Skip to content

Files

Latest commit

 Cannot retrieve latest commit at this time.

History

History
116 lines (101 loc) · 4.57 KB

DATA_DOWNLOAD.md

File metadata and controls

116 lines (101 loc) · 4.57 KB

Downloading and Organizing Existing Tasks

Multimodal Tasks

CLiMB initially includes four vision-and-language tasks:

Data files for these four tasks can be downloaded from their respective websites. The data files are organized as follow:

data
├── flickr30k
│   └── flickr30k_images/
├── ms-coco
│   ├── images/
├── nlvr2
│   ├── data
│   │   ├── balanced
│   │   ├── dev.json
│   │   ├── filter_data.py
│   │   ├── test1.json
│   │   ├── train.json
│   │   └── unbalanced
│   └── images
│       ├── dev/
│       ├── test1/
│       └── train/
├── snli-ve
│   ├── snli_ve_dev.jsonl
│   ├── snli_ve_test.jsonl
│   └── snli_ve_train.jsonl
├── vcr
│   ├── annotation
│   │   ├── test.jsonl
│   │   ├── train.jsonl
│   │   └── val.jsonl
│   ├── drawn_images/
│   ├── vcr1images/
└── vqav2
    ├── ans2label.pkl
    ├── v2_mscoco_train2014_annotations.json
    ├── v2_mscoco_val2014_annotations.json
    ├── v2_OpenEnded_mscoco_train2014_questions.json
    └── v2_OpenEnded_mscoco_val2014_questions.json

Items ending with / are directories, typically containing a large number of images.

For NLVR2:

  • the link for downloading images can be requested using this form.
  • Download the three zip files (train_img.zip, dev_img.zip, test_img.zip) using wget into nlvr2/images/.
  • Run bash src/utils/preproc_nlvr2_images.sh, with the IMAGES_DIR variable set to the full path for nlvr2/images/.
  • The files in nlvr2/data/ can be downloaded from the NLVR2 GitHub repo.

The drawn_images folder for the VCR task can be generated from the original vcr1images, using the scripts available here.

Language-Only Tasks

CLiMB initially includes five language-only tasks:

We provide the script utils/download_lang_mc.sh for downloading multiple-choice tasks from the official websites linked above. Note: we split our dev set (held-out) from the training set for hyper-parameter tuning and use the original dev set as the test set, as we do not have the labels of the original test set.

Vision-Only Tasks

CLiMB initially includes four vision-only tasks:

Data files for these four tasks can be downloaded from their respective websites. The data files are organized as follow:

YOUR_DATA_DIR
├── ILSVRC2012/
|   ├── train/
|   |   ├── n01440764/
|   |   ├── n01443537/
|   |   └── ...
|   ├── val/
|   |   └── ILSVRC2012_val_*.JPEG
|   └── LOC_val_solution.csv
|── iNat2019/
|   ├── train_val2019/
|   |   ├── Amphibians/
|   |   ├── Birds/
|   |   └── ...
|   ├── train2019.json
|   └── val2019.json
|── Places365/
|   ├── train/
|   |   ├── airfield/
|   |   ├── airplane_cabin/
|   |   └── ...
|   └── val/
|       ├── airfield/
|       ├── airplane_cabin/
|       └── ...
└── ms-coco/
    ├── images/
    └── detections/
        └── annotations/
            ├── instances_train2017.json
            └── instances_val2017.json

Note: we split our dev set (held-out) from the training set for hyper-parameter tuning and use the original dev set as the test set, as we do not have the labels of the original test set.