.60 79.68 0.04 0.00 0.52
p81k 30.98 53.59 0.01 0.01 1.74
p89k 21.05 61.49 1.38 0.08 1.07
p100k 21.35 59.04 0.71 0.04 1.82
p267k 17.52 60.62 1.08 0.02 1.21
p295k 16.02 55.35 2.06 0.06 1.11
p330k 21.89 60.66 0.35 0.10 0.56
p378k 16.67 77.99 0.00 0.00 0.27
p388k 20.42 55.91 1.23 0.04 0.70
p533k 20.12 61.69 0.45 0.10 0.73
Average 20.07 62.64 0.67 0.05 0.90

A
E
S

2-2-2-8_d 30.39 45.29 2.99 2.02 0.44
2-2-2-8_e 27.72 71.67 0.18 0.00 0.10
2-4-4-4_d 19.41 69.77 2.80 0.12 0.97
2-4-4-4_e 23.53 76.46 0.01 0.00 0.00
10-2-2-4_d 24.74 44.12 6.10 3.33 2.49
10-2-2-4_e 27.17 64.81 2.78 0.86 0.41
10-2-4-4_d 23.36 26.46 4.44 3.39 2.78
10-2-4-4_e 26.49 48.41 4.07 0.63 0.81
Average 25.35 55.87 2.92 1.29 1.00

102

103

5. #SAT-Solving

So far, this thesis has focused on improving the speed of the SAT-based test pattern gen-
eration through advanced modeling techniques and has looked into novel ways of solving
the challenges that arise when generating test patterns for advanced fault models. The
last two chapters of this work shift from advanced SAT-based modeling techniques for test
pattern generation towards advanced techniques for circuit test in general. To this end,
#SAT-solving is applied to circuit testing. This chapter introduces the distributed parallel
#SAT solver dCountAntom while the subsequent Chapter 6 discusses the application of
#SAT to the realm of circuit test.

As the name suggest, #SAT is tightly related to the SAT problem. In fact, a #SAT
solver can be used as a SAT solver, and with slight modifications a SAT solver can work as
a #SAT solver – albeit with sub-optimal performance. Therefore, much of the knowledge
and experience from SAT-based ATPG can be transferred to #SAT applications.

In the author’s master thesis, the thread-parallel #SAT solver countAntom was de-
veloped and presented. This chapter introduces the subsequent improvements that were
added after the master thesis. They transform countAntom into the distributed parallel
solver dCountAntom. Furthermore, both countAntom and dCountAntom were extended with
a solve progress estimation that allows the user of the solver to gauge whether the current
formula is solvable in the required time frame. This is a clear improvement over the classic
timeout mechanism used by other solvers.

This chapter is structured as follows: In Section 5.1 an overview of the features of
countAntom and of the general improvements used by state-of-the-art #SAT solvers is
given. Thereafter, Section 5.2 introduces the distributed #SAT solver dCountAntom and
the newly developed functions for the inter-process communication and synchronization.
Section 5.3 presents the novel solve progress estimation and remaining solve time pre-
diction. In Section 5.4 a thorough evaluation of dCountAntom and the newly introduced
features is performed. Section 5.5 concludes the chapter with a summary.

104

This chapter is partially based on:

[C4] J. Burchard, T. Schubert, and B. Becker, “Laissez-faire caching for parallel #SAT
solving”, in SAT 2015, ser. Lecture Notes in Computer Science, Springer International
Publishing, 2015. doi: 10.1007/978-3-319-24318-4_5

[C5] J. Burchard, T. Schubert, and B. Becker, “Distributed parallel #SAT solving”, in
IEEE International Conference on Cluster Computing (CLUSTER), 2016. doi: 10.
1109/CLUSTER.2016.20

The main contributions by the author to this chapter are:

• The development of the distributed parallel #SAT solver dCountAntom.

• The development of a fast and efficient communication framework based on message
passing.

• The development of different heuristics to decide when information is shared between
different processes.

• The development of a solve progress estimation.

• The development of a total solve time prediction and a soft timeout mechanism based
on this prediction for both countAntom and dCountAntom.

• The thorough analysis of the developed solver across a wide range of benchmark
formulas.

The implementations are built on top of the #SAT solver countAntom [C4] which by
itself is based on the SAT solver antom [13], [14].

105

http://dx.doi.org/10.1007/978-3-319-24318-4_5
http://dx.doi.org/10.1109/CLUSTER.2016.20
http://dx.doi.org/10.1109/CLUSTER.2016.20

5. #SAT-Solving

5.1. countAntom

The #SAT solver countAntom is a thread-parallel (shared memory-based) #SAT solver.
The parallelism of countAntom (and dCountAntom) is based on multiple solver threads
or processes working on different nodes of the decision tree. The term node refers to a
node in the decision tree which is annotated with its residual formula. In each node, a
single decision variable is chosen. The assignment of this variable to true and false gives
two new residual formulas and therefore two new nodes in the decision tree. These nodes
are the children of the current node. Conversely, the current node is the parent of the
newly generated nodes. Each node can also be considered to be a sub-problem of the
overall model counting problem. For this reason, the terms node and sub-problem are
used interchangeably in this chapter.
The general structure of countAntom follows that of a CDCL SAT solver as discussed

in Chapter 2. At the beginning of the solve process, the formula is loaded and the root
node of the decision tree is created and stored in a node manager. Next, the requested
number of parallel threads is created and launched. At the core of every thread is a solve
loop which, in each iteration, performs the required computations for a single node of the
decision tree. The nodes are distributed among the threads by the node manager which
also handles the synchronization. The solve loop is repeated until all nodes of the decision
tree have been evaluated. Figure 5.1 shows the operations that are performed within the
solve loop. These operations will be explained in detail in the subsequent sections.
While each thread performs its own computations on different nodes of the decision tree,

the node manager is shared. The communication between the threads relies on a shared-
memory concept where all of the threads can access the same memory, and is implemented
using the boost threading library [76].
This section introduces the relevant features of countAntom that dCountAntom is based

upon. For a full description of the original implementation the reader is referred to [C4].
Being based on the SAT solver antom, countAntom inherits many of the features of

a modern SAT solver that were discussed in Chapter 2. These include conflict learning
(lines 15 and 22) as well as a fast computation of the implications of the current assignment
(lines 14 and 21). In addition, countAntom also contains #SAT specific improvements like
sub-formula splitting (lines 17 and 24) and formula caching (lines 3, 8 and 11). Finally,
to enable a parallel computation the general formula caching technique is extended into
laissez-faire caching and an efficient thread synchronization is added.

Each of the #SAT specific improvements is discussed in the subsequent sections.

5.1.1. Sub-Formula Splitting

After the current decision variable was assigned and the implications of that assignment
have been computed, it might be possible to divide the clauses of the residual formula
into multiple sub-formulas which do not share any variables. The model count for each of
these sub-formulas can then be computed separately and has to be multiplied to get the
complete model count of the original node.
The new sub-formulas are considered to represent separate sibling nodes in the decision

tree. Each new sibling node is added to the node manager. Hence, the siblings might
be computed by different threads. Once the model count of the last sibling node was

106

5.1. countAntom

1 n = NodeManager.getNextNode()
2 if Cache.contains(n) then
3 mc(n) = Cache.getModelCount(n)
4 else
5 moveToNodeInDecisionTree(n)
6 if n is SAT then
7 mc(n) = 2#free variables

8 Cache.addValue(n, mc(n))
9 else if n is UNSAT then

10 mc(n) =0
11 Cache.nodeIsUNSAT(n)
12 else
13 v = decide()
14 if assignAndComputeImplications(v, true) has CONFLICT then
15 doConflictLearning(n)
16 else
17 (pNode1, . . . , pNodei) = split()
18 NodeManager.addNodes(pNode1, . . . , pNodei)
19 end
20

21 if assignAndComputeImplications(v, false) has CONFLICT then
22 doConflictLearning(n)
23 else
24 (nNode1, . . . , nNodej) = split()
25 NodeManager.addNodes(nNode1, . . . , nNodej)
26 end
27 end
28 end

Figure 5.1.: The solve loop of countAntom.

computed, the overall model count of the original residual formula can be calculated by
multiplying the model counts of all of the siblings.
As an example for sub-formula splitting, consider the formula

Φ =(v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) (5.1)

and the variable assignment π = {v1 → false} which gives the residual formula

Φ|π =(v2 ∨ v3) ∧ (v4 ∨ v5). (5.2)

The clauses (v2 ∨ v3) and (v4 ∨ v5) do not share any variables and Φ|π can, thus, be split
into two sub-formulas:

Φ1 =(v2 ∨ v3) (5.3)
Φ2 =(v4 ∨ v5) (5.4)

Since mc(Φ1) = 3 and mc(Φ2) = 3, the overall model count of Φ|π is 3 · 3 = 9.

107

5. #SAT-Solving

When a formula with n remaining variables can be split into i sub-formulas with
n1, n2, . . . , ni variables, the computational complexity is reduced from O(2n) to O(2n1) +
O(2n2) + · · ·+O(2ni), which is always an improvement.

Furthermore, if even just a single one of the sub-formulas is unsatisfiable, the compu-
tation of the remaining sub-formulas can be aborted as the overall model count will be 0
anyway.

5.1.2. Formula Caching

During the solve process, many nodes in the decision tree might have the same residual
formula. Instead of repeating the same computations for the same residual formula over
and over again, a cache is utilized to store the model count of any node that has already
been solved. If the exact same residual formula is encountered again, the result from the
cache is used. This saves valuable computation time. For an efficient cache lookup, a
hashing scheme is implemented to quickly compare nodes.

5.1.3. Laissez-Faire Caching

When combining formula splitting, caching and conflict learning, a problem arises [77]: To
allow for an efficient utilization of the cache, conflict clauses are ignored when comparing
the residual formulas.1 Hence, even though the compared residual formulas might match,
the residual conflict clauses might not.
Normally this would not cause a problem. Although conflict clauses restrict the solver’s

movements in the decision tree, they only crop unsatisfied areas and the number of satis-
fying solutions of a node should not be affected. However, when one of the sibling nodes of
the current node is unsatisfiable this assumption is not valid any longer because the entire
branch is unsatisfiable already. As was observed earlier, when a sibling of the current node
is unsatisfiable, its model count becomes irrelevant. Therefore, even though the current
node might be satisfiable, a conflict clause could still restrict some of the satisfying assign-
ments and the node’s model count might be incorrect. This is not a problem for the node
itself – its model count will be multiplied with 0 anyway – but could yield an incorrect
overall result if the node’s model count is stored in the cache and the value in the cache is
used for another node.
To resolve the conflict that arises from the combination of the three very important

#SAT performance improvements, [77] simply removed the cached model counts of every
node with an unsatisfiable sibling from the cache again. Since, in sequential #SAT solvers,
the decision tree is traversed depth-first and in-order, this is a valid solution. It is, however,
not applicable to a parallel solver where different threads might be working in completely
different parts of the decision tree.
Laissez-faire caching solves this problem by storing a dependency every time a value from

the cache is used. The cache itself can be utilized by all threads without any restrictions.
Should a cached result be potentially incorrect, all nodes which depended on this result are
informed and re-computed. In practice very few such invalidations occur on most formulas

1If conflict clauses would be considered for clause caching, the cache-hit rate would be drastically reduced
since the solver constantly learns new conflict clauses and the residual formulas would, therefore, match
less often.

108

5.2. dCountAntom

and laissez-faire caching allows for a quick and efficient cache utilization by all parallel
threads.

5.1.4. Thread Synchronization

When working with multiple threads, synchronization and data integrity are always a
challenge. In countAntom, locks and mutexes – which ensure that only one thread can
access a shared data structure at the same time – are used where necessary but as sparingly
as possible to keep the overhead low. In addition to the cache, the different solver threads
also share all conflict clauses to ensure that each thread always has access to the maximum
amount of information. In comparison to a SAT solver, a #SAT solver derives fewer conflict
clauses in the same time span because the advanced reasoning for sub-formula splitting
and caching requires additional time. Therefore, it is possible to share all of the conflict
clauses among the threads.
The initial formula loading is performed by a single thread that spawns additional threads

which perform the calculations of the solve loop. Once there are no more nodes in the node
manager, the threads are stopped and the initial thread returns the final model count that
is stored in the root node of the decision tree.

5.2. dCountAntom

While countAntom successfully leverages the power of modern multi-core CPUs to increase
the solve speed, it is limited by the number of cores that are available on a single ma-
chine since it relies on a shared memory communication approach. With dCountAntom,
this restriction is removed by adding a message passing layer on top of the multi-threaded
computations performed by countAntom. The resulting solver utilizes two different levels
of parallelism: thread level parallelism based on shared-memory communication and dis-
tributed parallelism with message passing. By using shared memory communication for
local CPU cores, the amount of messages that need to be transported is reduced and the
performance is increased.
Figure 5.2 shows an overview of the general structure of dCountAntom. The solver is

organized as a star network with a single process acting as the master that controls the
computation. Each process can be seen as an instance of countAntom that is modified to
communicate with other processes and to only compute the model count for smaller sub-
problems instead of the entire formula. The processes communicate by passing messages
with the MPI framework [78]. This framework provides a high level view of the different
processes and the communication infrastructure. Through MPI, messages can be trans-
mitted over a multitude of different interfaces, including shared memory, Ethernet and
InfiniBand. This is, however, completely transparent to dCountAntom which only needs to
consider a simple send-and-receive interface.

5.2.1. Solve Flow

An overview of the overall solve flow of dCountAntom is shown in Figure 5.3.
The solve process of a Boolean formula Φ starts with the MPI agent spawning the

requested number of parallel solve processes. From these processes, one is selected as the

109

5. #SAT-Solving

Master process

So
lv
e
th
re
ad

M
an

ag
em

en
t

MPI handler

Slave process 1

So
lv
e
th
re
ad

So
lv
e
th
re
ad

. . .

MPI handler

Slave process 2

So
lv
e
th
re
ad

So
lv
e
th
re
ad

. . .

MPI handler

Slave process n

So
lv
e
th
re
ad

So
lv
e
th
re
ad

. . .

MPI handler

. . .

Figure 5.2.: The dCountAntom solver structure forms a star network.

master. All other processes are considered to be slaves. The master process then loads
the formula Φ, performs some common preprocessing steps to simplify Φ and transmits
the simplified formula to the slave processes. Next, the master splits the initial problem
into multiple sub-problems by performing a certain number of decision steps. The sub-
problems are then shared with the slave processes which solve them and return their model
count. Since every slave process knows the entire formula the master only transmits the
indices of the clauses in the sub-problem instead of the entire sub-formula. This greatly
increases the efficiency of the communication. When new conflict clauses are found by the
slave processes they are shared with the master which, in turn, shares them with all other
slaves.
Once every sub-problem has been solved by the slaves, the master process computes the

overall model count of Φ and returns it.
This basic approach is also utilized by some parallel SAT solvers (e.g., [79]). Here, of

course, the slave processes do not return the model count of a sub-problem but only if it
is satisfiable or not.

5.2.2. The Master Process

During the solve process the main task of the master process is the coordination of the slave
processes to ensure an efficient computation. This section highlights the most important
challenges of the master process, outlines how they are overcome and which adjustments
can be made to optimize the computation. The master process itself is actually a fully

110

5.2. dCountAntom

MPI agent

Master processSlave process i

Node managerSolve loop

Node 1

Node 2
. . .

Node n

Initial
formula

Φ

Simplified
formula ΦsSimplified

formula Φs

Model
count
mc(Φ)

MPI

Spawn
Sp
aw
n

Lo
ad

CreateShare

Split into
problems

Share node

Model count

Conflict clauses

Model count

Time

Figure 5.3.: dCountAntom solve flow. For simplicity only a single slave process is drawn.

111

5. #SAT-Solving

functional single-threaded instance of countAntom, but is highly modified to provide the
required functionality. Most importantly, instead of evaluating the decision tree all the way
to a leaf, after a certain number of decisions it shares the nodes of its tree as sub-problems.

Creating the Sub-Problems

The first challenge lies with the splitting of the original problem into multiple smaller
sub-problems which can then be transmitted to the slave processes. If the master creates
too many, very easy to solve sub-problems, the communication overhead slows down the
solver. On the other hand, if too few problems are generated, the workload might not be
balanced equally among the individual slaves.
To allow for the optimization to certain problems, a user selectable variable, target,

is introduced which describes the number of sub-problems that are to be generated by
the master process. From target, the master computes the number of decisions that are
performed before a node is shared with a slave process as dlog2 targete. In addition to
target the sharing of sub-problems is controlled by one more parameter, ν. A sub-problem
is only shared when the corresponding formula contains at least ν variables.
Thus, while the parameter target controls the number of shared sub-problems, ν ensures

that very simple problems are not shared at all. These problems are instead solved by the
master process itself.

Load Balancing

The sub-problems that are generated by the master process often have very different dif-
ficulties. In the described parallel environment this becomes a problem as – in the worst
case – a single slave process could spend a large amount of time solving a particularly hard
node while the remainder of the problems have already been solved. In this case all other
slaves are idle and the computation is not parallel anymore. To resolve this load balancing
challenge a timeout mechanism is added: If a slave process cannot solve a problem within
a user defined timeout (set to 5 seconds in the experiments), the node is returned to the
master process. The master then performs at least 5 additional decisions which creates
about 25 new nodes before the node’s children are shared again. Due to caching and sub-
formula splitting the actual number of new nodes that are generated by the master process
varies.
Through this load balancing mechanism, difficult sub-problems are quickly split into

smaller ones that can be handled by multiple slave processes again. This avoids a single
process being stuck at a difficult problem for a very long time. The selection of the timeout
has a large influence on the solve time. If the timeout is too low, many relatively simple
sub-problems are unnecessarily split. When it is too large, the load balancing is limited.

Conflict Clauses

Learning from arising conflicts is one of the main pillars of fast modern SAT solvers. For
a #SAT solver, cropping areas of the decision tree which are definitely unsatisfiable is of
even higher importance since the solver will always traverse the entire decision tree. Thus,
sharing the conflict clauses between the slave processes is a requirement for an efficient

112

5.2. dCountAntom

parallel #SAT solver. This sharing does not pose a problem in a shared memory archi-
tecture like that used by countAntom because it has very fast access and transfer times.
However, it becomes more difficult when using relatively slow communication channels to
transmit messages. Therefore, dCountAntom only shares conflict clauses up to a certain
length. Since the amount of information that a conflict clause contains is inversely pro-
portional to its length, this approach ensures that the most important knowledge is shared
without creating too much overhead.
To avoid a large amount of point-to-point communication among the slaves, conflict

clauses are first shared with the master process which collects the new conflict clauses of
all slaves and distributes them in regular intervals.

5.2.3. The Slave Processes

The slave processes of dCountAntom are very similar to the countAntom solver. But instead
of solving the entire formula Φ, the slave process only solves the currently assigned node
and either returns its model count or cancels the computation if a timeout occurs. For an
efficient computation it is very important that the slave processes are never idle. Therefore,
each slave buffers a number of additional nodes, which should be computed after the current
node, on a local queue. This ensures that the slaves are always occupied and do not have to
wait for a new task from the master after the current sub-problem was solved. At the same
time, the slave nodes should not store too many nodes since it would negatively impact
the load balancing towards the end of the solve process. In addition, the sub-problems are
generated on-the-fly by the master (only when a slave process has requested a new node)
to incorporate all the knowledge of the conflict clauses during the node generation. Thus,
it is beneficial to generate a new node as late as possible.
The generation of a new sub-problem by the master is triggered by the slave through

a node request. Whenever the number of nodes on a slave’s local sub-problem buffer is
below a threshold, a new node is requested from the master.

Furthermore, the slave processes utilize sub-formula caching in combination with laissez-
faire caching. Unlike conflict clauses, the cache information is not shared between the slaves
for two reasons: Firstly, the amount of information stored in the cache cannot be transmit-
ted through MPI without greatly reducing the overall solver performance. Secondly, the
value of information in the cache seems to diminish quickly as the solver progresses further
through the decision tree [77]. Thus, it can be assumed that the cached information of one
slave process is not even helpful for another slave process that is working at a completely
different position in the decision tree.

5.2.4. MPI Communication

At the heart of dCountAntom lies the inter-process communication through the MPI frame-
work. This is performed by an MPI handler in each solve process. The handler is respon-
sible for crafting and sending as well as receiving and decoding the different messages.
In total, only eight different messages are required for the communication between the

master and the slaves. In MPI there are two different classes of messages: Broadcasts are
transmitted to all other processes. Unicasts are used for point-to-point communication. A

113

5. #SAT-Solving

unicast message can be transmitted and received in the background, whereas a broadcast
can only be transmitted once all processes are waiting to receive it. Since the slave processes
are not synchronized and act independently, dCountAntom generally utilizes nonblocking
unicast communication to avoid blocking the slaves while waiting for broadcasts. The
following list summarizes the different messages that are being transmitted:

• Initial formula: The master transmits the initial formula to all of the slaves as a
broadcast. Since the slaves have not started the computation yet, the synchronization
is not a problem here. This is the only broadcast during the whole solving process.

• Node request: A slave requests a new sub-problem from the master. Every node
request will at some point be answered by the master – either with a sub-problem
or by signaling that the entire formula was solved. Note that the slave process can
continue to work on the next node from its local queue already while waiting for a
response from the master.

• Node: The master transmits a new sub-problem to a slave. To reduce the message
size, the master does not transmit the actual sub-formula that corresponds to the
sub-problem. Instead, it sends the indices of the clauses in the original formula that
are still present in the sub-formula in combination with the remaining unassigned
variables.

• Conflict clause: A single conflict clause or multiple conflict clauses that are grouped
together to reduce the number of messages.

• Model count: A slave process returns the model count of the current sub-problem
to the master.

• Timeout: A slave process informs the master that it could not solve the assigned
sub-problem within the available time frame. The master will then further split the
problem while the slave process continues with the next node on its local queue.

• Statistics: Solve statistics (e.g., number of solved nodes, cache hit rate, . . .) from
the slave processes are transmitted to the master which aggregates the information
and presents it to the user.

• Computation finished: A signal from the master that indicates that the entire
formula was solved. This triggers the transmission of the solve statistics by the
slaves. Afterwards, the slaves are shut down as they are no longer needed.

Based on these messages, the communication of dCountAntom is lightweight and non-
intrusive and the slave processes can act with a large amount of independence.

5.3. Progress Estimation

The inherent difficulty of the #SAT problem means that many formulas are very difficult
to solve. Thus, the user of a #SAT solver is often left wondering whether the solver will

114

5.3. Progress Estimation

need “just another minute” to return a solution or is practically stuck and might still run
for a very long time.
In established SAT or #SAT solvers, there is very little indication with regard to the

solve progress after starting the solver. In most use cases, the solver is started with a
timeout and either solves the formula within this timeout or skips it. This approach was,
for example, used in the stuck-at and TSOF ATPGs that were presented in the previous
chapters.
To give more information with regard to the progress of the solver, a solve progress

estimation was developed and implemented into countAntom and dCountAntom. The solve
progress estimate is then used to predict the overall solve time as well as the remaining
solve time.
More insight into the predicted solve time allows for better decisions by its user. The

classical timeout mechanism defines a hard deadline after exactly X seconds. However,
for many applications it is desirable to spend a little bit more time to find a solution for
a problem when it can be found in X + Y seconds. This effect can of course be achieved
by setting the overall timeout to X + Y . However, for other problems that cannot be
solved neither in X nor in X+Y seconds, this would waste even more time. The proposed
solution utilizes the predicted solve time to enforce a soft timeout and a hard timeout
during the solving of the formula.
Independent of the estimated solve progress, the solver will always continue the calcula-

tion as long as the soft timeout (X) is not reached. After the soft timeout is reached, the
calculation is continued as long as the predicted total solve time is below the hard timeout
(X + Y). Otherwise it is aborted. Therefore, the solver will stop the calculations after
the soft timeout if it is unlikely that the formula is solvable in a reasonable time. The
reasonable time limit is used as the hard timeout.
To the knowledge of the author, no other SAT or #SAT solver offers this kind of addi-

tional information and control to the user of the solver. The combination of the soft and
hard timeout allows the solver to compute a solution for formulas when it is in reach and
aborts the computations early when it is not.
The gains of utilizing the soft timeout mechanism are highlighted further in Section 6.4.4

in the subsequent chapter.

5.3.1. Estimating the Solve Progress

The progress of the solver is estimated by calculating the fraction of the decision tree that
has already been covered by the solver. This fraction is calculated by traversing the entire
decision tree and counting the share of finished nodes for which the model count is already
known. When computing the fraction, frac(n), of the decision tree that is represented by
a node n, sub-formula splitting has to be considered as it often creates many sibling nodes
representing different portions of the residual formula.
The calculation of the share of the decision tree that is already finished is performed

by traversing the decision tree depth first. If a node n is finished, frac(n) is added to
the overall solve estimate. Otherwise, the fractions of the children nodes are computed.
To this end, frac(n) is first split evenly between the positive and negative branch. Next,
each child node nc in the two branches is assigned a value frac(nc) that is proportional

115

5. #SAT-Solving

to the number of variables that the node represents in comparison to the total number of
variables in the residual formulas.

v3

(v1 ∨ v2 ∨ v3) ∧ (v1 ∨ ¬v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5 ∨ v6)

1
1

v1

(v1 ∨ v2)
1
2 ·

2
5

(v4 ∨ v5 ∨ v6)
1
2 ·

3
5

sat 1
2

sat sat

Figure 5.4.: Estimating the solve progress of the #SAT solver by counting the fraction of
the decision tree that has already been analyzed. Each node is annotated with
the fraction it represents.

Figure 5.4 shows an example of the fractions in a partially evaluated decision tree. In
the example, the solver has already computed the model count for most nodes. Only the
node marked in red has not been evaluated, yet and is still missing. Each node in the
tree is marked with the fraction of the overall problem that it represents. Note that after
assigning v3 to false, the residual formula (v1 ∨ v2) ∧ (v4 ∨ v5 ∨ v6) is split into two sub-
formulas. The first sub-formula represents 2

5 of the remaining variables, the second one 3
5

of the remaining variables.
To compute the overall solve progress estimate the values of all the finished parts is

summed up. Thus, the overall solve progress is estimated as:

1

2
+

1

2
· 2

5
=

7

10
= 70 %. (5.5)

To quickly compute the progress estimate, the number of nodes in the tree should be as
low as possible. In countAntom, the optimal time for a progress estimation is after a cache
cleanup operation, which is regularly performed and removes all finished nodes from the
tree. In dCountAntom the progress estimation is only performed by the master since the
number of nodes in the master is low anyway. Here, the estimate is updated every time a
slave transmits the model count of another sub-problem to the master.
It should be noted that the developed progress estimation mechanism could in theory

also be applied to SAT-solving. However, for satisfiable formulas the SAT solver does not
traverse the entire decision tree (because it only searches for a single satisfying solution).
Therefore, the progress estimate based on the traversed share of the decision would poten-
tially be highly inaccurate and of far less value. A #SAT solver on the other hand always
has to traverse the entire decision tree, enabling the presented approach.

5.3.2. Predicting the Solve Time

Based on the previously computed solve progress estimate, the overall as well as the re-
maining solve time can be predicted. To this end, the solver first computes the change

116

5.4. Evaluation

of the progress per time unit, d progress
dt , which is then used to calculate a prediction for

the time that will still be required to cover the part of the decision tree that has not been
considered by the solver, yet.
Since the #SAT problem is very difficult to solve and #SAT solvers rely heavily on

heuristics to make “smart” decisions, the solve progress estimate is not guaranteed to be
accurate. In fact, for some formulas the progress estimate quickly jumps to a relatively
large value but then does not progress any further. This might occur because the solver can
quickly mark a large part of the decision tree as satisfiable or unsatisfiable but other parts
of the tree are highly complex and require a large number of computations. To even out
such jumps in the progress estimate, the progress per time is averaged with the previous
estimates.

5.4. Evaluation

The presented distributed parallel #SAT solver dCountAntom is evaluated on a cluster with
up to 256 CPU cores used in parallel. The author acknowledges the support of the state
of Baden-Württemberg through bwHPC, which provides access to the computation cluster
used for the experiments.
For a thorough evaluation of dCountAntom, benchmark formulas were sourced from three

different circuit-based #SAT applications:

OP: The output probability (OP) formulas encode the probability that the output of
a circuit is ‘1’ when the circuit inputs are chosen freely. While these benchmarks
focus on the circuit’s output, it is generally possible to accurately calculate the ‘1’-
probability of any signal in a circuit through #SAT.

FI: The fault injection (FI) formulas encode the probability that a fault is successfully
injected into a flip-flop by an adversary that can shorten the length of the circuit’s
clock period [W1].

PD: The possibly detected (PD) formulas encode the probability of detecting a possi-
bly detected fault. This #SAT application is discussed in detail in the subsequent
Chapter 6.

Section 5.4.1 shows the single-threaded performance of modern #SAT solvers to put the
presented results into perspective. Thereafter, Section 5.4.2 evaluates the speedup that
dCountAntom obtains by utilizing many CPU cores in parallel.

5.4.1. Single-Threaded Performance Comparison

Unlike SAT-solving where many different solvers that are constantly improved exist, there
are only a few different #SAT solvers. For the comparison of the single-threaded perfor-
mance, the latest accurate (sharpSAT [80]) as well as approximating (ApproxMC [81], [82])
solvers are analyzed. A comparison to earlier #SAT solvers was performed in [C4] and
showed that sharpSAT usually outperforms them by a wide margin.

The distributed solver dCountAntom itself does not offer a single-threaded mode. There-
fore, countAntom is used for the following comparisons. Table 5.1 gives an overview of the

117

5. #SAT-Solving

different benchmark formulas and the solve times of countAntom, sharpSAT and ApproxMC
(with a model count tolerance of ±10 % and a confidence of 95 %). Entries marked with
X indicate a timeout after 72 h. Since the single-threaded runtime of countAntom is used
to compute the speedup with multiple CPU cores in the next experiments, each formula
is solved 10 times and the results are averaged to avoid random influences.

Table 5.1.: The number of variables and clauses in each of the benchmark formulas and
the single core solve time of countAntom, sharpSAT and ApproxMC in seconds.

Formula #Variables #Clauses countAntom sharpSAT ApproxMC
OP_b14c 1 172 3 194 2 922.7 4 911.8 X
OP_c1355 349 936 429.6 X X
OP_c5315 622 1 809 19 233.3 X X
OP_c6288 877 2 546 5 825.0 1 273.8 X
FI_33_20 1 040 3 862 7 762.7 X X
FI_33_18 1 040 3 860 11 409.6 X X
FI_33_16 1 040 3 858 30 837.2 X X
FI_33_14 1 040 3 856 145 155.5 X X
PD_p35k 10 159 26 771 1 135.4 82.3 X
PD_p100k 709 2 163 1 970.6 1 355.1 X
PD_p388k 1 867 5 533 843.8 2 795.8 X
PD_p533k 1 187 3 512 1 701.6 1 245.0 X

The single-threaded performance can be summarized into two main observations:
Firstly, the performance of a #SAT solver is formula-dependent. Generally, countAntom

is the fastest solver, but on some formulas it is outperformed by sharpSAT. Nonetheless,
countAntom is clearly a competitive solver even with just a single CPU core.

Secondly, current approximating solvers do not offer the required performance for cal-
culations with a high accuracy and confidence. Of course, the performance of ApproxMC
could be improved by accepting a higher tolerance or lowering the necessary confidence.
This could, however, greatly reduce the quality of the results which – depending on the
application – is not acceptable.

5.4.2. Distributed Parallel Performance

To evaluate the distributed performance of dCountAntom, the solve time with 16, 32, 64,
128, 192 and 256 CPU cores is analyzed. Each process is allocated 4 CPU cores on the
same machine and utilizes thread level parallelism through shared memory. Therefore,
between 4 and 64 different processes are used for the experiments. One of these processes
becomes the master, the remaining processes are used as slaves.
For the experiments the number of nodes that are to be created by the master process

is fixed to 200 (target) and nodes with less than 30 variables are not shared at all (ν)
but solved by the master directly. Figure 5.5 shows the obtained speedup compared to
the single thread runtime of countAntom (shown in Table 5.1) for the different formulas in
detail.

118

5.4. Evaluation

0

20

40

60

80

100

1 50 100 150 200 256

Sp
ee
du

p

OP_b14c
OP_c1355
OP_c5315
OP_c6288

0

100

200

300

400

500

600

1 50 100 150 200 256

Sp
ee
du

p

FI_33_20
FI_33_18
FI_33_16
FI_33_14

0

20

40

60

80

100

120

140

1 50 100 150 200 256

Sp
ee
du

p

Number of Cores

PD_p35k
PD_p100k
PD_p388k
PD_p533k

Figure 5.5.: Speedup of dCountAntom with up to 256 CPU cores compared to the single
thread runtime of countAntom.

119

5. #SAT-Solving

For all of the formulas, dCountAntom achieves significant speedups. In the most successful
case, for the formula FI_33_14, the solver is about 562 times faster when utilizing 256
cores than it is with a single core. This hyperlinear speedup can be explained through the
changed computation order. With more parallel solvers, the nodes of the decision tree are
evaluated in a different order which leads to different decisions and conflict clauses. These
minor differences can have a great impact on the overall performance of the solver – for
better or for worse.
The influence of the order of computation on the solve time also explains the fluctuations

for different numbers of cores that can be observed on some formulas. Sometimes, adding
more CPU cores might actually slightly increase the solve time. Consider for example the
formula OP_c1355. When solving the formula with 96 cores, the speedup is larger than
that with 128 cores. Nonetheless, a clear overall trend can be observed for all analyzed
formulas: With more CPU cores a higher speedup is obtained.
On average, the solver is about 127 times faster with 256 cores. Furthermore, for many

formulas the slope of the speedup does not appear to decrease and it can be assumed
that adding more cores would increase the speedup even further. However, for some other
formulas (e.g., PD_p100k) the speedup with 192 and 256 cores is basically identical. This
lack of additional speedup can be explained by analyzing the absolute solve time. With 192
cores, the formula PD_p100k can be solved in 16.2 s and with 256 cores in 16.3 s. With
such short solve times, the overhead of generating many parallel solvers and transmitting
messages between them becomes larger than the gain of the additional cores.
In comparison to SAT-solving where parallel solving has been attempted with mixed

results [79], [83]–[88], dCountAntom achieves a speedup for every single analyzed formula.
Some parallel SAT solvers (e.g., [86]–[88]) do not even attempt to solve the problem coop-
eratively but instead start multiple instances of the same solver with different parameters
with the aim of providing a fast result through the different ways the search space is cov-
ered. In #SAT-solving, a more structural approach with solve processes that work together
to compute the overall model count is beneficial, since the entire decision tree has to be
covered anyway.

Number of Solved Nodes

The variables target and ν are used to control the number of initially generated sub-
problems. However, the load balancing mechanism allows the master to further split par-
ticularly challenging sub-problems. Figure 5.6 shows the number of sub-problems that are
actually being solved by the slave processes. The gray markings at the very bottom of
the graph indicate the target of 200 nodes. Clearly, the target is exceeded for every single
formula, often by a wide margin (note that the y axis is scaled logarithmically). The load
balancing mechanism is obviously splitting many sub-problem into additional smaller sub-
problems. However, a large number of solved nodes is not always an indicator for a large
overall solve time or low speedup. Consider for example the formula FI_33_14, which
has the largest overall speedup with 256 cores even though about 18 000 sub-problems were
solved.
The number of solved sub-problems differs depending on the number of slave processes.

The reason for the different number of solved sub-problems is, again, the changed order

120

5.4. Evaluation

of computation when utilizing additional solve processes. The results show that the com-
putation order can result in up to 10 times more sub-problems that have to be solved by
dCountAntom for some formulas. Consider, for example, the number of solved sub-problems
for the formula OP_c5315 (shown as the top orange line in Figure 5.6): With 16 cores
about 54 000 sub-problems are solved. On the other hand, with 96 cores, about 502 000
sub-problems have to be considered.

100

1000

10000

100000

1× 106

16 50 100 150 200 256

So
lv
ed

N
od

es

Number of Cores

OP_b14c
OP_c1355
OP_c5315
OP_c6288

FI_33_20
FI_33_18
FI_33_16
FI_33_14

PD_p35k
PD_p100k
PD_p388k
PD_p533k

Target

Figure 5.6.: Number of solved sub-problems by the slave processes.

Timeouts

The load balancing of dCountAntom relies on timeouts to split hard problems into smaller
ones to ensure that all slave processes remain occupied throughout the solve process. As
the previous section revealed, in dCountAntom many additional smaller sub-problems are
created. In this section, the occurring timeouts are further analyzed by considering the
solve process of the formula OP_c6288 in detail.

In Figure 5.7, all of the timeouts that occur during the solve process of OP_c6288 are
visualized. Most timeouts occur at the beginning of the solve process after the splitting
of the initial problem into sub-problems. Afterwards, the number of timeouts usually
stagnates. Only when utilizing 16 cores, timeouts still regularly occur and the total number

121

5. #SAT-Solving

of timeouts is much larger.
The total number of timeouts differs depending on the number of CPU cores. This can,

again, be explained by the different computation order when a different number of slave
processes is used. The process of solving the #SAT problem in dCountAntom is driven by
heuristics. With a different number of slave processes, the evaluation order of the decision
tree changes and other conflict clauses could be learned. Thus, some timeouts might be
avoided because additional knowledge is available.

0

50

100

150

200

250

300

0 20 40 60 80 100

#
T
im

eo
ut
s

Percentage of Solve Time

OP_c6288 16 cores
OP_c6288 32 cores
OP_c6288 64 cores
OP_c6288 96 cores

OP_c6288 128 cores
OP_c6288 192 cores
OP_c6288 256 cores

Figure 5.7.: Cumulated number of timeouts while solving OP_c6288 with different
numbers of CPU cores.

Of course, a large number of timeouts is not desirable as every timeout corresponds
to CPU time spent to no avail without actually progressing in the calculations. However,
predicting the difficulty of a sub-problem before actually solving it – which would allow the
solver to further split the node right away instead of encountering a timeout – is difficult due
to the nature of the #SAT problem itself. Of the numerous different approaches for load
balancing and difficulty prediction that were analyzed, the presented timeout mechanism
introduces the smallest overhead and fastest overall speedup. As the results clearly show,
dCountAntom delivers great speedups with many CPU cores even though timeouts occur.

5.4.3. Solve Progress Estimation

The estimation of the solve progress and prediction of the overall as well as remaining
solve time are important new features to establish #SAT-solving as an applicable solving

122

5.4. Evaluation

technique for very difficult problems. Given the high complexity of the problem class, it is
not surprising that the solve time for some formulas is unacceptably high.
Based on the predicted solve time, a soft timeout mechanism can be used to abort

the calculation on formulas which cannot be solved in a very long time. This ensures
that the solver does not spend too much time on these formulas. To evaluate the progress
estimation, the solve progress is analyzed more closely with countAntom. The solve progress
estimation in dCountAntom works exactly the same way. However, due to the longer solve
time the results of countAntom with only one thread are more demonstrative.

Figure 5.8 shows the progress estimate as well as predicted solve time for four different
formulas in comparison to the real solve progress and the real solve time. The real solve
progress is calculated by dividing the solve time up to the considered point in time by the
total solve time. A perfect prediction would show the solve progress estimation (yellow
line) rise from 0 to 100 linearly and a constant predicted solve time (orange line).
The solve progress estimate (yellow line) is relatively accurate for all four different an-

alyzed formulas. The prediction of the total solve time (orange) as well as the remaining
time (violet) is not as accurate, especially in the beginning of the solve process. Nonethe-
less, the predictions are still beneficial to gauge the general difficulty of the formula. For
this it is not relevant if the final solve time is twice as long or short as initially predicted.
Instead, the prediction allows the user to understand the general difficulty and whether
the solving time will be in the range of minutes, hours, days – or even longer.
The prediction of the final solve time is only computed after the first 5 solve progress

estimates have been finished. This makes the prediction more stable because initial jumps
in the estimated progress are ignored. As a result, for formulas that are quickly solved the
predicted solve time is only available relatively late. In the examples, this is the case for
PD_p100k.
Overall, for all four analyzed formulas the total solve time prediction is in the same

range as the real solve time and can definitely be used as an advantageous indication.

123

5. #SAT-Solving

Estimated Solve
Progress

Predicted
Remaining Time

Predicted
Solve Time

0

20

40

60

80

100

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

E
st
im

at
ed

P
ro
gr
es
s
(%

)

T
im

e
(s
)

Real Progress (%)

(a) OP_c5315

0

20

40

60

80

100

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000

E
st
im

at
ed

P
ro
gr
es
s
(%

)

T
im

e
(s
)

Real Progress (%)

(b) OP_c6288

0

20

40

60

80

100

0 20 40 60 80 100
0

50000

100000

150000

200000

250000

300000

E
st
im

at
ed

P
ro
gr
es
s
(%

)

T
im

e
(s
)

Real Progress (%)

(c) FI_33_16

0

20

40

60

80

100

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

E
st
im

at
ed

P
ro
gr
es
s
(%

)

T
im

e
(s
)

Real Progress (%)

(d) PD_p100k

Figure 5.8.: Progress estimate and predicted remaining and total solve time for
four different formulas. The dashed blue line shows the real solve time.

124

5.5. Summary

5.5. Summary

This chapter introduced and discussed the distributed parallel #SAT solver dCountAntom
which is designed to solve difficult #SAT problems through a divide and conquer approach
utilizing many CPU cores across different machines at the same time. Furthermore, a
method to estimate the solve progress and to predict the total solve time were presented.
With this additional information the user of the solver can make more informed decisions
with regard to aborting a solve process when it seems unlikely that the problem can be
solved in the required time.

The key points of the chapter are the following:

• This work introduced the first distributed parallel #SAT solver dCountAntom which
can efficiently solve the #SAT problem with many CPU cores. The evaluation shows
that with 256 CPU cores the solver is on average about 127 times faster than on a
single core.

• Special care has to be taken to make sure that all slave processes are always supplied
with work. To this end, a load balancing mechanism based on timeouts is utilized.
This ensures, that difficult-to-solve sub-problems are further split and the workload
can be spread across the different CPUs.

• Through a solve progress estimation the remaining and total solve time can be pre-
dicted. This prediction allows the user of the solver to make an informed decision
about whether to abort the solve process or whether to wait for it to finish. The
progress estimate is furthermore used for a novel soft timeout mechanism.

Since #SAT-solving is a relatively new field of study, there are many possibly starting
points for future work on (parallel) #SAT-solving. These include the development of new
and advanced heuristics for the solve process and the load balancing. Furthermore, for some
applications an estimate of the model count of a formula might be sufficient. However,
the current approximating solvers perform poorly on the circuit-derived formulas that are
considered in this thesis and do not offer an alternative, yet.
Overall, the presented distributed #SAT solver dCountAntom clearly highlights the po-

tential of utilizing grid-scale parallelism when solving the #SAT problem. This is especially
relevant since the #SAT problem is inherently difficult to solve and previous solvers might
be too slow for many real life problems.

125

6. Accurate Characterization of Possibly
Detected Faults

This work clearly showed that utilizing a SAT-based modeling in the realm of circuit
test comes with many benefits. These range from the fast computation times for difficult
problems over the continued speed improvements through better and better solvers to
the simplicity of modeling even highly complex requirements and effects into the Boolean
formula.
Nonetheless, the basic SAT problem only provides yes or no answers – the formula is

either satisfiable or it is not. While this is sufficient for many problems, for some applica-
tions a simple binary answer does not suffice. Instead, the probability of an event to occur
could be relevant. Such a probability might be computable by mapping the problem to a
Boolean formula and solving this formula through a #SAT solver.

In this chapter, a novel, #SAT-based approach for the accurate computation of the
detection probability of possibly detected faults is introduced. When the detection of a
fault depends on unknown or undefined circuit inputs and the ATPG algorithm cannot
prove that it is detected but also cannot prove that it is definitely not detected, the fault
is classified as possibly detected. By accurately computing the probability that the fault is
detected, the overall fault coverage can be computed with a higher accuracy. Furthermore,
this information can be used as the basis for testability improvements, for example the
insertion of test points for faults with a low detection probability.

This chapter is structured as follows: Section 6.1 introduces the concept of possibly
detected faults. Thereafter, Section 6.2 discusses the accurate #SAT-based algorithm to
characterize possibly detected faults by computing their detection probability. In Sec-
tion 6.3, four different improvements to increase the solving speed are introduced. The
presented algorithm is extensively evaluated in Section 6.4. Section 6.5 concludes the
chapter with a summary.

126

This chapter is partially based on:

[C6] J. Burchard, D. Erb, and B. Becker, “Characterization of possibly detected faults by
accurately computing their detection probability”, in Design, Automation and Test
in Europe (DATE), 2018, 2018. doi: 10.23919/DATE.2018.8342040

The main contributions by the author to this chapter are:

• The automatic generation and extraction of the list of possibly detected faults from
a commercial ATPG tool.

• The development and implementation of the algorithm to accurately compute the
detection probability of possibly detected faults.

• The development and implementation of four different SAT-based improvements to
further increase the speed of the computations by simplifying the problem.

• The thorough evaluation of the presented approach with possibly detected faults in
a large variety of different circuits.

The implementations are built on top of the PHAETON framework [44] by Matthias Sauer
which, among others, provides a circuit file parser and logic generators for the Tseitin
transformation.

127

http://dx.doi.org/10.23919/DATE.2018.8342040

6. Accurate Characterization of Possibly Detected Faults

6.1. Possibly Detected Faults

For many faults it is sufficient to specify some of the inputs of a circuit to ensure the
activation of the fault and the propagation of its effect to an output. The remaining inputs
are irrelevant for this particular fault. In the corresponding test pattern, these unspecified
inputs can be marked with an X as they can be assigned to both ‘0’ and ‘1’ without
changing the outcome of the test. The existence of X values gives rise to techniques like
test compaction [89] and test compression [90] which rely on unspecified inputs.
In addition to unspecified inputs, there might also be inputs that are unknown. The

value of a circuit input might be unknown for different reasons:

• The circuit input is connected to a flip-flop that is not part of a scan-chain and has
no set or reset functionality. It might be possible to initialize this flip-flop through
an initialization sequence [91], [92]. However, such a sequence might require many
clock cycles or might not exist at all [93].

• The circuit input is connected to another on- or off-chip device that cannot be con-
trolled during the test.

• The circuit input is connected to an analog partition of the chip that cannot be
controlled during the test.

• The circuit input is connected to a device or module that is not fully specified yet.

For the purpose of possibly detected faults unknown circuit inputs are modeled similar to
unspecified inputs: with the value X. The exact reason for an X occurrence at an input
is irrelevant for the remainder of this chapter.
Just like a normal input value, X values can be propagated through the circuit. The

handling of X values during the test pattern generation [45], [46], [94] and fault simulation
[95], [96] has been considered from different angles which include, among others, accurate
but costly quantified Boolean formula (QBF) based ATPG and simulation. The difficulty
in accurately considering X values arises from the fact that re-converging X values might
disappear and become ‘0’ or ‘1’ again [94].
A test pattern possibly detects a fault at a circuit output if the output has a specific

(non-X) value in the good circuit but is X in the bad circuit. Thus, depending on the
actual values of the X-inputs when applying the test to the device, the fault might be
detected or not. Figure 6.1 shows the effects of the test pattern “1X0” for two different
stuck-at faults.

C1

C2

a

b

c

o1

o2

x

1

X

0

stuck-at-0

1 / X

0

C1

C2

a

b

c

o1

o2

x

1

X

0
stuck-at-1

1

0 / X

Figure 6.1.: The test pattern “1X0” possibly detects both the stuck-at-0 fault as well as
the stuck-at-1 fault.

128

6.2. Detection Probability Computation

When input b is assigned to ‘0’ the test pattern successfully detects the stuck-at-0 fault
at the first input of C1 but not the stuck-at-1 fault at the second input of C2. When b is
assigned to ‘1’ the situation is reversed. Hence, both faults are detected with a probability
of 50% when b is freely assigned.

It should be noted that commercial ATPG tools usually count a share of the possibly
detected faults towards the overall fault coverage. The share is controlled through a user
selectable factor [97], [98]. Thus, the tool assumes that a certain fraction of possibly
detected faults will also be detected in a real circuit.
The goal of the presented approach is an accurate characterization of the possibly de-

tected faults by computing the actual probability that a possibly detected fault is really
detected when the X-inputs are chosen freely. In this chapter, the focus lies on possibly
detected stuck-at faults. However, being a SAT and #SAT-based approach, other fault
models could be supported with ease.

6.1.1. Classification of Test Patterns

The characterization of possibly detected faults is based on a test pattern set. This set is
created through a commercial ATPG tool, which is used to generate test patterns for all
stuck-at faults within a circuit. The ATPG classifies each fault into one of three categories:

• Detected: The fault is detected by a test pattern.

• Untestable: The ATPG has proven that (under the current constraints) no test
pattern can detect the fault.

• Possibly Detected: The ATPG found one or multiple test pattern(s) that might
detect the fault if the X-inputs are assigned correctly.

For the analysis the list of faults that are only possibly detected is extracted. Further-
more, for each possibly detected fault the test patterns which might detect the fault are
stored. The outcome of this first step is a file containing a list of possibly detected faults
and the test patterns which possibly detect each fault. This file is utilized by the proposed
algorithm that is discussed in the next section.

To simulate the test pattern generation for circuits with unknown inputs the aforemen-
tioned process with the commercial ATPG is repeated with some inputs forced to be X.
To this end, 1% of inputs are randomly selected and assigned to X through an ATPG
constraint.

6.2. Detection Probability Computation

In this chapter, an approach for the accurate computation of the detection probability
of a possibly detected fault is proposed. For each possibly detected fault there are three
possibilities:

1. The fault is not detected by any of the test patterns, no matter how the X values
are assigned.

129

6. Accurate Characterization of Possibly Detected Faults

2. The fault has a certain probability of being detected by at least some of the test
patterns. These faults are considered to be potentially detected.

3. The fault is definitely detected by at least one test pattern, no matter how the X
values are assigned.

Faults that fall into the first and last category are not actually possibly detected. How-
ever, as the experiments will show, a lot of faults that are considered to be possibly detected
by a commercial ATPG can actually be placed into one of these two categories.
The difference between a possibly detected fault and a potentially detected fault lies

within the detection probability. A possibly detected fault is classified by an ATPG tool
which cannot prove that the fault is always detected. Thus, the classification as possibly
detected does not indicate the detection probability. For a potentially detected fault,
the proposed characterization approach was able to prove that the fault has a detection
probability greater than zero and smaller than 100 percent.

The presented approach not only accurately computes the probability that a possibly
detected fault is actually detected. It can also prove that a fault is definitely detected by
a pattern or that it is definitely never detected by all patterns.
Figure 6.2 gives an overview of the overall structure of the characterization algorithm.
After a fault is chosen, all of the test patterns that possibly detect this fault are collected.

Next, the detection probability for each of these patterns is computed. This is the core
step (highlighted in orange) of the presented approach. If a pattern has a 100% probability
of detecting the current fault, it is definitely detected and the remaining patterns are not
considered any further. Otherwise, the detection probability with the current pattern is
stored and the next test pattern is evaluated. Once every pattern was considered, the
overall detection probability of the fault is computed.

The computation of the detection probability of a fault for a certain test pattern consists
of three different steps, each of which is further discussed in the next sections. The input of
the algorithm consists of a fault and a test pattern which possibly detects the fault. First, a
Boolean formula that encodes the circuit and fault detection properties is generated. Next,
the variables of the Boolean formula that correspond to the circuit’s inputs are restricted
in accordance with the test pattern. Finally, the detection probability for the considered
combination of fault and test pattern is computed.
Figure 6.3 summarizes the flow in the computation of the overall detection probability

of a fault. The numbers indicate the order of the computations.

6.2.1. Generating the Boolean Formula

The computation of the detection probability of a possibly detected fault is encoded into
a Boolean formula Φ as a #SAT problem. A satisfying assignment to Φ must correspond
to an assignment of the X-inputs that makes the fault visible at the output. Thus, the
general formula layout is similar to that utilized in SAT-based ATPG (see Section 3.1 in
Chapter 3 for a more detailed discussion of the formula generation).
The final Boolean formula consists of the cells in the fault justification and fault prop-

agation cone as well as the support cone. Again, the cells in the propagation cone are

130

6.2. Detection Probability Computation

Input data

List of possibly
detected faults

Test patterns

Pick fault
Current
fault Collect

Patterns that
possibly detect

the fault

Pick pattern

Current
pattern

Compute detec-
tion probabil-
ity of pattern

Compute detection
probability of fault

List of de-
tection

probabilities

Fault is
definitely
detected

Final fault detection probability

= 0 %:
not detected

> 0 % and < 100 %:
potentially detected

= 100 %:
definitely detected

Next pattern

All patterns computed
< 100 %100 %

Figure 6.2.: Overview of the algorithm to characterize possibly detected faults. The blue
arrows show the program flow, green arrows indicate the flow of information.

131

6. Accurate Characterization of Possibly Detected Faults

Input data

Current
fault

Current
pattern

Model
required
parts
of the
circuit

1

Add
input
con-

straints

2

Boolean formula Φ

∧¬pi2 ∧ pi3 ∧ pi5 ∧ si3 Solve

3

Justification
cone

Propagation
cone

Support cone

pi1
pi2
pi3
pi4
pi5

si1
si2
si3
si4
si5

X
0
1
X
1

X
X
1
X
0

Figure 6.3.: Computing the detection probability of a fault for a given test pattern.

transformed into a Boolean formula twice, once to model the fault-free (good) circuit and
once to model the signal values in the fault-affected (bad) circuit. Finally, corresponding
outputs of the good and the bad circuit are connected to XOR-cells which encode the
checking for a difference at the output. By forcing at least one of the variables that cor-
respond to the outputs of these XOR-cells to be true through a single additional clause,
it is ensured that the formula is only satisfiable if the fault effect is propagated to at least
one output.
In the previously discussed optimized stuck-at ATPG, the Boolean formula is constructed

incrementally. The incremental approach allows the solver to quickly find a test pattern
without having to build up the entire formula. When characterizing a possibly detected
fault, every single input assignment has to be considered. Therefore, an incremental for-
mula construction is not useful.

6.2.2. Restricting the Inputs

The previously generated Boolean formula Φ encodes the general test pattern generation
problem for the considered fault. Solving Φ with a SAT solver gives a test pattern that
activates the fault and propagates the fault effect to at least one output. Solving Φ with
a #SAT solver gives the total number of different test patterns that activate the fault and
propagate its effect to an output.
While both of these results are interesting and relevant in their own right, the goal of

the proposed algorithm is the characterization of a previously generated test pattern with

132

6.3. Improvements

regard to the detection probability. The test pattern contains the values of some of the
circuit inputs. These inputs have to be specified in the Boolean formula since they cannot
be assigned freely. Therefore, the variables that correspond to inputs that are assigned a
non-X value in the test pattern are forced to the corresponding value through a unit clause.
Variables that correspond to inputs with an X value are not restricted in the formula and
the #SAT solver can freely chose an assignment for these variables. The assignments are
only added for the inputs that are in the justification or support cone of the fault. In the
example in Figure 6.3 the assignment of input si5 to ‘0’ is not added because the input is
in neither cone.

6.2.3. Computing the Detection Probability

Solving the previously generated and restricted Boolean formula Φ with a #SAT solver
gives the total number of different assignments to the X-inputs that activate the fault and
propagate its effect to an output. A #SAT solver counts all different possible variable
assignments that satisfy the considered formula. However, in the fault characterization
formula Φ the values of the variables that were introduced during the Tseitin transformation
are implied by assigning the inputs. Therefore, only the variables that correspond to the
circuit inputs are truly free. Thus, each possible assignment of the X-inputs is counted
only once.
The detection probability of a fault for a specific test pattern is computed by dividing

the model count of Φ by the overall number of different assignments of the X-inputs:

detectionProbability(fault, pattern) =
model count(Φ)

2#X inputs
(6.1)

When counting the X-inputs it must be ensured that only inputs that are actually mod-
eled in Φ (because they are in the justification or support cone) are considered. Otherwise
the computation of the detection probability would be incorrect.

6.3. Improvements

The performance of the characterization approach for possibly detected faults that was
introduced in the previous section can be further improved. This is especially important
since solving the #SAT problem can be very difficult and the solve time can be substan-
tial. This section introduces four improvements that reduce the overall complexity of the
problem.

6.3.1. Restrict Propagation Outputs

The computation of the propagation cone of the fault is based on structural information
only: When a cell is connected to the output of another cell in the propagation cone or
to the faulty cell itself, it is also considered to be in the propagation cone. Nonetheless, it
might not be possible to propagate the fault effect to every output in the propagation cone.
Figure 6.4 shows an example for a fault effect that cannot be propagated to all outputs in
the propagation cone. When applying the test pattern “00X” to the circuit, the output o1
will always be ‘0’ no matter the fault effect. Thus, this output can be ignored.

133

6. Accurate Characterization of Possibly Detected Faults

a

b

c

o1

o2

x

x

0

0

X

stuck-at-1
0

0 / X

Figure 6.4.: The output o1 is in the propagation cone of the fault, but the fault effect can
never be detected there.

To reduce the search space that has to be covered by the #SAT solver, the first im-
provement identifies all of the outputs to which the fault effect can never be propagated,
no matter how the X-inputs are assigned. To this end, the Boolean formula Φ that was
created in the previous step is modified by requiring that the fault is propagated to a
specific output o. The formula is then solved with a SAT solver. If the SAT solver shows
that the formula is unsatisfiable, it is proven that the fault effect cannot be observed at o.
This process is repeated for every circuit output that is in the propagation cone.
When computing the propagation cone for the Boolean formula for the fault charac-

terization by the #SAT solver, outputs where the fault definitely cannot be observed are
ignored. This way, the #SAT solver will not attempt to propagate the difference between
the fault-free and faulty circuit to this output. Furthermore, by considering fewer outputs
in the propagation cone the size of the support cone might also be reduced. Thus, the
overall size of the formula might be much smaller.
If the discussed approach shows that the fault effect cannot be propagated to any output,

it is proven that the fault is not detected by the current test pattern at all – without ever
calling the #SAT solver.

From a cost perspective, identifying outputs to which the fault effect definitely cannot be
propagated requires one SAT solver call for each output in the propagation cone. However,
these calls are relatively cheap since the fault has to be propagated to a specific output.

6.3.2. Fixed X-Inputs

Not only might it not be possible to propagate a fault effect to one of the outputs in the
propagation cone, it might also not be possible to freely assign all of the inputs with an X
value in the test pattern. Instead, to initialize the fault or to propagate its effect, some of
these inputs might require a fixed assignment to either ‘1’ or ‘0’. As an example, consider
the stuck-at fault in Figure 6.4 again. This fault can only be detected when assigning the
input c to ‘1’.
The identification of such fixed X-inputs is, again, performed by utilizing a SAT solver.

For each X-input the formula Φ is extended, once with the condition that this input is
assigned to ‘0’ and once with the condition that it is assigned to ‘1’. The resulting formulas
are solved with a SAT solver. If the formula is unsatisfied when the input is assigned to
‘0’, the X-input always has to be assigned to ‘1’ and vice-versa. When a fixed X value is
found, the required assignment is added to Φ as a unit clause.
In addition, if Φ is unsatisfied when the input is assigned to ‘0’ as well as when it is

134

6.3. Improvements

assigned to ‘1’, it is proven that the fault cannot be detected by the current test pattern
at all, since there is no way to assign the current X-input.

From a cost perspective, identifying fixed X-inputs requires two SAT solver calls for
each X-input in the justification and support cone.

6.3.3. Always Satisfied Formulas

In addition to reducing the number of outputs to which a fault can propagate and to
forcing some X-inputs to a fixed value, the two previously discussed improvements are
also capable of detecting that some faults are never detected by the test pattern. The
third improvement aims at identifying the opposite: Faults that are always detected by
the test pattern, no matter how the X-inputs are assigned [99].

When the fault is always detected this also means that there exists no assignment of
the X values that does not satisfy the formula. No matter how the X-inputs are assigned,
the formula will always be satisfied. This interpretation can easily be encoded as a SAT
problem by slightly modifying Φ. Instead of requiring that the fault effect is propagated
to at least one output, it is required that the fault does not propagate to any output at all.
If the resulting formula is unsatisfiable, it is proven that no assignment to the X-inputs
exists that does not detect the fault. Thus, every single X value assignment successfully
tests the considered fault and the fault is always detected.
In combination with the identification of fixed X-inputs the detection probability of an

always detected fault for a given pattern is not necessarily 100 %. Consider a case where
the previous optimization found that one of the X-inputs has to be fixed to ‘1’. After
adding this fixed input requirement to Φ, every assignment to the remaining X-inputs
successfully tests the fault. In this case, the detection probability for the fault would be
50 %.

From a cost perspective, testing if the fault is detected no matter how the X-inputs are
assigned, requires only a single SAT solver call.

6.3.4. Caching the Detection Probability

To compute the detection probability of a possibly detected fault, only the inputs in the
justification and support cones need to be considered. All other primary and secondary
circuit inputs are completely irrelevant for this particular fault. This restriction to a
subset of the circuit inputs also reduces the number of relevant input assignments in the
test patterns. Thus, it is possible that two different test patterns create the exact same
input assignment at the considered circuit inputs. Clearly, the detection probability of the
possibly detected faults for these two test patterns will be identical. Therefore, a cache
that stores the results of all previously considered test patterns for a fault is added to the
presented characterization approach.
In addition to storing the detection probability, the cache is also used to remember

especially difficult to compute problems that result in a timeout. If a test pattern has the
exact same input assignment at the relevant inputs of the circuit, the algorithm does not

135

6. Accurate Characterization of Possibly Detected Faults

waste any valuable computation time but instead directly marks the current pattern as
having a time-out as well.

6.4. Evaluation

This chapter introduced a novel approach to accurately characterizing possibly detected
faults. In this section the presented approach is evaluated. To this end, a commercial
ATPG tool is used to generate stuck-at test patterns for a large collection of different
circuits. All of the faults that are only possibly detected by the commercial ATPG tool
are then analyzed with the proposed algorithm.
All of the tables referenced in the evaluation are printed at the end of the chapter.

6.4.1. Characterizing Possibly Detected Faults

For the first set of experiments the commercial tool is used with its default settings to
generate test patterns. Table 6.2 shows the number of generated test patterns as well as
the number of possibly detected faults for each of the circuits. Furthermore, it gives the
average number of test patterns that detect each of the possibly detected faults.
For some of the circuits the ATPG did not classify any faults as possibly detected. In

case of the AES circuits this can be explained by the high combinational complexity which
makes an X value more likely to propagate through the entire circuit. Thus, an X value is
likely to make the fault completely untestable from the ATPG perspective, because both
the good and bad output value is X. Circuits without any possibly detected faults are
skipped for the evaluation.
Most possibly detected faults are possibly detected by more than one test pattern,

especially on the larger circuits. This makes the analysis of the detection probability more
expensive. For example for the circuit p388k which has 1 848 possibly detected faults, each
of which is possibly detected by 12.66 patterns on average, a total of 1 848 · 12.66 ≈ 23 395
different combinations of faults and test patterns have to be analyzed.

All of the possibly detected faults are characterized with the proposed algorithm with
the solver countAntom in single-threaded mode. As shown in the previous chapter,
dCountAntom can be used to increase the scalability by utilizing cluster scale computing.
The possibility of using many CPU cores in parallel to tackle the more difficult formulas
is discussed in Section 6.4.5. The soft timeout of countAntom is set to 5 minutes, the hard
timeout to 30 minutes.
Table 6.3 summarizes and Figure 6.5 visualizes the results of the characterization of

the possibly detected faults into one of the three previously introduced categories: defi-
nitely detected, potentially detected and definitely not detected. Faults that could not be
characterized due to timeouts are added to the fourth category unknown.
Of the faults that are considered to be possibly detected by a commercial ATPG, a

large amount is actually definitely detected by at least one test pattern. Of the remaining
faults the majority is potentially detected. For most circuits only a small share of faults is
definitely not detected. The exact composition of the different faults is circuit-dependent.
For some circuits almost all faults are definitely detected or definitely not detected (e.g.,

136

6.4. Evaluation

0

20

40

60

80

100
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

%
of

Fa
ul
ts

Definitely Detected
Potentially Detected

Definitely not Detected
Unknown

Figure 6.5.: Characterization of the possibly detected faults in each circuit.

b20, p100k, . . .), whereas for other circuits a large amount of faults is potentially detected
(e.g., p78k, p533k, . . .).

6.4.2. Detection Probability

Many faults are possibly detected by more than one test pattern. The overall detection
probability of a fault is composed of the individual detection probabilities of each of these
possibly detecting test patterns and is computed in two different manners in this work.
The pessimistic detection probability estimation uses the highest detection probability

of a test pattern as the overall detection probability of the fault.
The optimistic detection probability estimation, on the other hand, assumes that all of

the detection probabilities are stochastically independent and computes the joined proba-
bility that the fault is detected based on that assumption.
As an example, assume that a fault is potentially detected by two different test patterns

with a probability of 50% each. The pessimistic estimate for the overall detection proba-
bility would be computed as 50% while the optimistic estimate would be 75%. The real
detection probability is, most likely, somewhere between those two values.
Figure 6.6 gives an overview of the average overall detection probability for each circuit

for both the pessimistic and optimistic estimation.
For some faults not all test patterns could be evaluated due to timeouts. If at least one

of the test patterns that possibly detects the fault can be characterized without a timeout,
the coverage is counted towards the overall average coverage. A more detailed analysis of
the timeouts is performed in Section 6.4.4.
The average detection probability of the possibly detected faults is highly circuit-

dependent. Furthermore, since many faults are possibly detected by multiple test patterns
with different detection probabilities, the pessimistic and optimistic estimates for the

137

6. Accurate Characterization of Possibly Detected Faults

0

20

40

60

80

100
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

D
et
ec
ti
on

P
ro
ba

bi
lit
y
in

%

Pessimistic Optimistic

Figure 6.6.: Average overall detection probability of all possibly detected faults.

detection probabilities are different as well. The pessimistic detection probability estimate
ranges from a minimum of 66.4% up to 100% with an average of 87.8%. The optimistic
estimate gives an average of 92.5%.
For the computation of the average detection probability shown in Figure 6.6, all of the

faults that were successfully characterized are considered. These include the faults that
are definitely detected by at least one test pattern and have a 100% detection probability.
Figure 6.7 shows the average detection probability for only the potentially detected faults.
Clearly, when not considering the large number of definitely detected faults, the average
detection probability is much lower. What is more, the differences between the pessimistic
and optimistic detection estimates become more pronounced.
The large differences between the circuits make it impossible to predict the overall detec-

tion probability without any additional knowledge. Therefore, simply counting a fraction
of the possibly detected faults towards the overall fault coverage – which is the default
setting in some commercial ATPGs – can be dangerous since it might overestimate the
real coverage of these faults. On the other hand, considering possibly detected faults as
definitely not covered needlessly underestimates the real fault coverage.

6.4.3. Optimizations

The proposed #SAT-based approach is able to accurately characterize faults that are
considered as possibly detected by a commercial ATPG tool. In addition, this work also
presented multiple SAT-based improvements. This section analyzes the gains provided by
the different improvements.
The number of outputs that need to be considered for the fault observation and the

number of X-inputs that can be chosen freely by the #SAT solver are both reduced.

138

6.4. Evaluation

0

20

40

60

80

100
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

D
et
ec
ti
on

P
ro
ba

bi
lit
y
in

%

Pessimistic Optimistic

Figure 6.7.: Average detection probability of the potentially detected faults.

Figure 6.8 shows the achieved reduction in the number of modeled outputs and free X-
inputs.
Clearly, the proposed improvements greatly decrease the complexity of the formula that

is handed over to the #SAT solver. On average across all circuits, the number of outputs
that need to be considered is reduced by about 24.9% and the number of free X-inputs
by about 8.0%. The gains of these two optimizations highly depends on the circuit.
The previous optimizations, furthermore, sometimes quickly characterize a fault as def-

initely not detected. In combination with the quick discovery of always satisfied formulas
these improvements greatly reduce the number of #SAT solver calls. In addition, some
computations can be skipped entirely because the exact same assignment to the relevant
inputs has been characterized before and the result is cached.
Figure 6.9 shows that the majority of formulas can be solved without ever calling the

#SAT solver because one of the previously introduced improvements already computed
the outcome. Only the formulas in the yellow “remaining” block are passed to the #SAT
solver. This greatly increases the overall solving speed as the #SAT solver is only used for
non-trivial problems which reduces the overhead.
A large share of formulas – about 78.0% on average – is always satisfied. However, this

does not mean that the corresponding fault has a detection probability of 100% since the
number of free X-inputs might be restricted through the presented optimizations. The
caching mechanism is only rarely used. The largest utilization is observed on the circuit
p533k where about 39.3% of the computations are skipped.

6.4.4. Timeouts

Although the proposed possibly detected fault characterization approach contains multiple
optimizations and is based on an efficient #SAT solver, there are still some formulas that

139

6. Accurate Characterization of Possibly Detected Faults

−70

−60

−50

−40

−30

−20

−10

0

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

R
ed

uc
ti
on

in
%

Number of Considered Outputs
Number of X-Inputs

Figure 6.8.: Average reduction of the number of outputs that can show a difference and of
the number of X-inputs that can be chosen freely.

1

10

100

1000

10000

100000

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

N
um

be
r
of

Fo
rm

ul
as

Quickly UNSAT
Quickly SAT

Cached
Remaining

Figure 6.9.: Some formulas can be quickly solved through one of the optimizations.
The remaining formulas are solved with the #SAT solver.

140

6.4. Evaluation

cannot be solved sufficiently quickly and a timeout occurs. For some faults the timeout is
irrelevant because they are definitely detected by another pattern. The detection proba-
bility (100%) of these faults can be considered for the overall coverage without hesitation.
For other faults the detection probability for at least some of the test patterns can be

computed without a timeout. By at least considering the detection probability of these
patterns, the overall average detection probability more accurately reflects all of the faults,
including the difficult ones. Nonetheless, the average might be slightly worse because one
of the patterns with a timeout might have a higher detection probability.
Figure 6.10 shows the number of faults that cannot be characterized at all because of

timeouts as well as the number of faults for which at least some timeouts occur for each
circuit.

0

20

40

60

80

100

120

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

N
um

be
r
of

Fa
ul
ts

All Patterns have a Timeout
Some Patterns have a Timeout

Figure 6.10.: Number of faults with a timeout for every test pattern or for some of the
test patterns that possibly detect the fault.

The number of timeouts across the different circuits is very low. Furthermore, at most
six faults (on the circuit p35k) cannot be characterized at all due to timeouts. Usually,
when timeouts occur there is at least one test pattern for which the fault can be charac-
terized.

Unlike classic #SAT solvers, countAntom contains a much more advanced timeout system
with soft and hard timeouts. The computation can be aborted after 5 minutes already, if
it seems unlikely that the formula will be solved within 30 minutes. Otherwise, the solve
process can continue for up to 30 minutes.
Figure 6.11 shows the number of formulas that is solved after the soft timeout was

exceeded because the predicted total solve time is below the hard timeout. In addition,
the Figure also shows the number of formulas that were aborted early after the soft timeout
because it was unlikely that they will be solvable before the hard timeout.

141

6. Accurate Characterization of Possibly Detected Faults

0

200

400

600

800

1000

1200
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

N
um

be
r
of

Fo
rm

ul
as

Solveable After Soft Timeout
Aborted After Soft Timeout

Figure 6.11.: Number of formulas that are solved after the soft timeout and number of
formulas that are aborted early, after the soft timeout, already.

The number of timeouts is higher than the number of faults that could not be charac-
terized due to timeouts. This is because some of the faults for which a timeout occurred
are definitely detected by another test pattern and the timeout is irrelevant.
To understand the benefits of the soft timeout mechanism consider the circuit p533k.

In total 117 formulas are solvable after the soft timeout of 5minutes but before the hard
timeout of 30minutes. At the same time, the calculation of 406 formulas is aborted after the
soft timeout of 5minutes because it is unlikely that they will be solved within 30minutes.
To solve the 117 formulas that could be solved within 30minutes in a classic #SAT solver
with only a hard timeout this timeout would have to be set to 30minutes. Thus, every
formula would be analyzed for up to an additional 25minutes before the timeout occurs.
When assuming that none of the 406 formulas that were aborted by countAntom after

the soft timeout are actually solvable within 30minutes, this would have increased the
solving time by 406 · 25 = 10 150 minutes or about 169 hours. With the soft timeout
mechanism unique to countAntom and dCountAntom this large increase in characterization
time (without any additional gains) is avoided.

6.4.5. Solve Time

For each combination of fault and test pattern the #SAT solver is called at most once.
However, the SAT solver is usually utilized to perform a large number of different com-
putations for the optimizations. Figure 6.12 shows the average time used for the different
optimizations and the accurate computation of the detection probability through the #SAT
solver.
For most of the circuits the #SAT solve time dominates the overall computation time

for each combination of fault and test pattern. This was to be expected, as all of the im-

142

6.4. Evaluation

0.001

0.01

0.1

1

10

100
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

p3
5k

p4
5k

p7
8k

p8
1k

p8
9k

p1
00

k
p2

67
k

p2
95

k
p3

30
k

p3
78

k
p3

88
k

p5
33

k

A
ve
ra
ge

T
im

e
in

s

Output Classification
Input Classification

Always Satisfied
#SAT Solve Time

Figure 6.12.: The average computation time for each combination of fault and test
pattern for the different improvements and the #SAT solver.

provements are encoded as simple SAT solver calls. Of the improvements, the computation
of fixed X-inputs takes up the most time. This was also expected since this optimization
utilizes the SAT solver extensively with many calls (two for each X-input).

Because the #SAT solve time is generally dominant, it is the best starting point for
optimizations. In the previous chapter the distributed parallel #SAT solver dCountAntom
was introduced and evaluated. By utilizing cluster-scale computing, the presented char-
acterization approach can be scaled to handle the more complex formulas much quicker.
Table 6.1 summarizes the solve times for some of the hard to solve formulas when the
#SAT solver is used in parallel.

Table 6.1.: Comparison of the #SAT solver solve time with 1 and 256 cores.

Solve time (s)
Formula countAntom 1 core dCountAntom 256 cores
p35k, fault 69 1 135.4 10.7
p100k, fault 82 1 970.6 16.3
p388k, fault 71 843.8 11.0
p533k, fault 314 1 701.6 18.3

With 256 CPU cores, all of the analyzed, difficult to solve formulas can be solved within
20 s. This clearly shows that the bottleneck of the #SAT solver can be skirted by utilizing
more resources. This way, not only can the overall computation time be drastically reduced,
it is also possible to reduce the number of timeouts.

143

6. Accurate Characterization of Possibly Detected Faults

6.4.6. Inputs that are Always X

So far, possibly detected faults arose because of decisions by the commercial ATPG tool –
there was no apparent reason to assign some of the inputs of a test pattern to X.
However, as discussed at the beginning of the chapter, in a real circuit it might occur that

some of the circuit’s inputs cannot be set to a fixed value at all. These inputs could, for
example, be connected to a non-scan flip-flop or to another device that cannot be controlled
while applying the test pattern. In these cases some of the inputs are always unknown, X.
To simulate a circuit with some of the aforementioned test restrictions, 1% of the primary
and secondary inputs are chosen at random for each circuit. The test pattern generation
with the commercial ATPG tool is then repeated with the restriction that these inputs are
always assigned to X.
Table 6.4 gives an overview of the number of test patterns and possibly detected faults

as well as the average number of patterns that possibly detect each possibly detected fault.
The characterization of the possibly detected faults is visualized in Figure 6.13. Com-

pared to the unrestricted ATPG the number of possibly detected faults has grown for
almost all circuits. Furthermore, the number of test patterns that possibly detect each of
these faults is also increased. To compute the detection probability for such a large number
of combinations of faults and test patterns, the soft timeout is reduced to 30 seconds with
a hard timeout of 3minutes.
Even with the reduced computation time, the number of faults that could not be charac-

terized due to timeouts is generally low with, on average, only 3.4%. The circuits p35k and
p89k are the exception from the previous observation. Here, timeouts actually occur for
a larger share of faults. This might be because of the random selection of highly relevant
inputs to be assigned to X which complicates the computation.

0

20

40

60

80

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
4-
4-
4_

e

%
of

Fa
ul
ts

Definitely Detected
Potentially Detected

Definitely not Detected
Unknown

Figure 6.13.: Characterization of the possibly detected faults when 1% of circuit
inputs are forced to be X.

144

6.5. Summary

Figure 6.14 shows the average detection probability for each circuit. In comparison to the
detection probability without any input constraints during the test pattern generation, the
detection probability is more variable and circuit-dependent. The detection probability
is, additionally, much lower with 60.0% and 76.4% on average for the pessimistic and
optimistic estimate.

0

20

40

60

80

100

b1
5

b1
7

b1
8

b2
0

b2
1

b2
2

ae
s_

co
re

pc
i_

br
id
ge
32

vg
a_

lc
d

w
b_

co
nm

ax
p3

5k
p4

5k
p7

8k
p8

1k
p8

9k
p1

00
k

p2
67

k
p2

95
k

p3
30

k
p3

78
k

p3
88

k
p5

33
k

2-
4-
4-
4_

e

D
et
ec
ti
on

P
ro
ba

bi
lit
y
in

%

Pessimistic Optimistic

Figure 6.14.: Average overall detection probability of the possibly detected faults
when 1% of circuit inputs are forced to be X.

Overall, these results show that forcing some inputs to be X during the pattern genera-
tion increases the uncertainty. For some circuits the detection probability estimate is well
below 50%, whereas for others it is above 90%. This makes an accurate characterization
of the possibly detected faults even more relevant.

6.5. Summary

This chapter introduced and evaluated a novel method to characterize possibly detected
faults that allows for an accurate computation of the detection probability of the analyzed
faults.

The key points of the chapter are as follows:

• Faults that a commercial ATPG algorithm can only classify as possibly detected can
be accurately characterized by the proposed #SAT-based approach for the first time.
It allows for the computation of the detection probability for each of the possibly
detected faults.

• The average detection probability of the possibly detected faults is highly circuit-
dependent and cannot be estimated without additional knowledge.

145

6. Accurate Characterization of Possibly Detected Faults

• The presented approach scales well even to large industrial circuit.

• The developed improvements which utilize a SAT solver simplify the problem and,
furthermore, quickly identify some always or never detected faults.

The presented approach allows for an accurate reasoning about the detection probability
of a fault. In the future, such an accurate analysis could be used to further increase the
fault coverage by creating additional test patterns or placing test points for faults with a
low detection probability. Furthermore, the algorithm itself could be improved by including
an accurate fault simulator with support for X values to perform a pre-characterization.
In addition, applying the approach to different fault models might yield further insights
into the importance of accurately considering possibly detected faults. Since every possibly
detected fault has to be analyzed separately, the characterization could also be performed
for multiple faults in parallel.
Overall, this chapter highlighted that applying a #SAT solver to problems in the realm

of circuit test can provide valuable information. This initial example will hopefully spawn
additional interesting applications that step beyond the binary world of SAT and towards
probabilities.

146

6.5. Summary

Table 6.2.: Results of the test pattern generation by a commercial ATPG without any
input restrictions.

Circuit #Test Patterns #PD Faults #Patterns per PD Fault

IT
C
’9
9

b15 468 111 2.11
b17 745 566 2.97
b18 857 3 234 4.09
b20 618 134 2.14
b21 644 139 2.05
b22 525 83 2.48

IW
LS

aes_core 386 6 1.67
pci_bridge32 297 40 3.92
vga_lcd 1 561 66 13.42
wb_conmax 224 0 -

N
X
P

p35k 1 100 273 8.37
p45k 2 116 80 12.53
p78k 139 7 6.43
p81k 408 20 4.15
p89k 649 121 5.24
p100k 2 057 157 9.84
p267k 926 210 13.54
p295k 1 901 4 067 8.55
p330k 1 874 431 7.86
p378k 258 268 9.35
p388k 941 1848 12.66
p533k 936 508 41.11

A
E
S

2-2-2-8_d 706 0 -
2-2-2-8_e 678 0 -
2-4-4-4_d 69 0 -
2-4-4-4_e 73 0 -
10-2-2-4_d 69 0 -
10-2-2-4_e 74 0 -
10-2-4-4_d 73 0 -
10-2-4-4_e 73 0 -

147

6. Accurate Characterization of Possibly Detected Faults

Table 6.3.: Characterization of the possibly detected faults and average detection proba-
bility with the pessimistic and optimistic estimation.

#
D
efinitely

#
P
otentially

#
D
efinitely

#
U
nknow

n
A
vg.

D
et.

P
robability

(%
)

C
ircuit

D
etected

D
etected

N
ot

D
etected

P
essim

istic
O
ptim

istic

ITC’99

b15
109

1
1

0
98.65

98.65
b17

524
29

13
0

95.42
96.30

b18
2
988

239
7

0
95.86

98.19
b20

130
3

1
0

98.13
98.32

b21
136

1
1

1
98.91

99.25
b22

80
1

2
0

96.99
96.99

IWLS

aes_
core

5
1

0
0

91.67
91.67

pci_
bridge32

40
0

0
0

100.00
100.00

vga_
lcd

58
8

0
0

93.28
97.82

NXP

p35k
183

76
8

6
80.65

88.18
p45k

79
0

1
0

98.75
98.75

p78k
4

3
0

0
82.70

95.95
p81k

12
4

4
0

67.66
69.49

p89k
106

12
2

1
93.15

96.65
p100k

120
3

34
0

77.39
78.02

p267k
138

61
4

0
82.37

94.69
p295k

3
265

756
28

5
89.65

96.54
p330k

232
141

57
1

69.80
80.17

p378k
161

107
0

0
80.81

98.33
p388k

1
284

515
44

5
85.73

93.24
p533k

197
233

78
0

66.44
75.61

148

6.5. Summary

Table 6.4.: Results of the test pattern generation by a commercial ATPG when 1% of
primary and secondary circuit inputs are always assigned to X.

Circuit #Test Patterns #PD Faults #Patterns per PD fault

IT
C
’9
9

b15 442 58 8.24
b17 631 116 4.97
b18 1090 1 827 11.31
b20 636 77 25.52
b21 638 2 555 11.88
b22 569 232 13.56

IW
LS

aes_core 375 16 17.44
pci_bridge32 303 87 8.67
vga_lcd 1 544 223 4.60
wb_conmax 255 43 24.77

N
X
P

p35k 1 043 1 387 10.51
p45k 2 094 226 15.69
p78k 162 460 13.45
p81k 509 2939 26.21
p89k 639 643 8.75
p100k 2 036 542 14.23
p267k 924 1 270 16.81
p295k 940 3 257 16.02
p330k 1 526 2 077 11.16
p378k 300 3 095 9.07
p388k 912 5 823 16.09
p533k 987 9 363 30.72

A
E
S

2-2-2-8_d 0 0 -
2-2-2-8_e 0 0 -
2-4-4-4_d 0 0 -
2-4-4-4_e 118 263 9.33
10-2-2-4_d 0 0 -
10-2-2-4_e 0 0 -
10-2-4-4_d 0 0 -
10-2-4-4_e 0 0 -

149

7. Conclusion

Testing an integrated circuit for the existence of manufacturing defects is of the utmost
importance since defects are the norm and not the exception. With an ever increasing
complexity and smaller and smaller feature sizes the potential for such defects is increasing
and will most likely continue to grow in the foreseeable future.
At the same time, the test complexity is increasing as well. While the stuck-at fault

model was initially sufficient to detect most defective devices, nowadays more and more
advanced and more realistic fault models are considered. Creating test patterns for such
advanced fault models is harder as additional side constraints must be taken into account
for a successful test. Dealing with such constraints in classic ATPG algorithms is challeng-
ing.
This thesis focused on the utilization of SAT-based methods in the realm of circuit test.

While the general application of a SAT solver for the test pattern generation has been well
established in literature, the versatility of Boolean formulas, as the underlying abstract
mathematical model, allows for the efficient modeling of advanced features and conditions
that are not considered in many other ATPG algorithms.

In this work, novel approaches in three different major areas were introduced:

• The concept of D-chains was extended with a good-diff D-chain and novel hybrid
D-chains that combine the positive traits of the different D-chain techniques. Fur-
thermore, the first comprehensive comparison of different D-chain techniques was
performed. The experimental results showed that not every D-chain is similarly well
suited for different tasks and that the new hybrid D-chain approach provides the
overall best improvement in solving speed.

The performance gains of D-chains make them important for an efficient SAT-based
ATPG algorithm and should be considered no matter what fault model is utilized.

• Based on an accurate timing-aware model of the circuit, the first deterministic, glitch
and charge-sharing aware TSOF ATPG was introduced. Test patterns that are pro-
duced by this SAT-based ATPG algorithm are not invalidated by glitches assuming
the given timing model and consider charge-sharing conflicts. The ATPG also allows
for the generation of patterns that are more robust against small variations in the
circuit’s timing by requiring minimum glitch and initialization length durations.

The experimental results showed that the presented approach even scales to large
circuits and circuits with a high combinational complexity. Moreover, the importance
of considering glitches during the test pattern generation was highlighted by showing
that over 25% of conventionally generated test patterns might be invalidated due to
glitches. Furthermore, the algorithm supports the generation of test patterns that
utilize glitches to initialize faults or to mitigate charge-sharing conflicts. Thus, the

150

resulting test patterns are able to test faults that are conventionally considered as
untestable.

The results obtained for the TSOF ATPG are of high relevance since many of the
recent, more advanced fault models might be susceptible to similar glitch constraints
and a timing-unaware test pattern generation will often not be sufficient to guarantee
a successful test.

• By stepping beyond the binary yes or no answers of a SAT solver towards reasoning
about probabilities, the #SAT problem opens up a whole realm of new possibilities.
In this thesis, the accurate characterization of possibly detected faults was analyzed.
Being closely related to the test pattern generation, many of the general techniques
that are used for SAT-based ATPG can be transferred to this field of research.

The experimental results showed that it is indeed possible to characterize most of the
faults that a commercial ATPG can only classify as possibly detected. The results
also revealed that the probability of detecting a possibly detected fault is highly
circuit-dependent and cannot be estimated by a simple weighting factor without any
additional knowledge.

Moreover, the massive parallelization of the #SAT solve process was successfully
performed and analyzed. The results showed that, given a sufficient amount of com-
putation power, even very difficult problems can be solved successfully. The proposed
methodology scales very well even with a large amount of CPU cores. In addition,
the solve progress estimation and total solve time estimate were shown to be good
predictions. Based on this prediction, the soft timeout mechanism was successfully
applied to the characterization of the possibly detected faults.

The experiments that were performed in this work highlight that SAT and #SAT-based
approaches are very powerful and can provide relevant information that would otherwise
not be available. In addition, the simplicity of adding constraints and conditions to a
Boolean formula makes such approaches easily extensible and upgradeable should any of
the requirements change.
This extensibility also allows for a multitude of possible future research. As the work on

D-chains has shown, there are still many opportunities to greatly increase the solve speed
by developing and improving supplementary data structures that guide the solve process.
The TSOF ATPG showed how advanced fault models with complex requirements can be
incorporated in a SAT-based ATPG flow. Here, an analysis of different fault models might
yield further insights into the real requirements for a successful fault detection. Finally,
the application of a #SAT solver in the realm of circuit test is only in its infancy. This
thesis has shown the great potential of #SAT by extracting relevant information in an
efficient manner. There might be many more areas that require an accurate computation
of probabilities that could benefit from applying a #SAT solver.
Overall, this thesis clearly shows that by applying SAT-based methods to circuit test

one can reason about advanced and complex effects and gain additional relevant insights.

151

Appendix

152

A. Experimental Setup

The experiments are performed on four identical compute nodes each of which is equipped
with a single quad-core Intel Xeon E5-2643 CPU clocked at 3.3GHz. To evaluate the
distributed parallel #SAT solver dCountAntom the computational resources of the bwUni-
Cluster are used which provides 512 homogeneous servers with two octa-cora Intel Xean
E5-2670 CPUs. The servers are connected by an InfiniBand 4X FDR interconnect.

A.1. Solver Description

• antom [13], [14] is a SAT solver that supports an incremental solving mode and
assumptions. It is developed at the University of Freiburg by Tobias Schubert and
Sven Reimer.

• countAntom [C4] is a multi-threaded #SAT solver based on antom. The development
of countAntom started in the scope of the Master thesis by the author. It is further
extended by improvements discussed in this work.

• dCountAntom [C5] is a distributed parallel #SAT solver based on countAntom that
is described in this work.

A.2. Circuit Information

In this thesis benchmark circuits from four different sources are used to provide a thorough
and extensive evaluation of the proposed algorithms. The circuits are from the ITC’99
[100] and IWLS 2005 [101] benchmark collections, industrial designs from NXP as well
as combinational small scale AES implementations [W2]. Table A.1 summarizes the most
relevant circuit information.

154

A.2. Circuit Information

Table A.1.: Overview of the considered benchmark circuits.
Circuit # Inputs # Flip-Flops # Gates % Complex

IT
C
’9
9

b15 37 449 3 395 51.05
b17 38 1 414 11 345 50.38
b18 38 3 270 34 936 45.28
b20 33 490 5 844 46.92
b21 33 490 5 899 47.04
b22 33 703 8 144 46.67

IW
LS

aes_core 259 530 11 082 38.43
pci_bridge32 161 3 358 6 316 69.19
vga_lcd 87 17 079 31 501 81.19
wb_conmax 1 130 770 15 810 57.64

N
X
P

p35k 742 2 173 8 591 65.18
p45k 1 411 2 331 11 413 46.74
p78k 174 2 977 25 740 46.57
p81k 155 3 877 44 559 34.16
p89k 406 4 225 25 209 48.13
p100k 170 5 395 25 633 49.33
p267k 807 14 628 47 986 57.35
p295k 46 16 358 52 366 61.10
p330k 1 238 11 946 54 287 44.43
p378k 850 14 885 125 824 46.98
p388k 1 219 19 367 118 920 56.36
p533k 962 28 676 185 652 55.26

A
E
S

2-2-2-8_d 64 0 5 597 34.16
2-2-2-8_e 64 0 4 887 39.14
2-4-4-4_d 128 0 2 056 13.28
2-4-4-4_e 128 0 1 726 7.13
10-2-2-4_d 32 0 1 923 18.82
10-2-2-4_e 32 0 1 936 10.18
10-2-4-4_d 64 0 3 462 19.64
10-2-4-4_e 64 0 3 515 9.59

155

B. Complete List of Publications by the
Author

Journal Articles

[J1] J. Burchard, D. Erb, S. M. Reddy, A. D. Singh, and B. Becker, “On the generation
of waveform-accurate hazard and charge-sharing aware tests for transistor stuck-off
faults in CMOS logic circuits”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2017. doi: 10.1109/TCAD.2017.2772825.

[J2] P. Raiola, J. Burchard, F. Neubauer, D. Erb, and B. Becker, “Evaluating the ef-
fectiveness of D-chains in SAT-based ATPG and diagnostic TPG”, Journal of Elec-
tronic Testing: Theory and Applications (JETTA), 2017. doi: 10.1007/s10836-
017-5693-6.

Conference Papers in Formal Proceedings

[C1] J. Burchard, F. Neubauer, P. Raiola, D. Erb, and B. Becker, “Evaluating the ef-
fectiveness of D-chains in SAT-based ATPG”, in 18th IEEE Latin American Test
Symposium (LATS), 2017. doi: 10.1109/LATW.2017.7906752.

[C2] J. Burchard, D. Erb, A. D. Singh, S. M. Reddy, and B. Becker, “Fast and waveform-
accurate hazard-aware SAT-based TSOF ATPG”, in Design, Automation and Test
in Europe (DATE), 2017, Best Paper Award in the Test Category, 2017. doi: 10.
23919/DATE.2017.7927027.

[C3] J. Burchard, D. Erb, S. M. Reddy, A. D. Singh, and B. Becker, “Efficient SAT-based
generation of hazard-activated TSOF tests”, in IEEE 35th VLSI Test Symposium
(VTS), 2017. doi: 10.1109/VTS.2017.7928943.

[C4] J. Burchard, T. Schubert, and B. Becker, “Laissez-faire caching for parallel #SAT
solving”, in SAT 2015, ser. Lecture Notes in Computer Science, Springer Interna-
tional Publishing, 2015. doi: 10.1007/978-3-319-24318-4_5.

[C5] J. Burchard, T. Schubert, and B. Becker, “Distributed parallel #SAT solving”,
in IEEE International Conference on Cluster Computing (CLUSTER), 2016. doi:
10.1109/CLUSTER.2016.20.

[C6] J. Burchard, D. Erb, and B. Becker, “Characterization of possibly detected faults
by accurately computing their detection probability”, in Design, Automation and
Test in Europe (DATE), 2018, 2018. doi: 10.23919/DATE.2018.8342040.

[C7] T. Schubert, J. Burchard, M. Sauer, and B. Becker, “S-trike: a mobile robot platform
for higher education”, in International Conference on Computer Applications in
Industry and Engineering, 2013.

156

http://dx.doi.org/10.1109/TCAD.2017.2772825
http://dx.doi.org/10.1007/s10836-017-5693-6
http://dx.doi.org/10.1007/s10836-017-5693-6
http://dx.doi.org/10.1109/LATW.2017.7906752
http://dx.doi.org/10.23919/DATE.2017.7927027
http://dx.doi.org/10.23919/DATE.2017.7927027
http://dx.doi.org/10.1109/VTS.2017.7928943
http://dx.doi.org/10.1007/978-3-319-24318-4_5
http://dx.doi.org/10.1109/CLUSTER.2016.20
http://dx.doi.org/10.23919/DATE.2018.8342040

[C8] J. Horáček, J. Burchard, B. Becker, and M. Kreuzer, “Integrating algebraic and
SAT solvers”, in International Conference on Mathematical Aspects of Computer
and Information Sciences (MACIS), 2017. doi: 10.1007/978-3-319-72453-9_11.

Workshop Articles

[W1] M. Sauer, J. Burchard, T. Schubert, I. Polian, and B. Becker, “Waveform-guided
fault injection by clock manipulation”, in TRUDEVICE Workshop, 2013.

[W2] M. Gay, J. Burchard, J. Horáček, A. M. Ekossono, T. Schubert, B. Becker, I. Polian,
and M. Kreuzer, “Small scale AES toolbox: algebraic and propositional formulas,
circuit-implementations and fault equations”, in FCTRU, 2016.

[W3] J. Burchard, A. M. Ekossono, J. Horáček, T. Schubert, M. Gay, B. Becker, M.
Kreuzer, and I. Polian, “Towards mixed structural-functional models for algebraic
fault attacks on ciphers”, in International Verification and Security Workshop
(IVSW), 2017.

[W4] ——, “Towards mixed structural-functional models for algebraic fault attacks on
ciphers”, in RESCUE Workshop on Reliability, Security and Quality at ETS, 2017.

[W5] J. Burchard, M. Gay, A. M. Ekossono, J. Horáček, T. Schubert, B. Becker, M.
Kreuzer, and I. Polian, “AutoFault: towards automatic construction of algebraic
fault attacks”, in Fault Diagnosis and Tolerance in Cryptography (FDTC), 2017.

157

http://dx.doi.org/10.1007/978-3-319-72453-9_11

List of Figures

2.1. Visualization of the DPLL solve process for Formula 2.2. 11
2.2. Visualization of the #SAT solve process for Formula 2.2. 13
2.3. Two different representations for the same digital circuit. 16
2.4. A small sequential circuit and the Boolean function it implements. 16
2.5. Partitioning a sequential circuit into its combinational core and flip-flops. . 17
2.6. Construction of a scan-chain based on scan flip-flops. 18
2.7. Adding a test point to control the value of a line L in a circuit. 19
2.8. Transistor layout of an OR-cell as implemented by [26]. 20
2.9. Two circuits with different stuck-at faults. 21
2.10. Two circuits with different transition-delay faults. 22
2.11. The transistor layout of an OR-cell with a TSOF in transistor M2. 23
2.12. The layout of a miter circuit for test pattern generation. 25
2.13. Construction of the Boolean formula that represents the circuit. 27
2.14. Modeling the fault activation condition and effect by splitting the faulty line. 27
2.15. Modeling of two time frames by unrolling the circuit. 28
2.16. Propagation of signal changes through a circuit. The value in each cell gives

the delay from its inputs to its output. 29

3.1. Only the marked areas of the circuit are required when modeling a fault
(red cross). 32

3.2. A single stuck-at fault at the input of a complex cell might correspond to
multiple stuck-at faults in the mapped circuit. 33

3.3. Incremental SAT-based ATPG framework with Of implemented as a stack. 34
3.4. Modeling of the effects of a stuck-at fault in a classic SAT-based ATPG. . . 35
3.5. Implications added by the forward D-chain. 36
3.6. List of the sub-formulas that are encoded for the forward D-chain. 36
3.7. Implications added by the backward D-chain. 37
3.8. List of the sub-formulas that are encoded for the backward D-chain. 37
3.9. Modeling of the effects of a stuck-at fault with the good-diff D-chain. 39
3.10. List of the clauses derived by parsing the function table. 40
3.11. List of optimized clauses that encode when a difference is propagated to an

output of the AND-gate. 40
3.12. List of optimized clauses that encode when a difference is propagated to an

output of the XOR-gate. 41
3.13. Modeling of the effects of a stuck-at fault with a hybrid D-chain. 42
3.14. The areas of the fault propagation cone that are modeled conventionally

and with the good-diff encoding for the static node selection heuristic. . . . 42
3.15. Node modeling by the dynamic node selection heuristic. 43

158

List of Figures

3.16. Average formula generation and solve time per fault without D-chains
or incremental solving. 45

3.17. Change in solve time for each circuit with the different D-chain variants
compared to utilizing no D-chain at all. 47

3.18. Average change in solve time for the different D-chain variants per circuit
class. 48

3.19. Total number of timeouts per circuit class for each D-chain. 48
3.20. Average increase in formula size (measured in the number of clauses) de-

pending on the circuit class and D-chain. 49
3.21. Average change in solve time for the different D-chain variants grouped by

the different circuit classes with the incremental solving mode. 50
3.22. Average change in solve time for the different D-chain variants grouped by

the different circuit classes when utilizing fault simulation. 51

4.1. Only the marked areas of the circuit in the two time frames are required
when modeling the TSOF marked by the red cross. 61

4.2. Modeling a TSOF in a circuit by removing the faulty cell. The cell’s inputs
and output are then forced to specific values by the ATPG. 62

4.3. List of the conditions that enforce the fault activation and set the output
values for the considered TSOF in the multiplexer. 63

4.4. Overview of the basic SAT-based TSOF ATPG flow. The Boolean formula
is only created once per cell. The different faults and different detection
patterns per fault are then added as assumptions to this formula. 64

4.5. Propagation of signal changes through a circuit. The value in each cell
indicates the delay from the inputs to the output. 65

4.6. Applying “00”, then “11” and, finally, “10” to an OR-cell with a TSOF in M2. 66
4.7. Transistor layout of an OR-AND-Invert-cell. 67
4.8. The problem of charge-sharing in TSOF-testing: In the second time frame,

the charge of ZN is shared with an unknown charge from the M4-M5
interconnect. 68

4.9. Overview of the developed detection library computation flow. 70
4.10. Mitigating the charge-sharing conflict by charging the M4-M5 interconnect. 72
4.11. The circular implication which ensures total glitch freedom at input i of the

fault-affected cell when stableStrongi = true. 74
4.12. List of the clauses that encode the strong stability condition. 75
4.13. Advanced glitch timing considerations that are modeled by the weak stabil-

ity condition. 75
4.14. The implications that are required to model the weak stability condition.

To assign a stableWeaki variable to true, all outgoing implications need to
be satisfied. 76

4.15. List of the clauses that encode the weak stability condition for input i. . . . 77
4.16. Comparison of the weak stability condition and glitch-initialization. 77
4.17. List of the clauses encoding the init vector for the initialization pattern “11”. 78
4.18. The implications that model whether the applied input assignment is valid.

valid[t] can be assigned to true if one of the outgoing implications is satisfied. 79

159

List of Figures

4.19. Examples of how the proposed modeling of glitches handles the different
ways a faulty cell might be initialized. 80

4.20. Mitigating a charge-sharing conflict during the test of an AND-OR-Invert-
cell by switching the input A2 first. 81

4.21. The assignment of the new variables when encoding a switching order ini-
tialization. 82

4.22. Mitigating a charge-sharing conflict during the test of an AND-OR-Invert-
cell by a glitch on input A1. 83

4.23. Transferring the timing of a complex cell to its logic gate definition. 86
4.24. Only the marked areas of the circuit are required when modeling an addi-

tional pre-charging time frame. 87
4.25. Overview of the complete TSOF ATPG flow. The list of undetected faults

in the current cell is continuously updated to avoid the creation of multiple
test patterns for the same fault. The black arrows indicate the program
flow, the green arrows the flow of information. 88

4.26. Achieved fault coverage with the different TSOF ATPG modes. 90
4.27.Average runtime per fault for the ITC’99, IWLS and NXP circuits with

the different TSOF ATPG modes. 91
4.28.Average runtime per fault for the AES circuits with the different TSOF

ATPG modes. 92
4.29. Average and maximum number of Tvars for inputs with a stability re-

quirement. 93
4.30.Coverage of faults with a stability requirement. 94
4.31.Coverage of conventionally untestable faults through glitch-initialization. . 94
4.32.Coverage of conventionally untestable faults by resolving the charge-

sharing conflict. 95
4.33. Average portion of charge-sharing sensitive faults that can be tested

because of the switching order or by glitches. 96
4.34. Additional fault coverage when ignoring all charge-sharing conflicts. . . . 96
4.35. Achieved fault coverage when enforcing different minimum event duration

requirements. 97
4.36. Share of test patterns, generated without timing-awareness, that have a

charge-sharing conflict or are invalidated by a glitch. 98
4.37.Change in solve time when using the backward or the hybrid dynamic

D-chain in comparison to using no D-chain. 99

5.1. The solve loop of countAntom. 107
5.2. The dCountAntom solver structure forms a star network. 110
5.3. dCountAntom solve flow. For simplicity only a single slave process is drawn. 111
5.4. Estimating the solve progress of the #SAT solver by counting the fraction

of the decision tree that has already been analyzed. Each node is annotated
with the fraction it represents. 116

5.5. Speedup of dCountAntom with up to 256 CPU cores compared to the single
thread runtime of countAntom. 119

5.6. Number of solved sub-problems by the slave processes. 121

160

List of Figures

5.7. Cumulated number of timeouts while solving OP_c6288 with different
numbers of CPU cores. 122

5.8. Progress estimate and predicted remaining and total solve time for
four different formulas. The dashed blue line shows the real solve time. . . . 124

6.1. The test pattern “1X0” possibly detects both the stuck-at-0 fault as well as
the stuck-at-1 fault. 128

6.2. Overview of the algorithm to characterize possibly detected faults. The blue
arrows show the program flow, green arrows indicate the flow of information. 131

6.3. Computing the detection probability of a fault for a given test pattern. . . . 132
6.4. The output o1 is in the propagation cone of the fault, but the fault effect

can never be detected there. 134
6.5. Characterization of the possibly detected faults in each circuit. 137
6.6. Average overall detection probability of all possibly detected faults. . . 138
6.7. Average detection probability of the potentially detected faults. 139
6.8. Average reduction of the number of outputs that can show a difference and

of the number of X-inputs that can be chosen freely. 140
6.9. Some formulas can be quickly solved through one of the optimizations.

The remaining formulas are solved with the #SAT solver. 140
6.10. Number of faults with a timeout for every test pattern or for some of the

test patterns that possibly detect the fault. 141
6.11. Number of formulas that are solved after the soft timeout and number of

formulas that are aborted early, after the soft timeout, already. 142
6.12. The average computation time for each combination of fault and test

pattern for the different improvements and the #SAT solver. 143
6.13.Characterization of the possibly detected faults when 1% of circuit

inputs are forced to be X. 144
6.14. Average overall detection probability of the possibly detected faults

when 1% of circuit inputs are forced to be X. 145

161

List of Tables

2.1. Common operators in Boolean formulas. 7
2.2. Advanced operators in Boolean formulas. 7
2.3. The representation of the different Boolean operators as sub-formulas in CNF. 9
2.4. Converting Formula 2.1 into CNF with the Tseitin Transformation. 10
2.5. Basic cells and their corresponding Boolean functions. 15
2.6. Two complex cells with their corresponding Boolean functions. 15

3.1. The difference at the output, Do, depending on the input values of a two-
input AND-gate. 39

3.2. Results of the test pattern generation without a D-chain. 53
3.3. Change in solve time (in %) when utilizing the different D-chains compared

to the ATPG without any D-chains. 54
3.4. Initial solve time without any D-chains and change in solve time (in %)

when utilizing the different D-chains in the incremental solving mode. . . . 55
3.5. Solve time (top row, in s) and number of solver calls (bottom row) for the

different D-chains when fault simulation is used. 56

4.1. Results of the test pattern generation by the TSOF ATPG with a timeout
of 10 s per fault. 101

4.2. Fault coverage for the different modes of the TSOF ATPG. 102

5.1. The number of variables and clauses in each of the benchmark formulas and
the single core solve time of countAntom, sharpSAT and ApproxMC in seconds. 118

6.1. Comparison of the #SAT solver solve time with 1 and 256 cores. 143
6.2. Results of the test pattern generation by a commercial ATPG without any

input restrictions. 147
6.3. Characterization of the possibly detected faults and average detection prob-

ability with the pessimistic and optimistic estimation. 148
6.4. Results of the test pattern generation by a commercial ATPG when 1% of

primary and secondary circuit inputs are always assigned to X. 149

A.1. Overview of the considered benchmark circuits. 155

162

163

Bibliography

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. Amsterdam, The Nether-
lands: IOS Press, 2009, isbn: 1586039296, 9781586039295.

[2] H.-J. Wunderlich,Models in Hardware Testing: Lecture Notes of the Forum in Honor
of Christian Landrault, 1st. Springer Publishing Company, Incorporated, 2009, isbn:
9048132819, 9789048132812.

[3] S. A. Cook, “The complexity of theorem-proving procedures”, in Proceedings of the
Third Annual ACM Symposium on Theory of Computing, ser. STOC ’71, Shaker
Heights, Ohio, USA: ACM. doi: 10.1145/800157.805047.

[4] G. Tseitin, “On the Complexity of Derivation in Propositional Calculus”, Studies in
Constructive Mathematics and Mathematical Logic, 1968.

[5] B. Selman, H. Levesque, and D. Mitchell, “A new method for solving hard satis-
fiability problems”, in Proceedings of the Tenth National Conference on Artificial
Intelligence, ser. AAAI’92, 1992, isbn: 0-262-51063-4.

[6] B. Selman, H. A. Kautz, and B. Cohen, “Local search strategies for satisfiability
testing”, in DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 1996.

[7] M. Davis and H. Putnam, “A computing procedure for quantification theory”, J.
ACM, vol. 7, no. 3, pp. 201–215, Jul. 1960. doi: 10.1145/321033.321034.

[8] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-
proving”, Commun. ACM, 1962. doi: 10.1145/368273.368557.

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: en-
gineering an efficient SAT solver”, in 38th Design Automation Conference (DAC),
2001. doi: 10.1145/378239.379017.

[10] N. Eén and N. Sörensson, “An extensible SAT-solver”, in Theory and Applications
of Satisfiability Testing (SAT), 2004. doi: 10.1007/978-3-540-24605-3_37.

[11] N. Eén and A. Biere, “Effective preprocessing in SAT through variable and clause
elimination”, in Theory and Applications of Satisfiability Testing (SAT), F. Bacchus
and T. Walsh, Eds., 2005. doi: 10.1007/11499107_5.

[12] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to cryptographic
problems”, in International Conference on Theory and Applications of Satisfiability
Testing (SAT), Swansea, UK, 2009. doi: 10.1007/978-3-642-02777-2_24.

[13] T. Schubert, M. Lewis, and B. Becker, “Antom – solver description”, SAT Race,
2010.

164

http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/321033.321034
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/978-3-642-02777-2_24

Bibliography

[14] T. Schubert and S. Reimer, “Antom”, in https: // projects. informatik. uni-
freiburg. de/ projects/ antom , 2016.

[15] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs”, in Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 1999. doi: 10.1007/3-540-49059-0_14.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990,
isbn: 0716710455.

[17] R. H. Katz, Contemporary Logic Design, 1st. Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc., 1994, isbn: 0805327134.

[18] H. T. Nagle, S. C. Roy, C. F. Hawkins, M. G. McNamer, and R. R. Fritzemeier, “De-
sign for testability and built-in self test: a review”, IEEE Transactions on Industrial
Electronics, vol. 36, no. 2, 1989. doi: 10.1109/41.19062.

[19] M. K. Reddy and S. M. Reddy, “Detecting FET stuck-open faults in CMOS latches
and flip-flops”, IEEE Design Test of Computers, vol. 3, no. 5, 1986. doi: 10.1109/
MDT.1986.295040.

[20] S. R. Maka and E. J. McCluskey, “ATPG for scan chain latches and flip-flops”, in
15th IEEE VLSI Test Symposium, 1997. doi: 10.1109/VTEST.1997.600306.

[21] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomeranz, “De-
tection of internal stuck-open faults in scan chains”, in IEEE International Test
Conference, 2008. doi: 10.1109/TEST.2008.4700577.

[22] J. Savir and S. Patil, “Broad-side delay test”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 13, no. 8, 1994.

[23] J. Saxena, K. M. Butler, J. Gatt, R. Raghuraman, S. P. Kumar, S. Basu, D. J.
Campbell, and J. Berech, “Scan-based transition fault testing - implementation and
low cost test challenges”, in Proceedings. International Test Conference, 2002. doi:
10.1109/TEST.2002.1041869.

[24] S. Dasgupta, R. G. Walther, T. W Williams, and E. B. Eichelberger, “An enhance-
ment to lssd and some applications of lssd in reliability, availability and serviceabil-
ity”, in Symposium on Fault-Tolerant Computing, 1981.

[25] F. M. Wanlass, “Low stand-by power complementary field effect circuitry”, pat.
3,356,858, 1963.

[26] Si2, NanGate FreePDK45 generic open cell library, v1.3, http://www.si2.org/
openeda.si2.org/projects/nangatelib.

[27] J. M. Galey, R. E. Norby, and J. P. Roth, “Techniques for the diagnosis of switching
circuit failures”, in 2nd Annual Symposium on Switching Circuit Theory and Logical
Design (SWCT), 1961. doi: 10.1109/FOCS.1961.33.

[28] E. R. Hsieh, R. A. Rasmussen, L. J. Vidunas, and W. T. Davis, “Delay test gen-
eration”, in Proceedings of the 14th Design Automation Conference, ser. DAC ’77,
IEEE Press, 1977.

165

https://projects.informatik.uni-freiburg.de/projects/antom
https://projects.informatik.uni-freiburg.de/projects/antom
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1109/41.19062
http://dx.doi.org/10.1109/MDT.1986.295040
http://dx.doi.org/10.1109/MDT.1986.295040
http://dx.doi.org/10.1109/VTEST.1997.600306
http://dx.doi.org/10.1109/TEST.2008.4700577
http://dx.doi.org/10.1109/TEST.2002.1041869
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://dx.doi.org/10.1109/FOCS.1961.33

Bibliography

[29] R. L. Wadsack, “Fault modeling and logic simulation of CMOS and MOS integrated
circuits”, Bell System Technical Journal, vol. 57, no. 5, 1978. doi: 10.1002/j.1538-
7305.1978.tb02106.x.

[30] G. L. Smith, “Model for delay faults based upon paths”, in International Test Con-
ference, 1985.

[31] I. Pomeranz and S. M. Reddy, “Transition path delay faults: a new path delay fault
model for small and large delay defects”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 1, 2008. doi: 10.1109/TVLSI.2007.909796.

[32] S. M. Reddy, “Models for delay faults”, in Models in Hardware Testing, H.-J. Wun-
derlich, Ed. Springer Netherlands, 2010, pp. 71–103. doi: 10.1007/978-90-481-
3282-9_3.

[33] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava, M. Keim,
J. Schloeffel, and A. Fast, “Cell-aware test”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 33, no. 9, 2014. doi: 10.1109/TCAD.
2014.2323216.

[34] F. Hapke, M. Reese, J. Rivers, A. Over, V. Ravikumar, W. Redemund, A. Glowatz,
J. Schloeffel, and J. Rajski, “Cell-aware production test results from a 32-nm note-
book processor”, in IEEE International Test Conference, 2012. doi: 10.1109/TEST.
2012.6401533.

[35] F. Hapke, R. Arnold, M. Beck, et al., “Cell-aware experiences in a high-quality
automotive test suite”, in IEEE European Test Symposium (ETS), 2014. doi: 10.
1109/ETS.2014.6847814.

[36] J. P. Roth, “Diagnosis of automata failures: a calculus and a method”, IBM Journal
of Research and Development, vol. 10, no. 4, 1966. doi: 10.1147/rd.104.0278.

[37] P. Goel, “An implicit enumeration algorithm to generate tests for combinational
logic circuits”, IEEE Transactions on Computers, vol. C-30, no. 3, 1981. doi: 10.
1109/TC.1981.1675757.

[38] H. Fujiwara and T. Shimono, “On the acceleration of test generation algorithms”,
IEEE Transactions on Computers, vol. C-32, no. 12, 1983. doi: 10.1109/TC.1983.
1676174.

[39] T. Larrabee, “Test pattern generation using Boolean satisfiability”, IEEE Transac-
tions on Computer-Aided Design, vol. 11, no. 1, 1992. doi: 10.1109/43.108614.

[40] D. Tille and R. Drechsler, “A fast untestability proof for SAT-based ATPG”, in 12th
International Symposium on Design and Diagnostics of Electronic Circuits Systems,
2009. doi: 10.1109/DDECS.2009.5012096.

[41] J. Shi, G. Fey, R. Drechsler, A. Glowatz, J. Schloffel, and F. Hapke, “Experimental
studies on SAT-based test pattern generation for industrial circuits”, in 6th Inter-
national Conference on ASIC, vol. 2, 2005. doi: 10.1109/ICASIC.2005.1611489.

[42] P. Tafertshofer and A. Ganz, “SAT based ATPG using fast justification and prop-
agation in the implication graph”, in IEEE/ACM International Conference on
Computer-Aided Design, 1999. doi: 10.1109/ICCAD.1999.810638.

166

http://dx.doi.org/10.1002/j.1538-7305.1978.tb02106.x
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02106.x
http://dx.doi.org/10.1109/TVLSI.2007.909796
http://dx.doi.org/10.1007/978-90-481-3282-9_3
http://dx.doi.org/10.1007/978-90-481-3282-9_3
http://dx.doi.org/10.1109/TCAD.2014.2323216
http://dx.doi.org/10.1109/TCAD.2014.2323216
http://dx.doi.org/10.1109/TEST.2012.6401533
http://dx.doi.org/10.1109/TEST.2012.6401533
http://dx.doi.org/10.1109/ETS.2014.6847814
http://dx.doi.org/10.1109/ETS.2014.6847814
http://dx.doi.org/10.1147/rd.104.0278
http://dx.doi.org/10.1109/TC.1981.1675757
http://dx.doi.org/10.1109/TC.1981.1675757
http://dx.doi.org/10.1109/TC.1983.1676174
http://dx.doi.org/10.1109/TC.1983.1676174
http://dx.doi.org/10.1109/43.108614
http://dx.doi.org/10.1109/DDECS.2009.5012096
http://dx.doi.org/10.1109/ICASIC.2005.1611489
http://dx.doi.org/10.1109/ICCAD.1999.810638

Bibliography

[43] S. Eggersglüß, R. Krenz-Bååth, A. Glowatz, F. Hapke, and R. Drechsler, “A new
SAT-based ATPG for generating highly compacted test sets”, in IEEE 15th In-
ternational Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), 2012. doi: 10.1109/DDECS.2012.6219063.

[44] M. Sauer, B. Becker, and I. Polian, “PHAETON: a SAT-based framework for timing-
aware path sensitization”, IEEE Transactions on Computers, vol. 65, no. 6, 2016.
doi: 10.1109/TC.2015.2458869.

[45] D. Erb, K. Scheibler, M. A. Kochte, M. Sauer, H. J. Wunderlich, and B. Becker,
“Mixed 01X-RSL-encoding for fast and accurate ATPG with unknowns”, in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC), 2016. doi:
10.1109/ASPDAC.2016.7428101.

[46] K. Scheibler, D. Erb, and B. Becker, “Accurate CEGAR-based ATPG in presence
of unknown values for large industrial designs”, in 2016 Design, Automation Test
in Europe Conference Exhibition (DATE), 2016, isbn: 978-3-9815370-6-2.

[47] D. Tille and R. Drechsler, “Incremental SAT instance generation for SAT-based
ATPG”, in 2008 11th IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems, 2008. doi: 10.1109/DDECS.2008.4538759.

[48] M. Sauer, A. Czutro, I. Polian, and B. Becker, “Small-delay-fault ATPG with wave-
form accuracy”, in Int’l Conf. on CAD, 2012.

[49] D. Brand, “Verification of large synthesized designs”, in International Conference
on Computer Aided Design (ICCAD), 1993. doi: 10.1109/ICCAD.1993.580110.

[50] G. Fey, J. Shi, and R. Drechsler, “Efficiency of multi-valued encoding in SAT-based
ATPG”, in 36th International Symposium on Multiple-Valued Logic (ISMVL’06),
2006. doi: 10.1109/ISMVL.2006.19.

[51] K. Yang, K. T. Cheng, and L. C. Wang, “Trangen: a SAT-based ATPG for path-
oriented transition faults”, in ASP-DAC: Asia and South Pacific Design Automation
Conference, 2004, pp. 92–97.

[52] H. Chen and J. Marques-Silva, “Tg-pro: a new model for SAT-based ATPG”, in
IEEE International High Level Design Validation and Test Workshop, 2009, pp. 76–
81.

[53] D. Erb, K. Scheibler, M. Sauer, and B. Becker, “Efficient SMT-based ATPG for
interconnect open defects”, in Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2014. doi: 10.7873/DATE.2014.138.

[54] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Combinational test
generation using satisfiability”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 15, no. 9, 1996. doi: 10.1109/43.536723.

[55] D. Erb, K. Scheibler, M. A. Kochte, M. Sauer, H. J. Wunderlich, and B. Becker,
“Test pattern generation in presence of unknown values based on restricted symbolic
logic”, in ITC, 2014. doi: 10.1109/TEST.2014.7035350.

[56] H. Chen and J. Marques-Silva, “A two-variable model for SAT-based ATPG”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
32, no. 12, 2013. doi: 10.1109/TCAD.2013.2275254.

167

http://dx.doi.org/10.1109/DDECS.2012.6219063
http://dx.doi.org/10.1109/TC.2015.2458869
http://dx.doi.org/10.1109/ASPDAC.2016.7428101
http://dx.doi.org/10.1109/DDECS.2008.4538759
http://dx.doi.org/10.1109/ICCAD.1993.580110
http://dx.doi.org/10.1109/ISMVL.2006.19
http://dx.doi.org/10.7873/DATE.2014.138
http://dx.doi.org/10.1109/43.536723
http://dx.doi.org/10.1109/TEST.2014.7035350
http://dx.doi.org/10.1109/TCAD.2013.2275254

Bibliography

[57] A. Riefert, Test and Diagnosis of Embedded Processor Cores with Formal Methods.
Der Andere Verlag, 2016.

[58] I. Hamzaoglu and J. H. Patel, “New techniques for deterministic test pattern gen-
eration”, Journal of Electronic Testing, vol. 15, no. 1, 1999. doi: 10 . 1023 / A :
1008355411566.

[59] K. H. Rosen, Discrete Mathematics and Its Applications, 5th. McGraw-Hill Higher
Education, 2002, isbn: 0072424346.

[60] N. Devtaprasanna, A. Gunda, P. Krishnamurthy, S. M. Reddy, and I. Pomeranz, “A
unified method to detect transistor stuck-open faults and transition delay faults”,
in IEEE European Test Symposium, 2006.

[61] S. K. Jain and V. D. Agrawal, “Test generation for MOS circuits using D-algorithm”,
in Design Automation Conference, ser. DAC ’83, Miami Beach, Florida, USA: IEEE
Press, 1983, isbn: 0-8186-0026-8.

[62] S. M. Reddy, M. K. Reddy, and J. G. Kuhl, “On testable design for CMOS logic
circuits.”, in International Test Conference, Philadelphia, PA, USA, 1983.

[63] D. L. Liu and E. J. McCluskey, “Designing CMOS circuits for switch-level testabil-
ity”, IEEE Design Test of Computers, vol. 4, no. 4, 1987.

[64] K. J. Lee and M. A. Breuer, “On the charge sharing problem in CMOS stuck-open
fault testing”, in IEEE International Test Conference, 1990.

[65] N. K. Jha and J. A. Abraham, “Design of testable CMOS logic circuits under arbi-
trary delays”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 4, no. 3, 1985. doi: 10.1109/TCAD.1985.1270122.

[66] S. Kundu and S. M. Reddy, “On the design of robust testable CMOS combinational
logic circuits”, in Fault-Tolerant Computing, FTCS-18, 1988.

[67] S. M. Reddy and M. K. Reddy, “Testable realizations for FET stuck-open faults in
CMOS combinational logic circuits”, IEEE Transactions on Computers, vol. C-35,
no. 8, 1986.

[68] S. Chakravarty, “A testable realization of CMOS combinational circuits”, in Inter-
national Test Conference, 1989.

[69] S. M. Reddy, M. K. Reddy, and V. Agrawal, “Robust tests for stuck-open faults in
CMOS combinational logic circuits”, in Fault-Tolerant Computing, FTCS-14, 1984.

[70] M. Yoeli and S. Rinon, “Application of ternary algebra to the study of static haz-
ards”, J. ACM, 1964.

[71] I. Pomeranz and S. M. Reddy, “Hazard-based detection conditions for improved
transition path delay fault coverage”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 29, no. 9, 2010. doi: 10.1109/TCAD.2010.
2049462.

[72] ——, “Hazard-based detection conditions for improved transition fault coverage
of scan-based tests”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 2, 2010. doi: 10.1109/TVLSI.2008.2010216.

168

http://dx.doi.org/10.1023/A:1008355411566
http://dx.doi.org/10.1023/A:1008355411566
http://dx.doi.org/10.1109/TCAD.1985.1270122
http://dx.doi.org/10.1109/TCAD.2010.2049462
http://dx.doi.org/10.1109/TCAD.2010.2049462
http://dx.doi.org/10.1109/TVLSI.2008.2010216

Bibliography

[73] I. Pomeranz, “Static test compaction for transition faults under the hazard-based
detection conditions”, in IEEE 30th VLSI Test Symposium (VTS), 2012. doi: 10.
1109/VTS.2012.6231099.

[74] W. Shockley, “Problems related to p-n junctions in silicon”, Solid-State Electronics,
vol. 2, no. 1, 1961. doi: 10.1016/0038-1101(61)90054-5.

[75] W. Schemmert and G. Zimmer, “Threshold-voltage sensitivity of ion-implanted
m.o.s. transistors due to process variations”, Electronics Letters, vol. 10, no. 9, 1974.
doi: 10.1049/el:19740115.

[76] B. Kempf, “The boost.threads library”, C/C++ Users Journal, 2002.

[77] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi, “Combining component
caching and clause learning for effective model counting”, in SAT 2004, 2004.

[78] Message Passing Forum, “MPI: a message-passing interface standard”, Knoxville,
TN, USA, Tech. Rep., 1994.

[79] T. Schubert, M. D. T. Lewis, and B. Becker, “PaMiraXT: parallel SAT solving with
threads and message passing”, JSAT, vol. 6, no. 4, 2009.

[80] M. Thurley, “sharpSAT: counting models with advanced component caching and
implicit BCP”, in SAT 2006, 2006.

[81] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate model
counter”, in Proceedings of the 19th International Conference on Principles and
Practice of Constraint Programming - Volume 8124, Uppsala, Sweden: Springer-
Verlag New York, Inc., 2013. doi: 10.1007/978-3-642-40627-0_18.

[82] ——, “Algorithmic improvements in approximate counting for probabilistic infer-
ence: from linear to logarithmic SAT calls”, in Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence (IJCAI), New York, New York,
USA, 2016, isbn: 978-1-57735-770-4.

[83] M. Böhm and E. Speckenmeyer, “A fast parallel SAT-solver — efficient workload
balancing”, Annals of Mathematics and Artificial Intelligence, vol. 17, no. 2, 1996.
doi: 10.1007/BF02127976.

[84] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver”, JSAT, vol.
6, no. 4, 2009.

[85] W. Chrabakh and R. Wolski, “GridSAT: a chaff-based distributed SAT solver for
the grid”, in Supercomputing, 2003 ACM/IEEE Conference, 2003. doi: 10.1145/
1048935.1050188.

[86] Y. Hamadi, S. Jabbour, and L. Sais, “Manysat: a parallel sat solver”, JSAT, vol. 6,
2009.

[87] M. Kaufmann, S. Kottler, M. Kaufmann, and S. Kottler, “SArTagnan - a parallel
portfolio SAT solver with lockless physical clause sharing”, in In Pragmatics of SAT,
2011.

[88] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfolio SAT
solver”, CoRR, vol. abs/1505.03340, 2015.

169

http://dx.doi.org/10.1109/VTS.2012.6231099
http://dx.doi.org/10.1109/VTS.2012.6231099
http://dx.doi.org/10.1016/0038-1101(61)90054-5
http://dx.doi.org/10.1049/el:19740115
http://dx.doi.org/10.1007/978-3-642-40627-0_18
http://dx.doi.org/10.1007/BF02127976
http://dx.doi.org/10.1145/1048935.1050188
http://dx.doi.org/10.1145/1048935.1050188

Bibliography

[89] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “Compactest: a method to generate
compact test sets for combinational circuits”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, no. 7, 1993. doi: 10.
1109/43.238040.

[90] N. Zacharia, J. Rajski, and J. Tyszer, “Decompression of test data using variable-
length seed LFSRs”, in Proceedings 13th IEEE VLSI Test Symposium, 1995. doi:
10.1109/VTEST.1995.512670.

[91] H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley, “Synchronizing sequences and
symbolic traversal techniques in test generation”, Journal of Electronic Testing, vol.
4, no. 1, 1993. doi: 10.1007/BF00971937.

[92] I. Pomeranz and S. M. Reddy, “On synchronizable circuits and their synchronizing
sequences”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, no. 9, 2000. doi: 10.1109/43.863649.

[93] M. Keim, B. Becker, and B. Stenner, “On the (non-)resetability of synchronous
sequential circuits”, in Proceedings of 14th VLSI Test Symposium, 1996. doi: 10.
1109/VTEST.1996.510863.

[94] D. Erb, M. A. Kochte, S. Reimer, M. Sauer, H. J. Wunderlich, and B. Becker,
“Accurate QBF-based test pattern generation in presence of unknown values”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 12, 2015.

[95] M. Elm, M. A. Kochte, and H.-J. Wunderlich, “On determining the real output
Xs by SAT-based reasoning”, in Proc. IEEE Asian Test Symposium, 2010. doi:
10.1109/ATS.2010.16.

[96] H.-Z. Chou, K.-H. Chang, and S.-Y. Kuo, “Accurately handle don’t-care conditions
in high-level designs and application for reducing initialized registers”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no.
4, 2010. doi: 10.1109/TCAD.2010.2042905.

[97] Tessent shell reference manual, version Software Version 2016.2, Mentor Graphics
Corporation, June 2016.

[98] TetraMAX ATPG quick reference, version Version A-2007.12, Synopsys, December
2007.

[99] M. A. Kochte and H. J. Wunderlich, “SAT-based fault coverage evaluation in the
presence of unknown values”, in 2011 Design, Automation Test in Europe, 2011.
doi: 10.1109/DATE.2011.5763209.

[100] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and first
ATPG results”, IEEE Des. Test, vol. 17, no. 3, 2000. doi: 10.1109/54.867894.

[101] C. Albrecht, “IWLS 2005 benchmarks”, in International Workshop on Logic Synthe-
sis, Jun. 2005.

170

http://dx.doi.org/10.1109/43.238040
http://dx.doi.org/10.1109/43.238040
http://dx.doi.org/10.1109/VTEST.1995.512670
http://dx.doi.org/10.1007/BF00971937
http://dx.doi.org/10.1109/43.863649
http://dx.doi.org/10.1109/VTEST.1996.510863
http://dx.doi.org/10.1109/VTEST.1996.510863
http://dx.doi.org/10.1109/ATS.2010.16
http://dx.doi.org/10.1109/TCAD.2010.2042905
http://dx.doi.org/10.1109/DATE.2011.5763209
http://dx.doi.org/10.1109/54.867894

	Zusammenfassung
	Introduction
	Contributions
	Structure
	List of Discussed Papers

	Preliminaries
	Formal Solving Methods
	Boolean Formulas
	Tseitin Transformation
	SAT-Solving
	Model Counting

	Circuit Testing
	Digital Circuits
	Improving the Testability of a Circuit
	Cell Layout
	Fault Models
	Automatic Test Pattern Generation
	SAT-Based Test Pattern Generation
	Modeling Time in SAT-Based ATPG

	Advanced Modeling Techniques for SAT-Based ATPG
	Optimized Stuck-At ATPG
	Modeling Merely the Required Parts of the Circuit
	Accurately Modeling Complex Cells
	Incremental Solving

	D-Chains
	Forward D-Chain
	Backward D-Chain
	Combined Backward-Forward D-Chain

	Good-Diff D-Chain
	Gate Encoding

	Hybrid D-Chains
	Static Node Selection Heuristic
	Dynamic Node Selection Heuristic

	Evaluation
	Without D-Chain
	With D-Chains
	Incremental Solving
	Fault Simulation

	Summary

	Testing Transistor Stuck-Open Faults
	Basic Transistor Stuck-Open Fault ATPG
	Modeling Two Time Frames
	Modeling the Fault
	Incremental Solving

	Challenges
	Glitches
	Charge-Sharing
	Test Infrastructure Restrictions

	Detection Library
	Resolving Charge-Sharing Conflicts

	Handling Glitches
	Glitch-Avoidance
	Glitch-Initialization

	Charge-Sharing Mitigation
	Switching Order
	Glitch-Charging

	Minimum Event Durations
	Initialization
	Charge-Sharing Mitigation

	Glitch- and Charge-Sharing Aware TSOF ATPG
	Timing-Aware ATPG
	ATPG Flow

	Evaluation
	General ATPG Performance
	Timing-Aware ATPG
	Glitch-Initialization
	Charge-Sharing
	Minimum Event Durations
	The Importance Of Considering Glitches and Charge-Sharing
	D-Chains in the TSOF ATPG

	Summary

	#SAT-Solving
	countAntom
	Sub-Formula Splitting
	Formula Caching
	Laissez-Faire Caching
	Thread Synchronization

	dCountAntom
	Solve Flow
	The Master Process
	The Slave Processes
	MPI Communication

	Progress Estimation
	Estimating the Solve Progress
	Predicting the Solve Time

	Evaluation
	Single-Threaded Performance Comparison
	Distributed Parallel Performance
	Solve Progress Estimation

	Summary

	Accurate Characterization of Possibly Detected Faults
	Possibly Detected Faults
	Classification of Test Patterns

	Detection Probability Computation
	Generating the Boolean Formula
	Restricting the Inputs
	Computing the Detection Probability

	Improvements
	Restrict Propagation Outputs
	Fixed X-Inputs
	Always Satisfied Formulas
	Caching the Detection Probability

	Evaluation
	Characterizing Possibly Detected Faults
	Detection Probability
	Optimizations
	Timeouts
	Solve Time
	Inputs that are Always X

	Summary

	Conclusion
	Appendix
	Experimental Setup
	Solver Description
	Circuit Information

	Complete List of Publications by the Author

