-
Notifications
You must be signed in to change notification settings - Fork 449
/
test.py
150 lines (129 loc) · 5.32 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmdet.engine.hooks.utils import trigger_visualization_hook
from mmengine.config import Config, ConfigDict, DictAction
from mmengine.evaluator import DumpResults
from mmengine.runner import Runner
from mmyolo.registry import RUNNERS
from mmyolo.utils import is_metainfo_lower
# TODO: support fuse_conv_bn
def parse_args():
parser = argparse.ArgumentParser(
description='MMYOLO test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--out',
type=str,
help='output result file (must be a .pkl file) in pickle format')
parser.add_argument(
'--json-prefix',
type=str,
help='the prefix of the output json file without perform evaluation, '
'which is useful when you want to format the result to a specific '
'format and submit it to the test server')
parser.add_argument(
'--tta',
action='store_true',
help='Whether to use test time augmentation')
parser.add_argument(
'--show', action='store_true', help='show prediction results')
parser.add_argument(
'--deploy',
action='store_true',
help='Switch model to deployment mode')
parser.add_argument(
'--show-dir',
help='directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
# replace the ${key} with the value of cfg.key
# cfg = replace_cfg_vals(cfg)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
if args.deploy:
cfg.custom_hooks.append(dict(type='SwitchToDeployHook'))
# add `format_only` and `outfile_prefix` into cfg
if args.json_prefix is not None:
cfg_json = {
'test_evaluator.format_only': True,
'test_evaluator.outfile_prefix': args.json_prefix
}
cfg.merge_from_dict(cfg_json)
# Determine whether the custom metainfo fields are all lowercase
is_metainfo_lower(cfg)
if args.tta:
assert 'tta_model' in cfg, 'Cannot find ``tta_model`` in config.' \
" Can't use tta !"
assert 'tta_pipeline' in cfg, 'Cannot find ``tta_pipeline`` ' \
"in config. Can't use tta !"
cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
test_data_cfg = cfg.test_dataloader.dataset
while 'dataset' in test_data_cfg:
test_data_cfg = test_data_cfg['dataset']
# batch_shapes_cfg will force control the size of the output image,
# it is not compatible with tta.
if 'batch_shapes_cfg' in test_data_cfg:
test_data_cfg.batch_shapes_cfg = None
test_data_cfg.pipeline = cfg.tta_pipeline
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# add `DumpResults` dummy metric
if args.out is not None:
assert args.out.endswith(('.pkl', '.pickle')), \
'The dump file must be a pkl file.'
runner.test_evaluator.metrics.append(
DumpResults(out_file_path=args.out))
# start testing
runner.test()
if __name__ == '__main__':
main()