TensorRT-LLM provides a Python plugin interface to integrate TensorRT-LLM with pure Python.
openai_triton_plugin
: plugin packagebuild_lookup.py
: Build a TensorRT engine with TensorRT-LLM Python pluginrun_lookup.py
: Run the engine and compare the result with PyTorch
The following code shows how to create a look-up plugin. We only need to do a few things to define a TensorRT-LLM plugin.
- Inherit the
PluginBase
. - Register the plugin class to TensorRT-LLM by using
@trtllm_plugin("your_plugin_name")
. - Define an
__init__
function and initialize the base class. - Define a shape and dtype inference function.
- Define the compute flow.
@trtllm_plugin("TritonLookUp")
class LookUpPlugin(PluginBase):
def __init__(self, use_torch_tensor, fp32_output):
super().__init__()
self.use_torch_tensor = use_torch_tensor
self.fp32_output = fp32_output
def shape_dtype_inference(self, inputs: Sequence[SymTensor]) -> SymTensor:
shape = inputs[1].shape
shape[0] = inputs[0].shape[0] + inputs[1].shape[0] - inputs[1].shape[0]
return SymTensor(
inputs[1].dtype if not self.fp32_output else torch.float32, shape)
def forward(self, inputs: Sequence[TensorWrapper],
outputs: Sequence[TensorWrapper]):
assert len(inputs) == 2
assert inputs[0].dtype in [torch.int32 or torch.int64]
assert inputs[1].dtype in [torch.float32, torch.float16, torch.bfloat16]
assert (self.fp32_output and outputs[0].dtype
== torch.float32) or outputs[0].dtype == inputs[1].dtype
x = inputs[0]
y = inputs[1]
z = outputs[0]
if self.use_torch_tensor:
x = convert_to_torch_tensor(x)
y = convert_to_torch_tensor(y)
z = convert_to_torch_tensor(z)
MAX_BLOCK_NUM = 65536
MAX_BLOCK_SIZE = 512
grid = lambda meta: (min(MAX_BLOCK_NUM, x.shape[0]) * min(
MAX_BLOCK_SIZE, y.shape[1]), )
lookup_kernel[grid](x, y, z, y.shape[0], y.shape[1], x.shape[0])
You only need an instance of the plugin object and then call it with tensorrt_llm.Tensor
as input arguments.
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=index_shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
y = Tensor(name='y',
shape=(vocab_size, n_embed),
dtype=torch_dtype_to_trt(dtype))
def lookup(x, y):
lookup_plugin = LookUpPlugin(False)
return lookup_plugin(x, y)
output = lookup(x, y)
output.mark_output('output', torch_dtype_to_str(dtype))
Because TensorRT-LLM performs plugin registration when importing the custom TensorRT-LLM plugin, there are some code structure conventions to register the plugin at runtime.
plugin_lib
├──__init__.py
├──lookup_plugin.py
└──lookup_kernel.py
The __init__.py
file imports all the plugins in the plugin package.
With this convention, users only need to import the plugin package to register the plugins and do not need to manually import them.
# __init__.py
from .lookup_plugin import LookUpPlugin
__all__ = ["LookUpPlugin"]
During deserialization, TensorRT needs to find the user-defined plugin. Thus, we need to import the plugin once to register them. If the plugin follows the code structure convention, users only need to import that package to register all the custom plugins.
from tensorrt_llm.runtime.session import Session, TensorInfo
import openai_triton_plugin # isort: skip
if __name__ == "__main__":
def run_engine(dtype):
output_dir = Path('tmp') / torch_dtype_to_str(dtype)
engine_path = output_dir / "lookup.engine"
with engine_path.open('rb') as f:
session = Session.from_serialized_engine(f.read())