forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 8k
/
darknet_video.py
213 lines (177 loc) · 7.81 KB
/
darknet_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import random
import os
import cv2
import time
import darknet
import argparse
import threading
import queue
def parser():
parser = argparse.ArgumentParser(description="YOLO Object Detection")
parser.add_argument("--input", type=str, default=0,
help="video source. If empty, uses webcam 0 stream")
parser.add_argument("--out_filename", type=str, default="",
help="inference video name. Not saved if empty")
parser.add_argument("--weights", default="yolov4.weights",
help="yolo weights path")
parser.add_argument("--dont_show", action="store_true",
help="window inference display. For headless systems")
parser.add_argument("--ext_output", action="store_true",
help="display bbox coordinates of detected objects")
parser.add_argument("--config_file", default="./cfg/yolov4.cfg",
help="path to config file")
parser.add_argument("--data_file", default="./cfg/coco.data",
help="path to data file")
parser.add_argument("--thresh", type=float, default=.25,
help="remove detections with confidence below this value")
return parser.parse_args()
def str2int(video_path):
"""
argparse returns strings although webcam uses int (0, 1 ...)
Cast to int if needed
"""
try:
return int(video_path)
except ValueError:
return video_path
def check_arguments_errors(args):
assert 0 < args.thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
if not os.path.exists(args.config_file):
raise(ValueError("Invalid config path {}".format(os.path.abspath(args.config_file))))
if not os.path.exists(args.weights):
raise(ValueError("Invalid weight path {}".format(os.path.abspath(args.weights))))
if not os.path.exists(args.data_file):
raise(ValueError("Invalid data file path {}".format(os.path.abspath(args.data_file))))
if str2int(args.input) == str and not os.path.exists(args.input):
raise(ValueError("Invalid video path {}".format(os.path.abspath(args.input))))
def set_saved_video(output_video, size, fps):
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
return cv2.VideoWriter(output_video, fourcc, fps, size)
def convert2relative(bbox, preproc_h, preproc_w):
"""
YOLO format use relative coordinates for annotation
"""
x, y, w, h = bbox
return x / preproc_w, y / preproc_h, w / preproc_w, h / preproc_h
def convert2original(image, bbox, preproc_h, preproc_w):
x, y, w, h = convert2relative(bbox, preproc_h, preproc_w)
image_h, image_w, __ = image.shape
orig_x = int(x * image_w)
orig_y = int(y * image_h)
orig_width = int(w * image_w)
orig_height = int(h * image_h)
bbox_converted = (orig_x, orig_y, orig_width, orig_height)
return bbox_converted
# @TODO - cfati: Unused
def convert4cropping(image, bbox, preproc_h, preproc_w):
x, y, w, h = convert2relative(bbox, preproc_h, preproc_w)
image_h, image_w, __ = image.shape
orig_left = int((x - w / 2.) * image_w)
orig_right = int((x + w / 2.) * image_w)
orig_top = int((y - h / 2.) * image_h)
orig_bottom = int((y + h / 2.) * image_h)
if orig_left < 0:
orig_left = 0
if orig_right > image_w - 1:
orig_right = image_w - 1
if orig_top < 0:
orig_top = 0
if orig_bottom > image_h - 1:
orig_bottom = image_h - 1
bbox_cropping = (orig_left, orig_top, orig_right, orig_bottom)
return bbox_cropping
def video_capture(stop_flag, input_path, raw_frame_queue, preprocessed_frame_queue, preproc_h, preproc_w):
cap = cv2.VideoCapture(input_path)
while cap.isOpened() and not stop_flag.is_set():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (preproc_w, preproc_h),
interpolation=cv2.INTER_LINEAR)
raw_frame_queue.put(frame)
img_for_detect = darknet.make_image(preproc_w, preproc_h, 3)
darknet.copy_image_from_bytes(img_for_detect, frame_resized.tobytes())
preprocessed_frame_queue.put(img_for_detect)
stop_flag.set()
cap.release()
def inference(stop_flag, preprocessed_frame_queue, detections_queue, fps_queue,
network, class_names, threshold):
while not stop_flag.is_set():
darknet_image = preprocessed_frame_queue.get()
prev_time = time.time()
detections = darknet.detect_image(network, class_names, darknet_image, thresh=threshold)
fps = 1 / (time.time() - prev_time)
detections_queue.put(detections)
fps_queue.put(int(fps))
print("FPS: {:.2f}".format(fps))
darknet.print_detections(detections, args.ext_output)
darknet.free_image(darknet_image)
def drawing(stop_flag, input_video_fps, queues, preproc_h, preproc_w, vid_h, vid_w):
random.seed(3) # deterministic bbox colors
raw_frame_queue, preprocessed_frame_queue, detections_queue, fps_queue = queues
video = set_saved_video(args.out_filename, (vid_w, vid_h), input_video_fps)
fps = 1
while not stop_flag.is_set():
frame = raw_frame_queue.get()
detections = detections_queue.get()
fps = fps_queue.get()
detections_adjusted = []
if frame is not None:
for label, confidence, bbox in detections:
bbox_adjusted = convert2original(frame, bbox, preproc_h, preproc_w)
detections_adjusted.append((str(label), confidence, bbox_adjusted))
image = darknet.draw_boxes(detections_adjusted, frame, class_colors)
if not args.dont_show:
cv2.imshow("Inference", image)
if args.out_filename is not None:
video.write(image)
if cv2.waitKey(fps) == 27:
break
stop_flag.set()
video.release()
cv2.destroyAllWindows()
timeout = 1 / (fps if fps > 0 else 0.5)
for q in (preprocessed_frame_queue, detections_queue, fps_queue):
try:
q.get(block=True, timeout=timeout)
except queue.Empty:
pass
if __name__ == "__main__":
args = parser()
check_arguments_errors(args)
network, class_names, class_colors = darknet.load_network(
args.config_file,
args.data_file,
args.weights,
batch_size=1)
darknet_width = darknet.network_width(network)
darknet_height = darknet.network_height(network)
input_path = str2int(args.input)
cap = cv2.VideoCapture(input_path) # Open video twice :(
video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_fps = int(cap.get(cv2.CAP_PROP_FPS))
cap.release()
del cap
ExecUnit = threading.Thread
Queue = queue.Queue
stop_flag = threading.Event()
raw_frame_queue = Queue()
preprocessed_frame_queue = Queue(maxsize=1)
detections_queue = Queue(maxsize=1)
fps_queue = Queue(maxsize=1)
exec_units = (
ExecUnit(target=video_capture, args=(stop_flag, input_path, raw_frame_queue, preprocessed_frame_queue,
darknet_height, darknet_width)),
ExecUnit(target=inference, args=(stop_flag, preprocessed_frame_queue, detections_queue, fps_queue,
network, class_names, args.thresh)),
ExecUnit(target=drawing, args=(stop_flag, video_fps,
(raw_frame_queue, preprocessed_frame_queue, detections_queue, fps_queue),
darknet_height, darknet_width, video_height, video_width)),
)
for exec_unit in exec_units:
exec_unit.start()
for exec_unit in exec_units:
exec_unit.join()
print("\nDone.")