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Abstract 

Synergistic applications based on integrated hyperspectral and lidar data are 

receiving a growing interest from the remote-sensing community. Pre-requisite for the 

optimum sensor fusion of hyperspectral and lidar data is an accurate geometric co-

alignment. The simple unadjusted integration of lidar elevation and hyperspectral 

reflectance causes a substantial loss of information and does not exploit the full 

potential of both sensors. This paper presents a novel approach for the geometric co-

alignment of hyperspectral and lidar airborne data based on their respective adopted 

return intensity information. The complete approach incorporates ray tracing and 

subpixel procedures in order to overcome grid inherent discretization. It aims at the 

correction of extrinsic as well as intrinsic (camera resectioning) parameters of the 
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hyperspectral sensor. In additional to a tie point based co-registration, we introduce a 

ray tracing based back projection of the lidar intensities for area-based cost 

aggregation is introduced. The approach consists of three processing steps: First, a 

coarse automatic tie point based boresight alignment. The second step co-registers 

the hyperspectral data to the lidar intensities. Third, a parametric co-alignment 

refinement with an area-based cost aggregation. This hybrid approach of combining 

tie point features as well area-based cost aggregation methods for the parametric co-

registration of hyperspectral intensity values to their corresponding lidar intensities 

results in a root mean square error of 1/3 pixel. It indicates that a highly integrated 

and stringent combination of different co-alignment methods leads to an improvement 

of the multi sensor co-registration. 

Keywords: imaging spectroscopy; airborne laser scanning (ALS); direct 

georeferencing; parametric georeferencing; rigorous geocoding, co-

registration; sensor fusion; multi-sensor; pre-processing; ray tracing; 

sensor alignment 

1 Introduction 

Data fusion is a common method for the improvement of data quality and information 

content in remote-sensing measurements. A challenging example is the fusion of 

airborne hyperspectral and lidar data, which allows to integrate high spectral 

resolution with high-resolution spatial information. The fusion of both data types with 

the purpose of completing or enhancing a comprehensive object characterization is 

important and promising, especially for heterogeneous environments [1] and steep 

terrain. Different studies have already proven the potential of integrating lidar and 

hyperspectral imaging (HSI) data for various areas of research, including urban [2] 

[3], forest [4] [5] [6] [7] [8] and ecological applications [9] [5] [10]. For data analysis 
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and classification procedures, the elevation information serves as an additional 

dimension to enhance information content and classification results.  

An overall prerequisite and therefore one of the most important steps for proper data 

fusion is the accurate geometric co-registration or co-alignment of both sensor 

entities. For example, a misalignment between lidar and HSI sensors of ± 3 pixel root 

mean square (RMS) in both X and Y directions leads to a significant reduction of data 

information content, depending on the heterogeneity of the mapped targets [1]. 

Therefore, a proper geometric co-alignment of both sensors is indispensable for 

accessing the entire information content of both data entities. Additionally, a perfect 

co-alignment is also a precondition for a radiometric, spectral and spatial fusion of 

HSI and lidar sensors. Standard direct geometrical pre-processing of HSI data under 

practical, non-optimized conditions result in absolute geometric accuracy of 1 – 3 

pixel [11]. Therefore, HSI systems often do not meet the spatial requirements of 

applications concerning accuracy and resolution. This is caused by variable, intrinsic 

optical aberrations in the sensor design and the lack of standardized data pre-

processing workflows. In comparison to that, the geometric accuracy of modern lidar 

systems is significantly higher. They can reach vertical accuracies of smaller 20 cm 

[12] and horizontal accuracies of a few decimetre depending on the flight parameters, 

pre-processing, terrain slope and the reflectivity of the targets. Often, the lidar data is 

taken as a geometric reference for the spatial fusion with HSI data. 

Standard fusion of HSI and lidar is limited by the integration of the separated data 

entities, the gridded hyperspectral data cube (X, Y, Spectrum) and the gridded Digital 

Elevation Model (X, Y, Z). Usually, both data entities are generated in separated pre-

processing workflows. The gridded elevation model is only considered during the 

direct geocoding [13] [11] and atmospheric correction [14] of the HSI data. A proper 



 4 

geometric co-alignment is assumed but not explicitly performed. In contrast, 

advanced fusion approaches include a geometrical co-alignment procedure as a 

central pre-processing step. There exist many variations, because the broad term 

fusion for lidar and HSI data is indefinite and does not implicate a standardized 

method or level of implementation. In general, existing fusion approaches share the 

aim of enhancing the information content but differ by the chosen level of 

implementation and method. Physical or empirical fusion methods are applied to 

different data or product levels [15]. For the geometric co-alignment of lidar and 

hyperspectral data, various methods exist and they can be distinguished into 

parametric (physical) and non-parametric (empirical) approaches. Non-parametric 

approaches attempt to compensate the geometric errors by adjusting the pre-

processed gridded data sets during post-processing. They employ area-based- or 

feature-based detection algorithms in both data entities and perform an interpolation 

or resampling-based rectification to a common image plane [16] [3]. In general, non-

parametric approaches require sufficient, homogenous distributed and detectable 

objects or intensity gradients in both scenes. Especially for low-contrast and 

homogeneous scenes these requirements are not fulfilled and result in rubber-

sheeting problems between the detected objects. Therefore, area-based non-

parametric intensity methods [17] are very sensitive to illumination and spatial 

response differences, which are inherent in lidar and HSI images. In contrast, 

parametric approaches try to minimize the systematic error budget during the data 

pre-processing procedure. They need background information for sensor parameters, 

positioning and attitude in addition to the raw sensor data [1]. Parametric co-

alignment strategies attempt to assign generally valid offset parameters (see Table II: 

Overview of parameters optimized in the co-alignment approach) to the global parametric 

geocoding procedure [8]. These offset parameters are determined by minimizing the 



 5 

distances between local features, which are detectable in a small subset of both 

overlapping sensor datasets. Therefore, parametric methods are less influenced by 

their respective radiometric response of the sensors and an additional extensive 

radiometric adaptation is not imperative. Hence, they are well suited for the fusion of 

active and passive sensors enabling a separate geometric and radiometric fusion. 

However, since parametric approaches are tie-point based and usually carrier out on 

a pixel level, they do not completely describe the geometric fit of more complex 

features. Altogether, the gridded integration or comparison of both data entities is 

limited and not ideal for high geometric accuracies, because it results in spectral and 

spatial discretization and, therefore, in a substantial information loss [18]. 

The aim of this paper is to develop a co-alignment method avoiding the known 

drawbacks of parametric and non-parametric methods which can simultaneously 

handle the inherent geometric drawbacks of hyperspectral sensors and different 

sensor responses without rasterized discretization. This results in a novel approach 

for the improved geometric fusion of hyperspectral imaging sensors and lidar sensors 

starting at a sensor-driven data level. The key element is the definition and 

implementation of a robust parametric co-alignment procedure to minimize the 

inherent error budget of the HSI sensor in relation to the lidar intensity data. Our 

developed hybrid approach integrates an area-based cost aggregation often used in 

non-parametric approaches into a parametric approach often limited to feature-based 

alignment. It is based on the main software modules of the in-house software 

―HyPrepAir‖ which are developed for hyperspectral airborne pre-processing. 

2 General HSI and lidar sensor system characteristics 

Both sensor systems differ fundamentally in their function and data collecting 

principles. HSI systems are passive sensors collecting electromagnetic solar 
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irradiation reflected from the earth surface towards the sensor. HSI systems can 

measure reflected radiance in the visual to near infrared (400 – 1000 nm VNIR) and 

short wave infrared domain (1000 – 2500 nm SWIR). The high spectral resolution of 

the HSI sensor results in an almost continuous spectrum [19] [20]. In contrast, lidar 

systems are active sensors emitting pulsed radiation of one narrow bandwidth 

towards the earth surface (Fig. 1 left). Lidar systems usually emit and receive very 

narrow monochromatic wavelength ranges of 532 nm, 1064 nm or 1550 nm. The 

reflected radiation intensity as well as the time-of-flight (TOF) of the laser pulse is 

measured. A 3D point cloud (X, Y, Z) with the intensities values of the reflected laser 

pulses is the result. Both sensors potentially operate in the visible and infrared 

wavelength domain and share an overlapping wavelength range (Fig. 1 right). This 

overlapping wavelength range is the main linkage between both sensor systems and 

the basic requirement of the developed parametric-based co-registration. 

The bandwidth of the lidar impuls is very short in comparison to bandwidths of the 

HSI (5-20 nm full width at half maximum (FWHM)). A Gaussian spectral response 

function (SRF) with the intensity maximum in the centre of the function can be 

assumed for every band of both sensors [20]. 
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Fig. 1: Different radiation models for the sensors (left), possible wavelength overlaps 
between lidar and HSI systems (right). Red vertical lines show common laser 
wavelengths drawn over characteristic spectra for grass (green), asphalt (black), and 
water (blue). 

Modern HSI systems are usually designed as pushbroom scanners because of 

longer integration times that improve their signal-to-noise ratio (SNR) of the data. The 

recorded reflected radiation per scanline is dispersed by a grating or prism into 

spectral fractions and thereby projected to discrete rows of the full frame sensor array 

[19]. The geocoding procedure follows the collinearity relations [13] [11]. Based on 

the attitude and position of the airplane measured by the global position system 

(GPS) and the Inertial Measurement Unit (IMU) at a given point in time, each image 

pixel can be geocoded with its pointing characteristics. These characteristics are also 

affected by non-uniformities in the spatio-spectral frames of the pushbroom imaging 

spectrometer called keystone [21] [22] and smile [21] effects. 

The lidar sensor is a whiskbroom system. A rotating mirror is deflecting the emitted 

laser pulses in varying angels and high repetition rates (up to 400 kHz) in the 

direction of the earth surface. A receiver measures the reflected intensity and its 

chronological sequence (full waveform) [23] [24]. The direction and duration of every 



 8 

laser impulse in combination with the attitude and position of the sensor enables the 

calculation of the location and distance of the reflecting surface. 

2.1 Spatial sampling characteristics 

Due to the different sensor designs, the spatial data acquisition results in different 

sampling distributions and sampling densities. Lidar systems have a wide field of 

view (FOV; < 60°). During one mirror rotation up to 400,000 pulses with a short delay 

in time are emitted. The movement of the airplane causes a shift of every lidar point. 

The sampling density decreases with off-nadir direction, which is compensated by 

overlapping flight stripes. The laser beam has a small divergence of less than 0.5 

mrad, which results in altitude dependent footprint diameters [23] [24]. The generated 

point density and ground sampling distance (GSD) is dependent on the flight speed 

above ground and altitude of the airplane.  

HSI sensors usually have a smaller FOV and therefore a narrow swath. The GSD 

between every pixel centre in a sensor row is defined by the instantaneous field of 

views (IFOV) in across and along track direction, the time frame between two 

scanlines, flight speed and attitude [20]. The IFOVs and the pointing of the sensor 

elements are not regular due to the sensor design and sensor motion. This results in 

an irregular pointing in across and along track direction [20]. The high spectral 

resolution of the HSI sensor is at an expense of the spatial resolution and accuracy. 

VNIR and SWIR sensors are often designed as separated sensors. SWIR sensors 

have a lower spectral and sometimes spatial resolution than VNIR sensors, because 

of the significantly reduced radiance in the SWIR wavelength range. The sampling 

distribution of the pushbroom sensor is more regular compared to the whiskbroom 

lidar sensor, because one entire scanline is measured simultaneously [20]. In 

summary, the initial spatial sampling distribution patterns generated by airborne lidar 
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and HSI sensors are completely different and irregular and have to be resampled 

onto regular grids for further processing. 

2.2 Challenge of the geometric co-registration 

Sensor model, position and attitude accuracy (IMU/GPS) as well as alignment errors 

(lever arm, boresight and synchronization) are the main error sources influencing the 

geometric alignment. Fig. 3 shows the scheme of the system integration and the 

inherent alignment errors. The boresight offset (offsets angle introduced by the 

dislocation of the image projection centre and the IMU origin of coordinate) as well as 

the lever arm (dislocation between the GPS antenna and the IMU origin of 

coordinate) have to be corrected for every sensor separately. All sensors are 

dependent on the delivered IMU/GPS accuracy which also introduces geometric 

errors to the lidar and HSI data. Due to their complicated sensor design and their 

passive character described above, HSI sensors have certain drawbacks (strong 

central perspective, keystone, lower spatial resolution) in comparison with 

geometrically highly specialized lidar sensors. Additionally, HSI sensors are usually 

geometrically and spectrally calibrated under laboratory conditions [25] [26] [27]. 

However, under practical flight conditions pressure and temperature changes, as well 

as vibration and accelerations influence the sensor geometry to a certain degree. 

Because of the large distances between target and sensor, even small distortions 

lead to conspicuous spatial aberrations that affect the co-alignment of the sensors.  

The physical linkage between spatial and spectral domains of both sensor responses 

has to be considered for sensor fusion [28]. The adaptation of the different spatial 

and spectral responses of the sensors is the main challenge. These response 

differences are clearly recognizable by comparing the intensity images in the 

overlapping wavelength of the lidar sensor (Fig. 4 left) with the intensity images of the 
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SWIR sensor (Fig. 4 right). A radiometric calibration of the lidar intensities itself is not 

performed yet, because the differences of the intensities are dominated by the 

passive character of the HSI intensities. Hence, the developed geometric co-

alignment procedure should be robust enough to operate independent of a cross-

calibration. Altogether, the complete co-alignment should avoid unnecessary 

resampling procedures to conserve the original data quality. In addition, the large 

data amount is an additional challenge that has to be handled efficiently to enable 

pre-processing of large flight campaigns.  

3 Method 

The developed method for in-flight geometrical alignment of airborne hyperspectral 

and lidar intensity data can be separated into three principle parts (Fig. 2): 

 Input data generation and pre-processing of the input data 

 Geometric alignment workflow 

 Geometric correction 

It includes the in-flight airborne sensor integration and data acquisition strategy as 

well as the geometric co-alignment approach itself. After data acquisition and pre-

processing of the lidar and HSI data a spectral and spatial response adaptation (Fig. 

2 rhomb 4 & 5) is realized. The parametric co-registration itself is a three-step 

alignment procedure (Fig. 2 rhomb 6) based on optimizing extrinsic as well as intrinsic 

alignment parameters. In a first step, a coarse tie-point based co-alignment of 

overlapping HSI stripes is realized. The second step co-aligns the HSI image to the 

lidar intensity image with the use of tie points. The third step is an intensity and area-

based cost aggregation. This method compares the template HSI intensities of three 

sensor rows with the corresponding lidar intensities calculated for different offsets 

parameter. The corresponding lidar intensities are generated by a ray tracing based 
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geometric intersection of the HSI sensor element pointing, represented by a cone, 

with the lidar point cloud. The geometric correction is the final procedure which 

assigns the determined offset parameters to the complete flight campaign. In the 

following, the three principle parts and their respective processing procedures are 

described in detail. 



 12 

 

Fig. 2: Overview of the simplified geometric fusion workflow (rectangles represent 
data products; rhombs represent processing procedures; the lidar part is outlined in 
yellow; central linkage based on IMU/GPS data outlined in grey; the HSI part is 
outlined in blue; the central fusion step is outlined in red). The trajectories are the key 
linkage in the fusion workflow and therefore their pre-processing is the first step. 
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3.1 Input data generation 

For input data generation the airborne sensor integration and data acquisition 

strategy has to be adopted to ensure a proper data quality. Additionally, the pre-

processing part of the workflow (Fig. 2 rhomb’s 1, 2 & 3) homogenizes the sensor 

outputs of the three different sensors to a data level, which can be used as a starting 

point for the determination of the global extrinsic and intrinsic alignment parameters 

(Table II). 

3.1.1 Airborne sensor integration and data acquisition 

For the development and testing of a geometric fusion algorithm a calibration flight 

campaign was realized. A Hyspex VNIR-1600 [29] and a Hyspex SWIR 320m-e [29] 

HSI sensor in combination with a lidar LMS-Q560 [30] were integrated inside a 

Cessna 207 Skywagon.  

Table I gives an overview of the particular sensor parameters. An AEROcontrol-IId 

inertial measurement unit (IMU) with available data rates of 256 Hz in combination 

with a Novatel OEM4 - g2 GPS receiver was used for measuring the position and 

attitude of the airplane. The provided accuracy of position and attitude by the 

IMU/GPS is essential for the direct georeferencing of the sensors. The IMU is able to 

deliver post-processing accuracies of 0.004° RMS for roll and pitch and 0.01° RMS 

for heading.  

Table I: Overview of used sensors and particular parameters 

 
Lidar (LMS-Q560) VNIR and SWIR HSI (Hyspex) 

 Principle active passive 

Sensor design Whiskbroom (polygon mirror) Pushbroom 

FOV 
(Field of View) 

60° 
VNIR: 35.5° 
SWIR: 27.2° 

IFOV 
(instantaneous field of view)  

- 
VNIR: across track 0.18 mrad 
           along track  0.36 mrad 
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SWIR: across track 0.75 mrad 
            along track 0.75 mrad 

Laser beam divergence < 0.3 mrad  

Spectral range 1550 nm 
VNIR: 400 - 1000 nm 
SWIR: 1000 – 2500 nm 

Frames per second (HSI) 
Pulse frequency (lidar) 

240 kHz 
(160 lines/s) 

VNIR: 135 fps 
SWIR: 100 fps 

Spectral sampling monochromatic 
VNIR: 3.7 nm 
SWIR: 6 nm 

Pulse length < 4ns  

FWHM (spectral)   
VNIR:  1.0-2 pixel 
SWIR: 1.5-2 pixel 

Spectral bands 1; Full Waveform 
VNIR: 160 
SWIR: 256 

Spatial pixels hyperspectral 
 

VNIR: 1600 
SWIR: 320 

 

Measurement setup, sensor operation and flight planning were adapted with the 

objective of generating an ideal data basis for a proper sensor fusion. The HSI 

(VNIR, SWIR), lidar and DGPS/IMU sensors were arranged on a passive damped 

aluminium plate.  Their origins of ordinates were installed as close together as 

possible (Fig. 3). A static connection is established between the three sensors to 

avoid vibrations and spatial distortions between the sensors. 
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Fig. 3: (A) Scheme of airborne sensor integration and function principle (DGPS: 
Differential GPS, IMU: initial measurement unit). (B) Photo of sensor integration into 
the airplane and (C) photo of sensor integration below the airplane (C) 

The test flight generated about 16 GB of HSI image data and about 1 GB of lidar 

point data (21 x106 points). The dataset consists of four flight lines (Fig. 4) flown 800 

m above ground over an airfield bordering sub-urban development in Kamenz 

(Germany, 51.29063°N 14.12107°E). The terrain is relatively flat with a height range 

of 33 m. The heterogeneous sub-urban objects (buildings, roads, trees, fields) 

introduce most of the elevation changes, generating slopes up to 90° between 

surface objects. The flight altitude and the flight speed of about 190 km/h above 

ground result in a ground sampling resolution of about 1.5 m for SWIR and 0.8 m for 

VNIR. The lidar scanner generates a point density of about 5 points/m² in non-

overlapping areas (100 lines per second, 150 kHz and 60° FOV parameterization). 
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Fig. 4: Geocoded overview of the four flight lines; lidar intensity image 1550 nm (left), 
HSI SWIR intensity image 1550 nm (right) 

3.1.2 Pre-processing of HSI, lidar and DGPS/IMU data  

The pre-processing part of the data generated by the three sensors ensures the 

homogenization and provision of the required input data quality.  

The parametric geocoding of the lidar and the HSI are based on the trajectories of 

the airplane that define the orientation and line of sight of the sensors. The 

trajectories are generated by combining the binary information of the position (GPS) 

and attitude (IMU). The differential post-processing (Fig. 2 rhomb 1) of the Differential 

Global Positioning System (DGPS) signal is realized by using phase and Doppler 

measurements of a nearby ground reference station with the software GrafNavTM. 

The offset between GPS antenna and IMU origin of ordinates (lever arm) is 

corrected. High accuracy is guaranteed by integrating the DGPS with the IMU 

information. Both error dynamics are uncorrelated. Forward and reverse Kalman 

filtering is done in the post-processing procedure to minimize both errors. The 
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trajectory pre-processing was done with the software AeroOfficeTM. The trajectory 

optimization results in smooth best-estimation trajectories for the IMU/GPS origin of 

ordinate with state of the art accuracy for position (X0, Y0, Z0) and attitude (roll, pitch 

and heading). The output ASCII file provides the base of the direct geocoding of both 

sensors.  

The geometric alignment workflow of the two sensors is based on an iterative co-

registration of the HSI data to the lidar intensity data. Therefore, the geometric pre-

processing of the lidar data (Fig. 2 rhomb 2) has to create accuracies that are high 

enough to serve as a geometric reference. This is achieved by a state-of-the-art 

geometric correction workflow including boresight alignment, single-flight stripe 

correction and relative flight stripe adjustment implemented in the software 

RiPROCESSTM. Their overall strategy is to minimize the lidar inherent random and 

systematic error budget (instrument errors, trajectory errors, synchronization errors, 

atmospheric conditions).The resulting lidar point cloud is filtered with the software 

TerrasolidTM. Erroneous lidar point outliers inside the point cloud are removed by 

analysing the height and spatial-neighbourhood relationships. This robust outlier 

removal enables an optimized geometric representation of the surface features. The 

resulting corrected 3D point cloud ensures very high positional accuracies. The 

backscattered lidar intensity information of the 3D points are subsequently used 

(3.2.1.2) for generating a gridded true orthoimage. The 3D point cloud itself is used 

as morphometric surface and elevation information. This point cloud is divided into 

regular spatial tiles, stored as separated files in the LAS format. 

In a first step of the hyperspectral pre-processing, a radiometric correction (Fig. 2 

rhomb 3) is applied to transform digital numbers (DN) into at-sensor-radiance values. 

The radiometric correction is accomplished by applying a linear transformation with 
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determined calibration coefficients (offset and gain) to every image pixel. The offset 

(that includes the thermally induced dark current) is determined automatically, by 

closing a shutter before (VNIR) or after (SWIR) every flight line [27] measuring the 

dark signal. The gain coefficient is determined in laboratory measuring the sensor’s 

response of a radiance standard that is illuminated by a known artificial light source 

[31]. The result of the radiometric correction is a separate hyperspectral data cube for 

VNIR and SWIR including at-sensor-radiance values. 

3.2 Geometrical co-alignment method 

The geometric alignment and geocoding procedure consists of four main modules 

(Fig. 5): a generic photogrammetry processor, a ray tracing module, an automatic, 

robust-tie point matching algorithm and a cost-function minimizer. 
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Fig. 5: The four main geometric modules, which are used across the developed 
geometric alignment procedure. 

The central component of the geometric workflow is a generic photogrammetric 

processor that transforms the image coordinates (Xa, Ya) into map coordinates 

(Xmap, Ymap). This module is closely linked to a ray tracing module that calculates 

the elevation (Zmap) on the lidar point cloud. The direct rigorous parametric 

geocoding is performed based on the generated trajectories, focal length and 

principle point following the principles of the collinearity equation that define the 

transformation between the pushbroom scan line image space and the object space. 

Based on the collinearity equation, the object coordinates of every HSI sensor 
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element at the minimum elevation (Zmap) projection plane is calculated. The position 

and attitude for every exposed sensor row is tapped on demand from the original 

navigation file in its full temporal resolution with sub-row precision. A rigid assignment 

of a fixed position and attitude with discretization to integral sensor rows is avoided 

during the alignment and georeferencing process. This ensures synchronization 

optimization between sensor and DGPS/IMU as well as subpixel matching 

opportunity based on the original navigation data.  

The ray tracing module defines the geometric intersection (Xmap, Ymap, Zmap) of 

the HSI pointing with the lidar point cloud. In addition, the ray tracing module 

calculates the lidar points inside a projected cone and their distance to the cone 

centre. The cones represent the pointing of a HSI pixel. The ray tracing module is 

always performed subsequent to the photogrammetry processor and with the same 

procedure. The minimum and maximum elevation projection planes define 3D-line 

vectors representing the HSI pointing. These 3D-line vectors are shortened iteratively 

to minimize the potentially neighbouring lidar points. For elevation determination the 

intersection between this 3D vector line and a TIN (triangulated irregular network) 

generated from the 3D lidar point cloud is calculated. This is based on a fast triangle 

line intersection test using barycentric coordinates. The lidar points inside a cone and 

their distance to the cone centre are calculated by defining the cone with the across 

and along track instantaneous field of view (IFOV) of the respective sensor pixel. The 

lidar points inside each cone representing the respective HSI pixel line of sights are 

indexed and stored in a look up table (LUT). Overall, the space partitioning procedure 

inside the ray tracing module that handles the point cloud is realized by a 3D 

histogram based voxel filter.  
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An automated tie point determination and matching algorithm is required at several 

processing steps. The developed tie point detection and matching algorithm is based 

on an established robust feature detector called SIFT (scale invariant feature 

detection) developed by Lowe [32].  The key point detector is based on finding local 

maxima in Differences-of-Gaussians (DoG) between adjacent scales. The SIFT key 

point descriptor vectors are based on gradient histograms of the detected feature 

points. SIFT tie points are assumed to be scale, rotation and transformation invariant 

[32]. The applied feature matching is based on minimum Euclidean distance of the 

descriptor vectors. The feature matching is adapted to the specific sensor 

characteristics of both sensors concerning masking, maximum spatial match radius 

and location. The detected tie points are filtered based on the perspective 

transformation model between the two involved images with RANSAC [33]. Thus, 

false matches can be robustly removed. 

For the parametric co-registration of the HSI data to the lidar data a cost function 

minimization is essential to improve various extrinsic and intrinsic parameters (Table 

II) to enhance the average accuracy. Two different cost minimization strategies are 

involved. A tie-point based and an area-based approach. The area-based is 

explained in 3.2.2.30. For the tie-point based version approach, the parameters of 

the collinearity equations are iteratively modified by bisecting the offset parameter 

intervals. This is realized by varying the involved parameters of the hyperspectral 

sensor for every single tie point pair. For every iteration the pointing directions are 

calculated parallel for the respective parameter intervals by the photogrammetry 

processor. The intersections with the lidar point cloud are calculated by the ray 

tracing module. The parameter offset which generates the smallest 3D root-mean-

square error (RMSE) between the corresponding tie points in object space is the final 



 22 

offset parameter. The respective starting parameter range and interval size are 

predefined by the sensor system and integration. 

3.2.1 Adjustment of the sensor concerning spectral and spatial responses 

One of the essential steps for the fusion of the two sensors is the adaptation and 

homogenization of the different spectral and spatial sensor responses in order to 

make them comparable [34] [35]. Due to different spectral and spatial resolutions, the 

HSI wavelength and bandwidth is adapted to the lidar specification whereas the 

irregular lidar point intensities are adapted spatially to the HSI response. 

The spectral response adaption (Fig. 2 rhomb 5) usually comprise a spectral up-

sampling of the HSI using interpolation [36] and a convolution with the assumed SRF 

of the lidar data [21]. Due to the fact that the spectral bandwidth of one lidar pulse is 

extremely short, the FWHM of the lidar SRF was expected to be close to zero. Thus 

the corresponding HSI intensity with the 1550 nm centre wavelength of the lidar was 

directly interpolated with Hermite Spline. A convolution with the expected SRF of the 

lidar was not performed. 

For the spatial response adaptation the lidar intensity information is adapted spatially 

to the HSI intensities (1550 nm) (Fig. 2 rhomb 4). Two different methods are applied 

in the co-registration approach. The normal raster based convolution is described 

below. In addition to this technique, a dynamic ray tracing based spatial response 

adaptation is also realized (see 3.2.2.30). The spatial impulse response of an 

imaging sensor to a point source can be expressed by the point spread function 

(PSF). The PSF is defined by, among other parameters, the sensor´s electronic, 

detector, optic, and motion characteristics. The lidar intensity data is resampled from 

the irregular point information to the prospective grid resolution of the geocoded HSI 

data (1.5 m). Beyond the resolution, the PSF of the hyperspectral sensor is 
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considered by convolving the lidar intensities with an approximated PSF using a 

Gaussian 2D-Function of the HSI sensor. This normal raster based convolution is 

realized as a first guess and makes the lidar intensity raster spatially comparable to 

the hyperspectral data. Whereas, the ray tracing approach (see 3.2.2.30) is realized 

for the final refinement. Both spatial response adaptations depend on sufficiently high 

lidar point density. 

3.2.2 Parametric geometric co-alignment 

The parametric geometric co-alignment (Fig. 2 rhomb 6) is based on three processing 

steps. Fig. 6 represents the detailed workflow of this parametric geometric co-

alignment. 
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Fig. 6: Detailed workflow of the parametric geometric co-alignment procedure divided 
in 3 main processing steps; rectangles represent data products; rhombs indicate the 
applied main processing modules (Fig. 5) 

In the first step a boresight calibration of Hyperspectral images is realized. Therefore, 

robust tie points are generated between the overlapping areas of preliminary 

geocoded HSI flight stripes (band 1550 nm) using the described tie point matching 

algorithm. These tie points are utilized inside the cost function minimizer realizing a 

first approximation of the SWIR sensor boresight. The photogrammetry processor in 

combination with the ray tracing module assigns the respective coordinates by 

calculating the intersections between the pointing of the sensor element and the lidar 

point cloud for the intervals. The boresight variation causing the smallest RMSE 

between the tie points determines the boresight angle offsets. All HSI SWIR images 
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are geocoded again using the corrected attitude angles and lidar elevation 

information.  

The second step is the tie-point based parametric co-registration. For every 

geocoded hyperspectral flight stripe we generate an intensity image (1550 nm) of the 

overlapping lidar point cloud (see 3.2.1.23.2.1). Tie points are generated 

automatically based on both overlapping intensity grids. The parametric co-

registration procedure is also based on the cost function minimizing module. 

Subsequently, the refinement of the boresight parameter, a camera resectioning is 

performed with the same minimizing approach. The camera resectioning 

encompasses the focal length (f) and the principal point (X0a, Y0a) of the SWIR 

Hyspex sensor. All in all, eight parameters (roll, pitch, heading, X0a, Y0a, f, 

synchronization timing Δt, altitude) are adjusted with the cost function minimization 

module to optimize the accuracy of the co-alignment. gives an overview of the 

considered parameters and in which co-alignment step they are optimized 

(symbolized by the crosses). 

Table II: Overview of parameters optimized in the co-alignment approach 

Parameter type Parameter name Abbreviation 
Co-alignment step 

1 2 3 

Extrinsic parameters 

Roll  x x x 

Pitch  x x x 

Heading  x x x 

Altitude Z0  x x 

Synchronisation timing Δt  x  

Intrinsic parameters 

Principal point X0a, Y0a  x x 

Focal length f  x x 
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At most, three variables are optimized together. Correlated variables are optimized 

separately. The colours in the table indicate the grouping of parameters optimized 

together. The complete co-registration procedure can be repeated iteratively if 

necessary. 

The fine ray tracing based co-alignment of HSI lines and Lidar intensity data is 

realized in a third step. The final optimization is realized with an area-based approach 

by back projecting the lidar intensities to the geometric uncorrected HSI intensities. 

The minimization of the RMSE between a few tie points for different parameters is 

not a simple linear description of the planar alignment of the HSI with the lidar 

reference. An area-based cost aggregation method was developed to refine the 

offset parameter determination (Fig. 7). 
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Fig. 7: Ray tracing based refinement of the co-alignment; IT (Intensity template) = 
three HSI intensity image rows (x = across track direction, n = along track direction); 
IL (Intensity lidar) = corresponding lidar intensities are generated by ray tracing based 
back projection for different offset parameters (ΔP); the ZSSD is calculated between 
all Laplacian filtered IL images and the It image for every offset parameters variations 
(ΔP). 
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For every pixel of a geometric uncorrected HSI image line (x, n) the corresponding 

lidar intensity points were collected with the standard ray tracing module. Thus, the 

lidar points inside the cone representing the pointing of the corresponding HSI pixel 

and their distance to the cone centre is calculated. This is done iteratively for small 

parameter variations (ΔP) for every HSI pixel using the latest optimized parameters 

from the previous step and for three selected adjacent image lines (n) that are less 

effected by shadowing. All intensity values of the collected points inside a pixel beam 

were weighted with Gaussian PSF centred along the centre axes of the respective 

HSI cone. Therefore, the spatial response function is correctly approximated in terms 

of the spatial footprint projection and orientation of the HSI spatial pointing to the 

surface. For every parameter iteration step a convolution with a Laplace kernel is 

calculated in across track direction (x) for the respective three adjacent HSI and 

corresponding lidar intensities. The three lines of the geometrically uncorrected HSI 

image serve as template (  ). The generated corresponding lidar intensities (  ) for 

varying parameters (Table II) are compared with the HSI template by calculating the 

Zero Mean Sum of Squared Distance (ZSSD). The offset parameter combination, 

which generates the match with the smallest ZSSD, is applied globally to refine the 

geometric correction. 

3.3 Geometric correction 

Provided that the sensor integration and the sensor model is stable during the flight 

campaign, the determined offset parameters are valid for all acquired flight strips. 

Thus, the final procedure is the global assignment of the determined offset 

parameters to the trajectories and their corresponding SWIR flight stripes. The offset 

parameters are used inside the photogrammetric processor and the ray tracing 

module (see 3.2) for all flight stripes. Although the co-alignment of the VNIR sensor 
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to the SWIR sensor can be realized with the same introduced co-alignment workflow. 

The spectral and spatial adaptation methods represented in 3.2.1 with the respective 

sensor parameters and the same parametric co-registration procedure as 

represented in 3.2.2 can be used. However, as a co-registration reference the 

already co-registered and spectrally overlapping SWIR band of ~ 979 nm can be 

used. 

4 Results and Discussion 

The introduced geometric co-alignment procedure is applied to the data of the 

conducted calibration flight campaign. It results in a co-registered orthorectified HSI 

image cube (SWIR), the determined intrinsic sensor parameter, positioning and 

attitude offsets and an IGM file containing the georeferencing information and height 

information for each HSI image pixel. In addition, a lidar point lookup table is 

generated, which allocates all lidar points falling into a HSI pointing. 

For our test flight, the accuracy assessment of the co-alignment is realized by a 

geometric comparison of the co-aligned HSI SWIR intensity image with the lidar 

intensity image. In addition a short comparison to other related methods is given. 

4.1 Comparison of HSI and LIDAR intensities 

The first accuracy assessment is based on a manually measured set of 73 regularly 

distributed tie points (Fig. 8). They result in an RMSE of 0.499 m in XY direction 

(RMSE of 0.224 m in X and RMSE of 0.446 m in Y direction). Both intensity images 

have a grid size of 1.5 m per pixel that leads to an RMSE of less than 1/3 of the grid 

size.  Fig. 9 shows the Euclidian distances between related tie points and the 

histogram of these distances. 85 % local planar offsets are smaller than the RMSE. 

Only a few points (15 %) have larger offsets that are up to 1.5 m. This indicates a 
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high accuracy and precision of the global alignment between lidar intensity image 

and HSI intensity image. 

 

Fig. 8: Accuracy assessment based on 73 manual created tie points; lidar intensity 
image (left), HSI intensity image (right). 

 

Fig. 9: Euclidian distances between related tie points; blue plot represents the RMSE 
(left), distance histogram (right) 

Tie-point based accuracy assessment gives only limited information about co-

alignment accuracy of complex object structures. A visual feature assessment allows 

for a better local evaluation basis. The indication of how accurate certain structures in 
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HSI fit to the lidar intensity structures is very important for the overall fusion process. 

The accuracy of the geometric feature fit is essential for extended classifications of 

surface objects, especially in spatial and spectral heterogeneous areas. Therefore, a 

second accuracy assessment was performed, where perceptible linear structures 

along roads or around building structures were delineated in both intensity images. 

Fig. 10 gives an overview of the delineated structures, which indicates the global fit of 

the orthorectified HSI to the lidar intensity. Most of the delineated features exactly 

overlay along their entire extent. Influences of the stronger perspective distortions 

towards off-nadir across track are not perceptible. This influences are distinctive for a 

field of view of about 27.2° and a flight altitude of about 800 m above ground.   
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Fig. 10: Overview of accuracy assessment based on delineated structures for 
subjective evaluation; Structures (blue lines) delineated from a 1-m DSM (1) and lidar 
intensities (1550 nm) (2), Structures (red lines) delineated from orthorectified SWIR 
(1550 nm) HSI intensities images (3), Overlay of delineated structures representing 
the accuracy of geometric description of surface objects (4); In places where only 
blue lines (lidar intensity features) without corresponding red lines (HSI intensity 
features) are visible, the delineation was not possible due to shadowing effects. 

A detailed visual assessment (Fig. 11) and mathematical assessment (Fig. 12) 

confirms and refines the result of the overview. Most of the object structures are 

represented geometrically accurate with subpixel accuracy. Along the structures of 

the flat terrain of the flight field (Fig. 11 B) and the roads the delineations match 
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perfectly. In addition, the building structures shown in Fig. 11 A and C are aligned 

very accurately. Only the buildings in parallel have a clearly perceptible 

foreshortening of 1-2 pixels in along-track direction, which could not be assigned to 

the determined offset parameters (Fig. 11 C). This effect can be caused e.g. by 

nonlinearities in the synchronization timing or position and attitude accuracies. Fig. 12 

shows diagrams of the shortest Euclidian distance between the delineated lidar 

structures and 215,885 points generated along the delineated SWIR structures. The 

histogram (left) show that more than 95% of the points have a Euclidian distance 

towards the delineated lidar structures that are smaller than 0.6 pixel. The direction 

dependency is evaluated with the wind rose diagram (right). Overall, the direction 

dependency is closely bundled to the main orientation of the delineated structures. 

Most of the structures are orientated along the axis north-northeast south-southwest 

and west-northwest east-southeast. These orientations are clearly represented inside 

the wind rose. However, about 28 % offsets are in north-northeast direction and only 

about 15 % offsets are in south-southwest direction. This north-northeast trend of 

accumulation as well as the tendency of larger offset distances in this direction can 

be attributed to some extend to the shadowing of the objects in the HSI intensities. 

But the same trend is also visible for the second main axis in west-northwest 

direction. This cannot be attributed to shadowing effects and gives an indication for 

still remaining, but very small systematic errors inside the parametric co-alignment 

procedure. However, the delineation accuracy assessment and their diagrams 

suggest that most of the significant systematic errors inside the co-alignment 

procedure are successfully minimized. 
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Fig. 11: Detailed assessment of delineated surface structures for 3 (A, B, C) different 
areas (see Figure 9 for location); blue delineated structures based on lidar intensities 
(1550 nm) (1), red delineated structures based on SWIR HSI intensities (1550 nm) 
(2), overlaid delineated structures (3). 
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Fig. 12: Histogram of the Euclidian distances between structures delineated from 
SWIR intensities (red lines in Fig. 10) and structures from lidar intensities (blue lines 
in Fig. 10) (left). Direction dependency of these Euclidian distances represented by a 
wind rose diagram (right) 

Feature-based methods as well as intensity-based methods strongly rely on the 

image quality. Especially non-parametric methods need homogeneous distributed 

image features and homogenous illumination all over the image. The shadowing 

effects in the HSI images and the different spatial responses of both sensors have 

been the major challenges for a proper co-registration. The represented co-

registration algorithm has proven to have the potential to overcome both problems 

through carefully chosen parameters. Thus, the determined offset parameters (Table 

II) are applicable for a complete data acquisition campaign. Despite the clearly 

perceptible non-optimal illumination conditions due to object and cloud shadowing 

(Fig. 10), an accurate automatically co-registration was performed. The shadows 

were problematic during the visual accuracy assessment and it was difficult to 

visually differentiate between object boundaries and object shadows. The normalized 

difference image (Fig. 13) gives an overview of the illumination differences between 

lidar and HSI. The absolute normalized difference image shows more heterogeneous 

patterns especially in the urban area, which are introduced by the reflection 
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properties and the exposer of different surface features. But also the variation of laser 

penetration rates into vegetation lead to significant differences [37]. However, image 

gradients around objects which would be introduced by  geometric misregistrations 

are not perceptible inside the normalized difference images. All spatial patterns 

introduced by intensity differences can be attributed to illumination and reflectance 

issues of the surface objects. The difference images should only give an idea of the 

diverse intensity responses and how they can be attributed. The differences should 

not be over interpreted due to the fact that the lidar intensities are not radiometrically 

calibrated. 

 

Fig. 13: Normalized difference image (left) and absolute normalized difference image 
(right) between lidar intensities and HSI intensities. Both intensity images were 
normalized to values between 0 and 1 by their respective maximum intensities. The 
normalized HSI intensities were subtracted from the normalized lidar intensities. In 
the normalized difference image (left), grey areas represent less difference between 
lidar and HSI. White areas represent the illumination differences introduced by 
shadowing objects. Black areas represent cloud gaps introducing high intensities in 
the HSI images. In the absolute normalized difference image (right) black areas 
represent intensity differences close to zero. 



 37 

The workflow results from the challenging differences of the spatial and spectral 

responses. It is not possible to generate enough robust tie points between the 

adopted lidar intensity image and the HSI image data, before the first coarse 

geometric co-alignment of the HSI overlapping flight stripes. Only the coarse 

geometric co-alignment of the HSI overlapping flight stripes and the spectral and 

spatial adaptation allows for the automatic tie point matching between HSI and lidar 

intensities. For this purpose, 214 robust tie points were detected between the 

overlapping SWIR HSI flight lines (3.2.2.1). The boresight determination starts at an 

RMSE of 50m (boresight offsets propagate in different directions due to apposed 

flight lines) and results after nine iterations in an RMSE of 2.497 m (Fig. 14 left) 

between the overlapping SWIR HSI flight lines. A boresight offset of -1.638° for roll, 

0.618° for pitch and 0.290° for heading was detected. Additional iterations did not 

improve the RMSE. 

For the parametric co-registration of the HSI image to the lidar intensity image 41 tie 

points were generated. At the beginning, a misregistration with an RMSE of 3.198 m 

between HSI and lidar image was measured. The optimization of roll, pitch, heading 

leads to a RMSE of 1.938 m (Fig. 14 middle). The additional optimization of focal 

length, principal point, synchronization timing and altitude leads to an improvement of 

the RMSE to 1.161 m (Fig. 14 right). 
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Fig. 14: RMSE optimization using the sequenced geometric alignment procedures. 

An iteration of the complete tie-point based parametric co-registration (3.2.2.2) did 

not lead to perceptible alignment improvements. However, the ray tracing based cost 

aggregation of complete sensor lines (3.2.2.3) leads to improvement in alignment 

accuracy. The global accuracy and precision is improved, but especially the local 

object structure alignment gains form the area-based refinement. The stability of the 

algorithm is influenced to some extend by the different shading characteristics that 

are inherent between both images and by the point density of the lidar. Therefore, 

lines with less shadowing influence should be chosen for the refinement of the co-

registration. The final back projection based on ray tracing results in parameter 

offsets of -1.817° for roll, 0.461° for pitch, 0.231° for heading, 0.251 m for the altitude, 

0.033 s for synchronization time (Δt), -0.680 pixel for the focal length (f) and for the 

principle point -0.607 (X0a) and 0.178 (Y0a). 

The adaptation of the overlapping spatial and spectral domains is a requirement for 

the comparison of both sensors entities with subpixel accuracy. Sufficient tie points 

can be generated between HSI and lidar intensity images also for off-nadir areas 

influenced by stronger perspective distortions. The combination of the robust feature 

detector SIFT, the sensor specific feature matching and the final perspective 

transformation model (homography) based outlier removal (RANSAC) results in a 
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very robust tie point detection and matching algorithm. The used minimization 

procedure is based on computational costly and slow forward projection and 

bisectioning. But the results appear to be very robust for the parameter minimization 

incorporating the ray tracing based height determination. Improving the rate of 

convergence by using gradient minimization techniques appeared less robust than 

minimizing the pure cost function value based on bisectioning.  

For achieving subpixel accuracy, it is necessary to accomplish all processing steps 

on the original temporal resolution of the pre-processed navigation file. A 

discretization into integral rows, especially during the parametric minimization 

procedures, results in a RMSE of only 2/3 of the grid resolution (instead of 1/3 of the 

grid resolution). The rigorous parametric geocoding procedure incorporates the 

geometric and spectral sensor model. However, it proves to be very effective to 

optimize the HSI intrinsic sensor additional to the exterior parameter. Therefore, 

geometric sensor variations can be compensated in relation to the determined sensor 

model. 

4.2 Comparison to related methods 

For a comparison to related methods, the HSI data was also co-registered to the lidar 

intensity image by using the common HSI direct geocoding software PARGETM [11]. 

Therefore a parameter optimization of roll, pitch, heading and altitude was realized 

based on 27 manually generated and iteratively filtered tie points. This procedure 

only leads to an RMSE of 3.03 m (about 2 pixel) measured based on 22 independent 

manually set tie points. This can be only understood as a rough and partially 

comparison but it indicates the efficiency of the comprehensive proposed method and 

that a common tie point based boresight alignment does not eliminate all inherent 

systematic errors. Additional sensor driven, parametric co-registration methods were 
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not available within the study. A comparison with a feature-based rubber sheeting 

method is obviously not a good solution due to its non-parametric character and 

therefore the associated lack of generalization and repeatability for different surface 

structures and acquisition conditions. Therefore, the presented results can only be 

theoretically discussed and compared with published and adequate co-alignment 

techniques. Asner et al. [1] introduced the most comparable approach. With their 

parametric co-alignment that is completely tie point based they achieve accuracies of 

―<< 1 pixel RMSE‖. However, they described the geometric alignment in a more 

general manner. Despite the lack of the presented ray tracing based back projection 

and a missing accuracy assessment based on delineated features, the theoretical 

comparison indicates that the achieved results are appropriate. In addition, the 

acquisition conditions, sensor design, sensor calibration and sensor integrations 

differ between the different studies so it is very difficult to make a theoretical and 

reliable comparison. We emphasize that most published papers focus only on the 

accuracy assessment of retrieved information from the combination of both data 

entities and not on the geometric co-alignment. Therefore, this is the first study 

explicitly focusing on the methodology of intensity based in-flight parametric co-

registration between these two sensors types. 

This research indicates that one co-alignment approach for its own is not sufficient for 

an accurate co-alignment between the heterogenic sensors. The stepwise accuracy 

improvement realized by the introduced 3 step alignment approach shows the 

evidence of using complementary fundamental and advanced co-registration 

strategies as well as sensor driven spatial response adaptation techniques beyond 

standard tie point based approaches also inside parametric approaches. The 

presented parametric co-alignment approach has the advantage over non-parametric 

methods that locally derived parameters could be assigned to the global flight 
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campaign independent from local illumination conditions and detectable surface 

structures. Additionally, the optimization of 8 extrinsic as well as intrinsic parameters 

makes the method robust against changes of the sensor model. The approach of 

parametric compensation of systematic alignment errors between the sensors and its 

consequent generic sensor driven design, guarantees that the method is highly 

repeatable and generalizable. The point-feature based algorithm is suitable to match 

hyperspectral pushbroom sensors and lidar intensity data with subpixel precision. 

Nevertheless, the alignment accuracy improvements caused by the area-based 

refinement indicate that the point based approach did not completely characterize the 

co-alignment. The hybrid co-alignment strategy (point-feature based RMSE and area-

based cost aggregation) overcomes the drawbacks of the respective methods. 

Overall, the ray tracing approach based on lidar point data enables highest accuracy 

concerning elevation integration and spatial intensity adaptation. It establishes the 

development of further geometric co-alignment refinement procedures on a vector 

base. Both approaches in combination allow for co-alignment possibilities without 

discretization and thus minimize radiometrically relevant resampling errors. 

5 Summary 

In this study, we presented a parametric, physical based geometric co-alignment of 

hyperspectral imaging to lidar intensity data. It is shown that the lidar data help to 

improve the accuracy and precision of georeferenced hyperspectral data in addition 

to adding elevation information.   

The presented hybrid co-alignment methods is based on three processing steps: In a 

first step, a coarse boresight alignment between overlapping hyperspectral flight 

stripes is realized. Second, a tie-point based parametric co-alignment of 

hyperspectral to lidar intensities is performed. The optimization includes extrinsic as 
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well as intrinsic hyperspectral sensor parameters. The third step is a parametric co-

alignment refinement utilizing an area-based cost aggregation between overlapping 

hyperspectral to lidar intensities. The combination of diverging alignment procedures 

is necessary because of different sensor responses. It is shown that a ray tracing 

based back projection of the lidar point intensities and their spatial response 

adaptation to the geometric uncorrected HSI intensities ensures a subpixel accuracy 

which is superior to a conventional tie point based approaches. A tie-point based co-

alignment by itself is not sufficient to describe the overall geometric accuracy of the 

alignment. The area-based cost aggregation however is able to compensate these 

lacks and increases the geometric alignment accuracy. Altogether, it is advisable to 

optimize the intrinsic parameters of the HSI sensors additionally to the extrinsic offset 

parameters to reduce the entire error budget of the co-alignment. The lidar point 

intensity as well as the elevation information has the potential to stabilize the 

geometric pre-processing workflow at least for relatively flat but heterogeneous 

terrain. The fusion of both data entities results in geometrically co-aligned data, 

achieving accuracies of 1/3 pixel with high precision. 

Our results indicate that the hybrid utilization of tie-point based and area-based cost 

aggregation appears to be very promising. The approach provides the basis for a 

comprehensive physical fusion of hyperspectral and lidar data. 
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