This document explains how to build Phi-2, Phi-3 and Phi-3.5 family of models using TensorRT-LLM and run on a single or multiple GPUs.
For multimodal models (Phi-3-vision-128k-instruct and Phi-3.5-vision-instruct), see ../multimodal/README.md
.
The TensorRT-LLM Phi implementation can be found in tensorrt_llm/models/phi/model.py
and tensorrt_llm/models/phi3/model.py
. The TensorRT-LLM Phi example code is located in examples/phi
with a single file:
convert_checkpoint.py
to convert a checkpoint from the HuggingFace (HF) Transformers format to the TensorRT-LLM format
In addition, there are two shared files in the parent folder examples
for inference and evaluation:
../run.py
to run the inference on an input text;../summarize.py
to summarize the articles in the cnn_dailymail dataset.
Model Name | FP16 | BF16 | FP8 | INT8 | TP |
---|---|---|---|---|---|
Phi-2 | Y | Y | Y | ||
Phi-3-mini-4k-instruct | Y | Y | Y | Y | |
Phi-3-mini-128k-instruct | Y | Y | Y | Y | |
Phi-3-small-8k-instruct | Y | Y | Y | Y | Y |
Phi-3-small-128k-instruct | Y | Y | Y | Y | Y |
Phi-3-medium-8k-instruct | Y | Y | Y | Y | |
Phi-3-medium-128k-instruct | Y | Y | Y | Y | |
Phi-3.5-mini-instruct | Y | Y | Y | Y | |
Phi-3.5-MoE-instruct | Y | Y | Y | Y | Y |
- Model Name: the name of the model, the same as the name on HuggingFace
- TP: Tensor Parallel
Please install required packages first:
pip install -r requirements.txt
python ./convert_checkpoint.py \
--model_dir /path/to/phi-model \
--output_dir ./phi-checkpoint \
--dtype float16
If a model supports tensor-parallelism, number of tensor parallel ranks to split the model into can be specified as --tp_size
argument to convert_checkpoint.py
.
For Phi-3.5-MoE-instruct model, expert parallelism can be enabled using --moe_tp_size
and --moe_ep_size
arguments.
The section on Parallelism Modes in ../mixtral/README.md
discusses tensor and expert parallelism for Mixture of Experts models in detail.
TensorRT-LLM builds TensorRT engine(s) using a HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) using dummy weights.
Examples of build invocations:
# Build a float16 engine using a single GPU and HF weights.
# Enable several TensorRT-LLM plugins to increase runtime performance. It also helps with build time.
trtllm-build \
--checkpoint_dir ./phi-checkpoint \
--output_dir ./phi-engine \
--gemm_plugin auto \
--max_batch_size 8 \
--max_input_len 1024 \
--max_seq_len 2048
The following section describes how to run a TensorRT-LLM Phi model to summarize the articles from the cnn_dailymail dataset. For each summary, the script can compute the ROUGE scores and use the ROUGE-1
score to validate the implementation.
The script can also perform the same summarization using the HF Phi model.
As previously explained, the first step is to build the TensorRT engine as described above using HF weights. You also have to install the requirements:
pip install -r requirements.txt
The summarization can be done using the ../summarize.py
script as follows:
# Run the summarization task using a TensorRT-LLM model and a single GPU.
python3 ../summarize.py --engine_dir ./phi-engine \
--hf_model_dir /path/to/phi-model \
--batch_size 1 \
--test_trt_llm \
--test_hf \
--data_type fp16 \
--check_accuracy \
--tensorrt_llm_rouge1_threshold=20
# Run the summarization task using a TensorRT-LLM model and 2-way tensor parallelism.
mpirun -n 2 --allow-run-as-root \
python3 ../summarize.py --engine_dir ./phi-engine-tp2 \
--hf_model_dir /path/to/phi-model \
--batch_size 1 \
--test_hf \
--test_trt_llm \
--data_type fp16 \
--check_accuracy \
--tensorrt_llm_rouge1_threshold 20
All Phi-3 variants support post-training quantization to FP8 and INT8 SmoothQuant formats.
FP8 checkpoints can be built as follows:
DTYPE=bfloat16
python3 ../quantization/quantize.py \
--model_dir phi3-model \
--output_dir ./phi3-checkpoint \
--dtype $DTYPE \
--qformat fp8 --kv_cache_dtype fp8
INT8 checkpoints can be built as follows:
DTYPE=bfloat16
python3 ../quantization/quantize.py \
--model_dir phi3-model \
--output_dir ./phi3-checkpoint \
--dtype $DTYPE \
--qformat int8_sq --kv_cache_dtype int8
The commands to build TensorRT engines from quantized checkpoints and to run summarization test are same as those for unquantized checkpoints.
TensorRT-LLM supports running Phi-3-mini/small models with FP16/BF16/FP32 LoRA. In this section, we use Phi-3-mini as an example to show how to run an FP8 base model with FP16 LoRA module.
- download the base model and lora model from HF
git-lfs clone https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
git-lfs clone https://huggingface.co/sikoraaxd/Phi-3-mini-4k-instruct-ru-lora
- Quantize the Phi-3-mini model to fp8 from HF
BASE_PHI_3_MINI_MODEL=./Phi-3-mini-4k-instruct
python ../quantization/quantize.py --model_dir ${BASE_PHI_3_MINI_MODEL} \
--dtype float16 \
--qformat fp8 \
--kv_cache_dtype fp8 \
--output_dir phi3_mini_4k_instruct/trt_ckpt/fp8/1-gpu \
--calib_size 512
- Build engine and run inference.
trtllm-build --checkpoint_dir phi3_mini_4k_instruct/trt_ckpt/fp8/1-gpu \
--output_dir phi3_mini_4k_instruct/trt_engines/fp8_lora/1-gpu \
--gemm_plugin auto \
--max_batch_size 8 \
--max_input_len 1024 \
--max_seq_len 2048 \
--lora_plugin auto \
--lora_dir ./Phi-3-mini-4k-instruct-ru-lora
python ../run.py --engine_dir phi3_mini_4k_instruct/trt_engines/fp8_lora/1-gpu \
--max_output_len 500 \
--tokenizer_dir ./Phi-3-mini-4k-instruct-ru-lora \
--input_text "<|user|>\nCan you provide ways to eat combinations of bananas and dragonfruits?<|end|>\n<|assistant|>" \
--lora_task_uids 0 \
--use_py_session