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Abstract

This study investigates the variability among patients with non-small cell lung cancer
(NSCLC) in their responses to immune checkpoint inhibitors (ICI). Recognizing that patients
with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to
identify biomarkers that influence responses to ICI therapy. We conducted an analysis of
single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14
core samples taken before the initiation of palliative ICI treatment. Our objective was to link
tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-
responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells,
and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders.
Furthermore, tumor cells in non-responders frequently showed heightened transcriptional
activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI
therapy. Through the integration of immune cell profiles and tumor molecular signatures, we
achieved an accuracy rate exceeding 95% in predicting patient responses to ICI treatment.
These results underscore the crucial importance of the interplay between tumor and immune
microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in
NSCLC.
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The authors utilized scRNAseq profiling of NSCLC patient tumor samples to generate
useful insights into the determinants of ICI responsiveness in NSCLC patients. While
some of the findings add weight to the current literature, the analysis is incomplete
due to the small cohort size and occasional departures from recognized subtype
markers. This study would benefit from external cohorts to both validate the findings
and to justify the statistical analysis undertaken.

https://doi.org/10.7554/eLife.98366.1.sa2

Introduction

Treatment landscape in cancer has rapidly evolved with the introduction of immune checkpoint
inhibitors (ICI). Among various immune checkpoints, antibody-targeting programmed cell death-1
(PD-1) and its ligand (PD-L1) have demonstrated clinical benefits over conventional systemic
chemotherapy in patients with non-small cell lung cancer (NSCLC). They have been approved as
either monotherapy in patients with high PD-L1 expression 1      or combined with cytotoxic
chemotherapy regardless of PD-L1 expression 2     ,3     . Moreover, the clinical benefits were
validated in unresectable stage III NSCLC as consolidation therapy after definitive
chemoradiotherapy or early stage NSCLC (Ib-IIIA) as adjuvant therapy after curative surgery 4     .

There have been many efforts to elucidate the predictive biomarkers of PD-(L)1 inhibitors. The PD-
L1 expression in tumor tissue evaluated via immunohistochemistry has been incorporated as a
companion diagnostic biomarker from the early clinical trials, which enhanced the response rate
up to 46% in patients with PD-L1 ≥50% and showed an overall survival rate of up to 26.3 months
5     . Other biomarkers, such as tumor mutation burden or gene expression profile, also
demonstrated a positive predictive value 6     ,7     . Recent large-scale meta-analysis of clinico-
immunogenomics shows that both tumor- and T cell intrinsic factors exert a substantial impact on
ICI response 8     , supporting the necessity of in-depth investigation of high-throughput profiles of
tumor and microenvironment.

ICI treatment modifies systemic immune profiles represented by changing the proportion of
specific cell types. The increase in PD-1+Ki67+CD8+ T cells in the peripheral blood after treatment
with PD-1 inhibitors is associated with a better outcome in patients with NSCLC 9     ,10     . The cell
type has also been identified in tumor tissues and related to clinical outcomes 11     .

Tumor-infiltrating PD-1 positive T cells have higher capacity of tumor recognition than PD-1
negative T cells, indicating certain types of T cells in tumor bed function as tumor-specific T cells.
In addition to T cells, other immune cell types, such as myeloid-derived suppressor cells or
regulatory T cells, regulating the tumor-specific T cell immunity may also influence the
therapeutic outcome 12     –14     . In summary, the multicellular regulation of the tumor-immune
microenvironment highlights the importance of systemic tumor and immune cell profiling at
single cell resolution to investigate baselines associated with response to ICI treatment.

Results

https://doi.org/10.7554/eLife.98366.1
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Variability and features of the lung cancer samples
We conducted scRNA-seq on 33 lung cancer samples from 26 patients treated with immune
checkpoint inhibitors (ICI) between August 2017 and December 2019 to understand how cellular
dynamics in lung cancer affect treatment sensitivity to PD-(L)1 inhibitors, used alone or in
combination (Fig. 1a      and Table S1). Immune checkpoint therapy provides clinical benefit in
advanced metastatic NSCLC across different treatment lines 15     . Notably, our samples have been
collected from various tissue sites. In the scRNA-seq analysis, all specimens were used for the cell
type profiling in an unbiased manner. For the evaluation of clinical outcomes, refined 14 core
samples from 11 patients were used to minimize sample specific variations. Exclusion criteria
from the core group encompass samples with treatment applied as adjuvant therapy, acquired
after ICI treatment, no tumor content, non-evaluable for the clinical response, or histology other
than non-small cell lung cancer (Table 1      and Fig. 1a     ). Of the 11 core patients, 8 had
adenocarcinoma and 3 had squamous cell carcinoma. Clinical outcomes of ICI were partial
response (PR) in four patients, stable disease (SD) in two patients, and progressive disease (PD) in
five patients. Patients were classified as responders (PR) and non-responders (SD and PD)
according to ICI response.

Due to the diversity of sample collection sites, our data may be influenced by varied immune cell
composition at different sample collection sites. Therefore, we analyzed immune and stromal cell
subsets across early-stage (tLung) and late-stage (tL/B) lung tumors, and metastatic lymph nodes
(mLN), comparing them to normal lung (nLung) and lymph node (nLN) tissues. This analysis was
conducted on public scRNA-seq data from 43 samples from 33 LUAD patients 16      (Fig. S1a-c).
Although there were differences in tissue-specific resident populations, we found that the immune
cell profiles, especially T/NK cells of mLN were similar to those of primary tumor tissues indicating
the activation of immune responses were consistently observed at metastatic sites (Fig. S1d-f).

Classification of immune cell subset in lung cancer
Global cell-type profiling (Fig. 1b,c      and Table S2) illustrates the cellular composition of each
sample as epithelial/tumor cells, fibroblasts, endothelial cells, T/natural killer (NK) cells, B/plasma
cells, myeloid immune cells, and mast cells. Individual samples show variations in
epithelial/tumor content as well as in immune cell composition (Fig. 1d,e     ).

For further analysis of immune cell subtypes, we applied sequential subclustering on global
immune cell clusters. As scRNA-seq shows limited performance in separating CD4+ and CD8+ T cell
subsets, antibody-derived tag (ADT) information 17      was used to complement the transcriptome
data and to predict CD4+ T cells, CD8+ T cells, and NK cells (Fig. 2a     ). Finally, fourteen CD4+ and
fourteen CD8+ T cell subclusters were identified excluding <5% ambiguous cells (Fig. 2b,c      and
Table S2). In the CD4+ T cell compartment, naïve-like T cells (TN, CD4_cluster0) and central
memory T cells (TCM, CD4_cluster1) expressing SELL, TCF7, LEF1, and CCR7 genes or tissue-
resident memory T cells (TRM, CD4_clusters3, 5, 6) expressing NR4A1, MYADM, and PTGER4 genes
were abundant in most samples. Regulatory T cells (Treg, CD4_cluster2) with FOXP3, CTLA4, ICOS,
and BATF expression were also abundant, which has been demonstrated as tumor-specific
alterations in the tissue microenvironment 16     ,18     ,19     . In the CD8+ T cell compartment, effector
memory T cells (TEM), effector T cells (TEFF), effector memory CD45RA positive cells (TEMRA)
(CD8_clusters0, 2, 3, 8) expressing PRF1 and IFNG were dominant over TN/TCM (CD8_clusters4, 5)
types. Exhausted T cells (TEX, CD8_clusters1, 12) expressed multiple checkpoint genes (HAVCR2
and PDCD1) along with high levels of PRF1, IFNG, CXCR3, and CXCL13. Co-expression of cytotoxic
effectors and checkpoint molecules in TEX clusters indicates that cluster populations may retain
functional capacity as cytotoxic effector T cells 20     . Further, clonotype analysis of TCR supported
the T cell subset classification demonstrating higher clonal expansion in the CD8+ T cell
compartment than that in CD4+ T cells, with the highest levels within the TEX subclass (Fig. S2a-c).

https://doi.org/10.7554/eLife.98366.1
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Figure 1.

Cell lineage identification of 96,505 single cells from 26 patients with lung cancer treated with ICI.

a, Workflow of sample collection and single-cell analysis of lung cancer patients treated with ICI. b, UMAP plot of 96,505
single cells from 33 samples acquired from 26 advanced lung cancer patients, colored by clusters. AMB cells, Ambiguous cells.
c, Dot plot of mean expression of canonical marker genes for cell lineages. d, Proportions of the cell lineages in NSCLC tissue
from core patients shown by individual samples aligned with clinical data. Labels for origins indicate LN, Metastatic lymph
node; Lung, Tumor lung; PE, Malignant pleural effusion; Liver, Metastatic liver. e, Box plot of the percentage of cell lineages in
responder and non-responder groups. Label represents p-value calculated via two-tailed Student’s t-test. Each box
represents the median and the interquartile range (IQR, the range between the 25th and 75th percentile), whiskers indicate
the 1.5 times of IQR.

https://doi.org/10.7554/eLife.98366.1
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Table 1.

Clinical overview of NSCLC patients treated with ICI.

https://doi.org/10.7554/eLife.98366.1
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Figure 2.

Classification and characterization of CD4+ and CD8+ T cell subtypes.

a, Prediction strategy to classify CD4+, CD8+ T, and NK cells by applying ADT data from lung cancer. b, UMAP plot of CD4+ and
CD8+ T cells, colored by clusters. c, Dot plot of mean expression of selected CD4+ (left) and CD8+ (right) T cell marker genes
in each cell cluster. d, Box plot of the percentage of CD4+ and CD8+ T cell types within total CD4+ plus CD8+ cells for sample
groups representing responses to ICI. Label represents p-value calculated via two-tailed Student’s t-test. Each box represents
the median and the IQR, whiskers indicate the 1.5 times of IQR. e, Association of T cell functional features with clonal
expansion. Dot size depicts the clone size of each cell and color indicates the cell lineage. f, Comparisons of proportional
changes in cell subtypes along ICI responses within each immune cell lineage. Dot size and color represent −log (p-value) for
responder vs. non-responder and non-PD vs. PD, respectively. p-value, two-tailed Student’s t-test.

https://doi.org/10.7554/eLife.98366.1
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Natural killer cells can be subclassified as CD56bright, transitional, active, and mature types 21     

(Fig. S3a,b and Table S2). Active NK cells expressed the highest level of PRF1, TNF, and IFNG,
reflecting a cytotoxic effector function.

Compared to T cell clusters, fewer B/plasma cells were detected as follicular (B_clusters 0, 1, 2, 4, 6,
11), germinal center (B_cluster 10), and plasma/mucosa-associated lymphoid tissue (MALT) B cells
(B_clusters 3, 7, 12) (Fig. S3a,b and Table S2). Plasma/MALT B cells manifested higher levels of
clonal expansion of BCR than follicular B cells (Fig. S3c,d). Identical clonality of some follicular B
and plasma cells suggests in situ maturation and differentiation of B cells to plasma cells in tumor
tissues (Fig. S3c, clonotype 16).

Myeloid cells were composed of monocytes, dendritic cells, and a large number of macrophages
(Fig. S3a,b and Table S2). CD14+CD16-classical monocytes (Myeloid_clusters1,6) were
predominantly found over non-classical CD14loCD16+ types (Myeloid_cluster15). Alveolar
macrophages (Alveolar Mac, Myeloid_cluster0) expressed well-defined marker genes such as
MARCO, FABP4, and MCEMP1 along with anti-inflammatory genes such as CD163, APOE, and
C1QA/B/C. Monocyte-derived macrophages represent heterogeneous populations with a similar
gene expression profile to alveolar macrophages (Mo-Mac, Myeloid_clusters2, 3, 5, 9, 11, 13), with
an elevated chemokine gene expression (CXCL10+ Mo-Mac, Myeloid_clusters4, 14, 16), or with
active cell cycle progression (Proliferating Mac, Myeloid_cluster7). Dendritic cells were categorized
as CD1c+ (Myeloid_cluster8, CD1C and ITGAX), activated (Myeloid_cluster17, CCR7 and LAMP3),
and CD141+ (Myeloid_cluster19, CLEC9A and XCR1) subclusters.

Overall immune cell composition is comparable to those reported in previous studies
16     ,18     ,19     .

Immune cell landscape fostering the ICI response
In global cell-type profiling (Fig. 1b,c     ), abundance in T, NK, or myeloid cell types shows no
difference between responders and non-responders (Fig. 1d, e     ). Nonetheless, as specific
differentiation features within the cell types may influence the response to ICI treatment, we
compared the response groups using the proportion of subclusters within CD4+ T, CD8+ T, NK,
B/plasma, and myeloid cells. After subclustering (Fig. 2b      and Fig. S3a), three subsets of CD4+ T
cells, i.e., Treg, TRM, and CD4+ T helper 17 (TH17), were significantly (p<0.01) overrepresented in
the non-responder group (Fig. 2d     ). In contrast, among CD8+ T cell populations, TEM subsets
demonstrated a modest level of association with the patients who responded well against
progressive disease (Fig. 2d     , p=0.06). TCR clonotype analysis supported the cellular dynamics
such that clonal expansion was more prominent in cytotoxic CD8+ T cells over CD4+ Tregs in the
responder group (Fig. 2e      and Fig. S2c). Overall landscape in each cell type (Fig. 2f     ) suggests
that CD4+ Treg and TRM as well as follicular B cells may interfere with the ICI response, whereas
CD8+ T cell activation (TEM, TEMRA/TEFF, and TEX), mature NK cells, and CXCL10+ Mo-Mac cells
support the ICI response. The balance between separate immune cell types informs immune
regulatory axes that may be targeted to favor the activation of tumor-reactive immunity.

Systemic evaluation of the immune
microenvironment associated with ICI response
Next, we evaluated the immune microenvironment as an entity by using all immune cells as a
denominator in the subtype proportions. In this setting, we used diverse clinical group
comparisons and identified the immune cell blocks separated by clinical outcomes (Fig. 3a     ). The
immune cell blocks overrepresented in the non-responder groups consisted of CD4+ Treg,
follicular B cells, and CD4+ TH17/TRM/ T helper 1 (TH1)-like cells. In the immune cell blocks of the
responder groups, CD8+ TEM cells showed the strongest enrichment along with the other CD8+

https://doi.org/10.7554/eLife.98366.1
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TEX/TEMRA/TEFF/Mitochondria (MT) high cells as well as CXCL10+ Mo-Mac. Despite the immune
footprints of the ICI responders, extensive variations among individual patients (Fig. 3b     )
hamper patient stratification solely based on the immune profiles.

Tumor cell signatures associated with ICI response
We investigated the associations between genomic characteristics in tumor and ICI response. The
constraints of mutation analysis with 10x chromium data complicated the direct correlation
between tumor mutation burden and ICI outcome. Rather, we assessed copy number alterations
(CNA) indirectly, via chromosomal gene expression patterns. These analyses revealed a moderate
correlation between low levels of CNA, including both gain and loss of heterozygosity, and positive
responses to ICI (Fig. S4). This finding is consistent with the result from previous genetic
association studies 22     .

To assess gene expression characteristics of tumors influencing ICI response, we separated
malignant tumor cell clusters from normal epithelial cell types (Fig. S5). Subsequent DEG analysis
(Fig. 4a      and Table S3) identified genes in poor response groups linked to the regulation of cell
death, cell motility, and cell activation (Fig. S6 and Table S4). The DEGs were refined later by
combinations of various tumor signatures separating responder and non-responder groups (Table
S5).

Next, to explore the existence of gene programs and modules influencing the ICI response, we
applied factorization using non-negative matrix factorization (NMF) and scINSIGHT 23     . Among
30 factors from NMF across all malignant cells, we identified factors showing high loadings for a
specific RECIST group as NMF programs p1∼4 (Fig. 4b, c     ). There were clear distinction among
RECIST groups according to the gene expression levels associated with these NMF programs (Fig.
4d      and Table S5). To identify gene modules consistent across different patients, we examined
RECIST-specific modules though scINSIGHT analysis 23      (Fig. 4e     ). Unfortunately, we found that
contributions to these gene modules varied significantly among patients. To mitigate this
variability, we adjusted the RECIST-specific modules by combining genes from the original
modules (Table S5). The refined gene modules showed a specific gene expression pattern for each
RECIST group, similar to the NMF programs (Fig. 4f     ). Overall, both genes and their functional
categories segregated depending on the selection techniques used (Fig. 4g, h     ). However,
transcription factors governing the signatures derived from DEG, NMF, and scINSIGHT analyses
consistently delineated between responders and non-responders (Fig. 4i     ). Responder-specific
gene signatures showed associations with the transcription factors Regulatory Factor X Associated
Ankyrin Containing Protein (RFXANK), Regulatory Factor X Associated Protein (RFXAP), and
Regulatory Factor X5 (RFX5). This RFX protein complex has emerged as a positive biomarker for
the immune response in diverse cancer types 24     . Non-responder-specific gene signatures were
regulated by Activator Of Transcription 3 (STAT3) and Nuclear Factor Kappa B Subunit 1 (NFKB1),
known to play roles in PD-L1 regulation and T cell activation in cancer 25     .

We also adopted principal component analysis (PCA) to isolate correlated gene signatures variably
expressed in tumor cells (Fig. S7, and Table S4, S5). Among the top 10 PCs, negatively correlated
genes in PC2, PC7, and PC8 distinguished the tumor cells in the poor response groups, whereas
positively correlated genes in PC6 and PC9 were upregulated in the better response groups (Fig.
S8a-c). Tumor cells from the PR group had low PC2.neg scores, suggesting low growth factor/type I
interferon response signaling as a tumor cell-specific positive predictor of the ICI response.
Conversely, high levels of growth factor/type I interferon response signaling in tumor cells may
present intrinsic resistance to PD-(L)1 inhibitor alone or in combination. Type I interferon is
known to drive anti-tumor effect directly or indirectly on tumor and surrounding immune cells,
but also acts to counter the anti-tumor effect by inducing CD8+ T cell exhaustion and up-regulating
immune-suppressive genes on tumor cells 26     .

https://doi.org/10.7554/eLife.98366.1
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Figure 3.

Systemic evaluation of immune cell dynamics associated with response to ICI.

a, Heat map with unsupervised hierarchical clustering (left) and depicting significance (right) of proportional changes in cell
subtypes within total immune cells. Proportional changes were compared for multiple ICI response groups. Color represents
the −log (p-value) determined using two-tailed Student’s t-test. b, Distribution map for each cell type across individual
samples aligned with clinical data. Color represents Ro/e score calculated using the chi-square test.

https://doi.org/10.7554/eLife.98366.1
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Figure 4.

Single-cell tumor signatures associated with response to ICI.

a, Volcano plot of expression difference for responder vs. non-responder, PR vs. PD, and PR vs. SD in 12,975 malignant cells
from 11 core patients. The log fold change indicates the difference in the mean expression level for each gene. The
significance level was determined using two-tailed Wilcoxon Rank Sum test. b, Relative sum of loadings for all NMF factors
contributed to malignant cells from 11 core patients across RECIST, tissue origins, and cancer subtypes, respectively. c,
Selection of RECIST-enriched NMF programs. d, Enrichment of NMF programs for RECIST groups. Color represents the z-
transformed odds ratio. e, Expression map of RECIST-specific scINSIGHT modules across individual samples aligned with
clinical data. Color represents the z-transformed mean expression of genes contributing to each module. f, Enrichment of
RECIST-specific gene modules for RECIST groups. Color represents the z-transformed odds ratio. g, Hierarchical clustering of
pairwise similarities between tumor signatures. INT and UNION, intersection and union of DEGs for responder vs. non-
responder, PR vs. PD, and PR vs. SD in Fig. 4a     . h, Functional categories and i, transcription factors of the selected tumor
signatures, analyzed by Metascape.

https://doi.org/10.7554/eLife.98366.1
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We assessed whether tumor cell signatures are applicable in association with ICI response in other
tumors. They had a modest influence on the response to ICI treatment of melanoma (Fig. S8d) in
bulk gene expression data 27     ,28     .

Combination of tumor signatures and
immune cell dynamics classify ICI response
Immune cell dynamics or tumor signature alone has a limited capacity to profile the therapeutic
outcome of PD-(L)1 inhibitor alone or in combination (Fig. 5a     ). Similar to the immune cell
blocks and tumor signatures that were over-represented in the poor response group, each of CD4+
Treg, CD4+ TH17, PC7.neg, INT.down, and UNION.down was significantly associated with ICI
response in univariate regression analysis (Fig. 5b     ). The variation in ICI response was not
affected by clinical variables of tissue origin, cancer subtype, pathological stage, and smoking
status. When we performed a combined analysis of the top tumor-immune features to classify
response, the estimation power was improved to over 95% (Fig. 5c     ). Overall, features of the
non-responders, especially CD4+ Treg, B/Plasma cells, INT.down, and UNION.down, showed a
higher estimate than those of responders. These non-responder features suggest heterogeneous
mechanisms of resistance conferred by tumor and immune regulatory axes.

Discussion

ICI alone, or in combination with chemotherapy, are considered standard first-line therapy for
patients with NSCLC. NSCLC may harbor large numbers of genetic perturbations due to genotoxic
environmental exposure, which likely generate high mutation burden or neoantigens 29     . The
neoantigen-directed T cell response is hampered by diverse immune suppressive mechanisms
exerted by tumor cells and the immune regulatory network 30     . Current ICIs targeting PD-(L)1
aim one angle of many suppressive mechanisms, and identifying the features of non-responders
will reveal additional regulatory angles to improve ICI response.

Immune regulatory network would determine the balance between activation and suppression of
tumor-directed immunity. In previous studies, prediction of the response to ICI highlighted CD8+
cytotoxic effector T cells and CD4+ Tregs 31     . The involvement of effector CD8+ T cells is
consistent in most studies regardless of the cellular origin (blood or tissues) or tumor type
(melanoma, lung cancer) 32     . Their phenotypes slightly differ depending on the cellular
resolution of the study. Our data provided the highest resolution cell types, and CD8+ TEM cells
(GZMK, CXCR4 expression) were overrepresented in the responders. By comparison, Tregs were
underrepresented in the responder group. Previously, our group reported a contrasting result
demonstrating an increase in Tregs in the posttreatment blood samples (not baseline) in the
responder group 33     . This discrepancy can be explained by the differences in the measurements,
sites, and timing of sampling, and the resolution of subpopulations. In mouse preclinical models,
PD-L1 inhibitor treatment induces T cell expansion of all phenotypes including CD4+/CD8+ TEFF
and Tregs 34     . Thus, Treg expansion captured in the posttreatment blood samples may represent
overall immune activation in human patients. Alternatively, heterogeneity of Tregs and complex
effects of PD-(L)1 inhibition on this cell type may contribute to variable results in response
prediction.

In search of tumor cell signatures associated with the response to ICI, we adopted two approaches,
an individual gene level comparison between the responder and non-responder group and a
feature extraction approach to decompose data using the NMF and PCA. Both approaches
highlighted attributes of non-responders governed by key transcription factors, which play a
significant role in immune response regulation. The ability to predict ICI response based on tumor

https://doi.org/10.7554/eLife.98366.1
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Figure 5.

Combination of tumor signatures and immune index classifying the response to ICI.

a, Heat map of relative contribution of tumor signatures and immune index across individual samples aligned with clinical
data. Mean expression of each tumor signature and the percentage of each immune index are divided by the maximum value
across samples. INT and UNION, intersection and union of DEGs for responder vs. non-responder, PR vs. PD, and PR vs. SD in
Fig. 4a     . b, Univariate regression analysis of immune and tumor signatures for ICI response, together with clinical
variables. c, Performance of combinatorial index to classify responder and non-responder. p-value, two-tailed Wilcoxon Rank
Sum test. P-values adjusted with the Benjamini-Hochberg correction; UNION.down + B/Plasma, 0.22; INT.down + B/Plasma,
0.22; UNION.down + CD4+ Treg, 0.26; INT.down + UNION.down, 0.26; INT.down, 0.26; UNION.down, 0.26.

https://doi.org/10.7554/eLife.98366.1
https://doi.org/10.7554/eLife.98366.1


Nayoung Kim et al., 2024 eLife. https://doi.org/10.7554/eLife.98366.1 13 of 25

signatures was as accurate as predictions based on immune cell behavior. Integrating data from
both immune and tumor cells enhanced our predictive accuracy, suggesting the presence of both
interactive and distinct mechanisms of resistance.

Our study has limitations. Primarily, most samples were obtained from metastatic lymph nodes
rather than original tumor tissues, potentially not reflecting the tumor microenvironment
accurately. However, prior study 16      and Fig. S1 have shown that the immune microenvironment
within metastatic lymph nodes closely resembles that of lung tumor tissues, rather than normal
lymph nodes. On a positive note, our findings indicate that the immune landscape of metastatic
lymph nodes can predict ICI response. Another challenge is the small sample size and the issue of
gene expression drop-out, necessitating further studies with a larger patient cohort. Despite these
limitations, our study stands out by employing high-throughput scRNA-seq to both tumor cells and
immune microenvironment, offering a comprehensive analysis of the multicellular factors that
affect ICI response in patients with advanced NSCLC.

Materials and Methods

Human specimens
This study was approved by the Institutional Review Board (IRB) of Samsung Medical Center (IRB
no. 2010-04-039-052). Informed written consent was obtained from all patients enrolled in the
study. The study participants included 26 patients diagnosed with lung cancer (Table S1). The
study population (n=26) has been treated with the investigator’s choice either as a clinical trial
(n=5) or as standard clinical practice (n=21). Regardless of the treatment selection, the specimens
were prospectively collected based on the study protocol. A total of 33 samples were collected and
immediately transferred on ice for tissue preparation. Metastatic lymph nodes, metastatic liver
tissues, and lung/bronchus tumor tissues from patients with lung cancer were collected using
endobronchial ultrasound bronchoscopy, neck lymph node ultrasound and biopsy, liver biopsy,
and percutaneous transthoracic cutting needle biopsy. Tumors, normal lungs, normal lymph
nodes, and normal brain tissues were obtained during resection surgery. Pleural fluid was
collected from patients with malignant pleural effusion.

Clinical outcomes
The clinical outcomes of ICI were evaluated based on the Response Evaluation Criteria in Solid
Tumor (RECIST) 1.1 35     . In this study, we described non-responders as patients with a stable or
progressive disease. Responders were considered as patients with a partial response. None of the
patients showed a complete response.

Sample preparation
Single-cell isolation was performed differently depending on the samples. (1) Biopsy samples and
normal lymph node tissues were chopped into 2-4 mm pieces and dissociated in an enzyme
solution containing collagenase/hyaluronidase (STEMCELL Technologies, Vancouver, Canada) and
DNase I, RNase-Free (lyophilized) (QIAGEN, Hilden, Germany) at 37°C for 1 h. Tissue pieces were
re-mixed by gentle pipetting at 20-min intervals during incubation. (2) Tumor and normal lung
tissue dissociation was performed using a tumor dissociation kit (Miltenyi Biotech, Germany)
following the manufacturer’s instructions. Briefly, tissue was cut into 2–4 mm pieces and
transferred to a C tube containing the enzyme mix (enzymes H, R, and A in RPMI1640 medium).
The GentleMACS programs h_tumor_01, h_tumor_02, and h_tumor_02 were run with two 30-min
incubations on a MACSmix tube rotator at 37°C. (3) Brain tissue was chopped into 2–4 mm pieces
and incubated in an enzyme solution (collagenase (Gibco, Waltham, MA, USA), DNase I (Roche,
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Basel, Switzerland), and Dispase I (Gibco) in DMEM) at 37°C for 1 h. Tissue pieces were re-mixed by
gentle pipetting at 15-min intervals during incubation. (4) Pleural fluids were transferred to a 50-
ml tube, and the cells were spun down at 300g.

Each cell suspension was transferred to a new 50-ml (15-ml for biopsy samples) tube through a 70-
µm strainer. The volume in the tube was readjusted to 50-ml (or 15-ml) with RPMI1640 medium,
and spun down to remove the enzymes. The supernatant was aspirated, the cell pellet was
resuspended in 4 ml of RPMI1640 medium, and dead cells were removed using Ficoll-Paque PLUS
(GE Healthcare, Chicago, IL, USA) separation.

For samples subjected to multiplexing, dissociated cells were cryopreserved in CELLBANKER1
(Zenogen, Fukushima, Japan) and thawed for pooling.

Single-cell RNA sequencing (scRNA-seq) and read processing
Single-cell suspensions were loaded into a Chromium system (10x Genomics, Pleasanton, CA, USA).
Following the manufacturer’s instructions, 3’ scRNA-seq libraries for the 14 samples were
generated using Chromium Single Cell 3′ v2 Reagent Kits. The 3’ library preparation for EBUS_119
used Chromium Single Cell 3′ v3 Reagent Kits. The 5’ scRNA-seq libraries for twelve individual and
two pooled samples were generated using Chromium Single Cell 5′ v2 Reagent Kit. Libraries were
then sequenced on an Illumina HiSeq 2500 for 3’ scRNA-seq and an Illumina NovaSeq 6000 for 5’
scRNA-seq. Sequencing reads were mapped to the GRCh38 human reference genome using Cell
Ranger toolkit (v5.0.0).

SNP genotyping array
Genomic DNA was extracted from the peripheral blood of six patients and subjected to sample
multiplexing (DNeasy Blood & Tissue Kit, QIAGEN). The 766,221 single nucleotide polymorphisms
(SNPs) was genotyped using Illumina Global Screening Array MG v2, following the manufacturer’s
instructions. Normalized signal intensity and genotype were processed using Illumina’s
GenomeStudio v.2 software.

Demultiplexing of pooled samples
The individuals in sample multiplexing were assigned by a software tool freemuxlet, which is an
extension of demuxlet 36      (https://github.com/statgen/popscle     ). First, the popscle tool dsc-pileup
was run with the bam file generated by Cell Ranger toolkit and reference vcf file. The reference
was assembled after a lift-over process with GRCh38 from 1000 Genomes Project phase 1 data and
the variant allele frequency in East Asian >0.01 were discarded. Next, freemuxlet was used to
determine the sample identity with default parameters. The individuals were matched based on
the similarity between freemuxlet-annotated genotypes and SNP array-detected genotypes.

Acquisition of scRNA-seq data from
lung adenocarcinoma (LUAD) patients
We obtained raw 3’ scRNA-seq from 43 specimens acquired from 33 LUAD patients including
early-stage (tLung) and late-stage (tL/B) lung tumor tissues, metastatic lymph nodes (mLN), normal
lung tissues (nLung) and lymph nodes (nLN) 16     . Sequencing reads were mapped to the GRCh38
human reference genome using Cell Ranger toolkit (v5.0.0).

scRNA-seq data analysis
The raw gene-cell-barcode matrix from Cell Ranger pipeline was processed using Seurat v3.2.2 R
package 37     . Cells were selected using two quality criteria: mitochondrial genes (<20%) and gene
count (>200). Cell multiplets predicted by Scrublet 38      were filtered out. From the filtered cells,
the unique molecular identifier (UMI) count matrix was log-normalized and scaled by z-transform
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while regressing out the effects of cell-cycle variations for subsequent analysis. For batch
correction, we used Harmony v1.0 R package 39      interfacing with Seurat as the RunHarmony
function. A total of 2,000 variably expressed genes were selected using FindVariableFeatures with a
parameter selection.method=“vst”. A subset of principal components (PCs) was selected based on
ElbowPlot function. Uniform Manifold Approximation and Projection (UMAP) for dimension
reduction and cell clustering was performed using RunUMAP, FindNeighbors, and FindClusters
functions with the selected PCs and resolutions [Advanced lung cancer patients (Total cells, 33 PCs
and resolution=0.3; CD4+ T cells, 28 PCs and resolution=0.9; CD8+ T cells, 28 PCs and resolution=0.9;
NK cells, 26 PCs and resolution=0.3; B/Plasma cells, 28 PCs and resolution=0.3; Myeloid cells, 30 PCs
and resolution=1.2), LUAD patients (Total cells, 23 PCs and resolution=0.3; T/NK cells, 24 PCs and
resolution=0.9)]. We applied the FindAllMarkers function to identify differentially expressed genes
(DEGs) for each cell cluster. Significance was determined using Wilcoxon Rank Sum test. Genes
were selected according to the following statistical thresholds; log fold change>0.25, p-value<0.01,
adjusted p-value (bonferroni correction)<0.01, and percentage of cells (pct)>0.25. Cell identity was
determined by comparing the expression of known marker genes and DEGs for each cluster.

Principal component analysis (PCA) analysis using
the proportion of cell lineages and T/NK cell subsets
PCA analysis was performed for the % proportion of cell lineages and T/NK cell subsets in
individual LUAD samples using prcomp function of stats v3.6.3 R package. For total cells, the
percentages of immune and stromal cells were calculated except for epithelial, cycling, and AMB
(ambiguous) cells. For T/NK cells, unknown cells annotated as MT high and AMB cells were
excluded.

In silico classification of CD4+ T, CD8+ T, and NK cells
We characterized CD4+ T, CD8+ T, and NK cell populations by combined analysis of gene and
protein expression using Cellular Indexing of Transcriptomes and Epitopes by Sequencing data
from primary tumor and normal lungs. Among the cells in clusters annotated as T/NK cells, we
identified CD3-expressing cells with CD3D or CD3E or CD3G >0 at the RNA level. CD4 and CD8
positive cells were then identified with a cutoff at 55th percentile of antibody-derived tags (ADT)
level. NK cells were identified based on the RNA expression level of NK cell markers (XCL1,
NCAM1, KLRD1, and KLRF1) in CD3 negative cells. The gene expression matrix with cell identity of
CD4 positive, CD8 positive, and NK was applied as reference data for supervised cell-type
classification using getFeatureSpace and trainModel functions of scPred v1.9.0 R package 40     .
Finally, we classified T/NK cells in Fig. 1b      into CD4+ T, CD8+ T, and NK cells using scPred
scPredict function.

Analysis of TCR/BCR repertoires in
CD4+ T, CD8+ T, and B/Plasma cells
The data derived from Cell Ranger pipeline for T cell receptor (TCR) and B cell receptor (BCR)
sequencing data were processed using scRepertoire v1.2.0 R package 41      in R v4.1.1. We selected
contigs that generated alpha-beta chain pairs for TCR and heavy-light chain pairs for BCR for
subsequent analysis. We called clonotypes based on V(D)JC genes and CDR3 nucleotide sequence
with the parameter clonecall=“gene+nt”. The set of clone types was classified by total frequency
using the parameter cloneTypes defined as Single=1, Small=5, Medium=10, Large=20, and
Hyperexpanded=Inf.

Scoring of T cell functional features
Scores for T cell functional features were calculated as the mean expression of regulatory (ICOS,
FOXP3, IKZF2, LAYN, TNFRSF18, CTLA4, IL21R, BATF, CCR8, IL2RA, and TNFRSF4) and cytotoxic
(CX3CR1, PRF1, GZMA, GZMB, GZMH, GNLY, KLRG1, and NKG7) genes at the log-normalized level.
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Identification of malignant cells based on inferred
copy number variation (CNV) from scRNA-seq data
Two computational tools, inferCNV v1.2.1 (https://github.com/broadinstitute/inferCNV     ) and
CopyKAT v1.0.5 R packages 42     , were used to infer genomic copy numbers from scRNA-seq. In a
run with inferCNV, the UMI count matrix of each tumor sample was loaded into inferCNV
CreateInfercnvObject function along with cell lineage annotations. The reference (normal) cells
were selected as cells annotated with T/NK, B/Plasma, myeloid, and mast cells. We maintained the
proportion of epithelial cells below 20% in each tumor sample using the expression profiles of the
normal lung and lymph node tissues. Inferred CNV signals were analyzed using inferCNV run
function using the parameters: cutoff=0.1, denoise=TRUE, HMM=TRUE, and HMM_type="i6". The
signals were then summarized as standard deviations (s.d.) for all windows and the correlation
between the CNV in each cell and the mean of the top 5% cells 43     . Cancer cells showing CNV
perturbation (>0.03 s.d. or >0.3 CNV correlation) were classified as malignant cells, otherwise as
non-malignant cells. The UMI count matrix of each tumor sample was loaded into CopyKAT
copykat function along with cell lineage annotations using the following parameters: ngene.chr=3,
KS.cut=0.05, and norm.cell.names. Cancer cells predicted as aneuploid cells by CopyKAT were
classified as malignant cells. Finally, we identified malignant cells, which are cancer cells classified
as malignant cells in either inferCNV or CopyKAT.

Single-cell DEGs between response groups in malignant cells
A total of 12,975 malignant cells were used to identify DEGs in pairwise comparisons according to
responder versus non-responder, PR versus PD, and PR versus SD. Differential expression levels
were calculated using Seurat FindMarkers function with the Wilcoxon Rank Sum test. Genes were
selected according to the following statistical thresholds: log fold change>0.25, p-value<0.01,
adjusted p-value (bonferroni correction)<0.01, and pct>0.25. We constructed DEGs with
intersection (INT) and union (UNION) of up- or down-regulated genes for comparisons.

Non-negative matrix factorization
(NMF) programs of the malignant cells
The UMI count matrix for malignant cells was loaded into nmf function of RcppML v0.5.6 R
package. A NMF model was learned with a rank of 30 using all genes. For each of the 30 NMF
factors, the top-ranked 50 genes in the NMF score were defined as signatures. RECIST-enriched
NMF program consisted of selected factors based on their relative sum of loadings. We aggregated
and redefined gene signatures of factors included in each NMF program. The uniqueness of each
NMF program for RECIST groups was evaluated as an odds ratio using fisher.test function of stats
v3.6.3 R package. Annotations of NMF programs were assigned using Metascape 44     .

RECIST-specific gene modules in malignant cells
The RECIST-specific gene modules were analyzed with a matrix factorization named scINSIGHT
23      using log-normalized count and 2,000 highly variable genes for each sample. For each
module, we selected the 100 genes with the highest coefficients. Combinations of the top 100 genes
for modules specific to each RECIST group were defined as module genes. The uniqueness of each
module for RECIST groups was evaluated as an odds ratio using fisher.test function of stats v3.6.3 R
package. Annotations of gene modules were assigned using Metascape 44     .

Principal component signatures of the malignant cells
The UMI count matrix for malignant cells was log-normalized and scaled by z-transform while
regressing out the effects of cell-cycle variations for PCA. A total of 2,000 variably expressed genes
selected using FindVariableFeatures with selection.method=“vst” were used for PCA. PCs were
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calculated by Seurat RunPCA function. PC signatures were selected for 30 genes with + (pos) and –
(neg) scores that highly contributed to each PC from PC1 to PC10.

Functional category analysis
Functional categories representing the enriched gene expression in comparisons for responder vs.
non-responder, PR vs. PD, and PR vs. SD as well as in the PCs were identified using fgsea v1.12.0
45      R package with parameters: minSize=10, maxSize=600, and nperm=10000. Gene sets for Gene
Ontology (GO) Biological Process were collected from the MSigDB database using msigdbr v7.1.1 R
package 46     ,47     . The gene list was ranked by the log fold change for each comparison and
feature loadings for each PC. Significant GO terms were selected after collapsing redundant terms
using fgsea collapsePathways function with a statistical threshold for Benjamini-Hochberg
adjusted p-value<0.05.

Responder-identifying performance tests
of PC signatures and combinatorial indexes
Classification models of responders and non-responders for PC signatures and combinatorial
indexes between tumor and/or immune cells were tested by receiver operating characteristic
(ROC) curve. Relative numbers between the observed and expected cells (Ro/e) for each sample
were obtained from the chi-square test 18     . Area under the curve (AUC) was calculated using ROC
function of Epi v2.44 R package with Ro/e scores as input. Significance was calculated by Wilcoxon
Rank Sum test and confirmed by adjusting with the Benjamini-Hochberg correction.

Univariate regression analysis for ICI response
Univariate regression was performed using the lm function of stats v3.6.3 with Ro/e scores for each
sample as input. We evaluated the relationship between the target variable ICI response, classified
as responders and non-responders, and one predictor variable of immune cell types, tumor
signatures, and clinical factors such as tissue origin, cancer subtype, pathological stage, and
smoking status. The significance of predictor was calculated using Anova function of car v3.0-9 R
package.

Validation of PC signatures in melanoma cohorts
We used Riaz et al.’s 28      and Van Allen al.’s 27      RNA sequencing data from melanoma patients
receiving PD-1 and CTLA-4 immune checkpoint therapy to assess expressional changes of PC
signatures along RECIST. The mean expression of each PC signature in each RECIST group was
calculated as the log2 normalized level.

Data availability

Raw single-cell RNA sequencing data generated during the current study are available in the
European Genome-phenome Archive (EGA) database (accession code EGAD00001008703), and
processed data can be accessed from the NCBI Gene Expression Omnibus (GEO) database
(accession code GSE205335; temporary token ‘khatsauybfcjlgb’). Single-cell RNA sequencing data
for LUAD patients analyzed in this study are available in the EGA database at EGAD00001005054.
Bulk RNA sequencing data analyzed in this study were obtained from GEO at GSE91061 and
database of Genotypes and Phenotypes (dbGap) at phs000452.v2.p1.
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Reviewer #1 (Public Review):

Summary:

The authors study the variability of patient response of NSCLC patients on immune
checkpoint inhibitors using single-cell RNA sequencing in a cohort of 26 patients and 33
samples (primary and metastatic sites), mainly focusing on 11 patients and 14 samples for
association analyses, to understand the variability of patient response based on immune cell
fractions and tumor cell expression patterns. The authors find immune cell fraction, clonal
expansion differences, and tumor expression differences between responders and non-
responders. Integrating immune and tumor sources of signal the authors claim to improve
prediction of response markedly, albeit in a small cohort.

Strengths:

- The problem of studying the tumor microenvironment, as well as the interplay between
tumor and immune features is important and interesting and needed to explain the
heterogeneity of patient response and be able to predict it.

- Extensive analysis of the scRNAseq data with respect to immune and tumor features on
different axes of hypothesis relating to immune response and tumor immune evasion using
state-of-the-art methods.

- The authors provide an interesting scRNAseq data set linked to outcomes data.

- Integration of TCRseq to confirm subtype of T-cell annotation and clonality analysis.

- Interesting analysis of cell programs/states of the (predicted) tumor cells and
characterization thereof.

Weaknesses:

- Generally, a very heterogeneous and small cohort where adjustments for confounding are
hard. Additionally, there are many tests for association with outcome, where necessary
multiple testing adjustments would negate signal and confirmation bias likely, so biological
takeaways have to be questioned.

- RNAseq is heavily influenced by the tissue of origin (both cell type and expression), so the
association with the outcome can be confounded. The authors try to argue that lymph node T-
cell and NK content are similar, but a quantitative test on that would be helpful.

- The authors claim a very high "accuracy" performance, however, given the small cohort and
lack of information on the exact evaluation it is not clear if this just amounts to overfitting
the data.

- Especially for tumor cell program/state analysis the specificity to the setting of ICIs is not
clear and could be prognostic.

- Due to the small cohort with a lot of variability, more external validation is needed to be
convincingly reproducible, especially when talking about AUC/accuracy of a predictor.

https://doi.org/10.7554/eLife.98366.1.sa1

Reviewer #2 (Public Review):

Summary:
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The authors have utilised deep profiling methods to generate deeper insights into the
features of the TME that drive responsiveness to PD-1 therapy in NSCLC.

Strengths:

The main strengths of this work lie in the methodology of integrating single-cell sequencing,
genetic data, and TCRseq data to generate hypotheses regarding determinants of IO
responsiveness.

Some of the findings in this study are not surprising and well precedented eg. association of
Treg, STAT3, and NFkB with ICI resistance and CD8+ activation in ICI responders and thus act
as an additional dataset to add weight to this prior body of evidence. Whilst the role of Th17
in PD-1 resistance has been previously reported (eg. Cancer Immunol Immunother 2023
Apr;72(4):1047-1058, Cancer Immunol Immunother 2024 Feb 13;73(3):47, Nat Commun. 2021;
12: 2606 ) these studies have used non-clinical models or peripheral blood readouts. Here the
authors have supplemented current knowledge by characterization of the TME of the tumor
itself.

Weaknesses:

Unfortunately, the study is hampered by the small sample size and heterogeneous population
and whilst the authors have attempted to bring in an additional dataset to demonstrate the
robustness of their approach, the small sample size has limited their ability to draw
statistically supported conclusions. There is also limited validation of signatures/methods in
independent cohorts, no functional characterisation of the findings, and the discussion
section does not include discussion around the relevance/interpretation of key findings that
were highlighted in the abstract (eg. role of Th17, TRM, STAT3, and NFKb). Because of these
factors, this work (as it stands) does have value to the field but will likely have a relatively
low overall impact.

Related to the absence of discussion around prior TRM findings, the association between TRM
involvement in response to IO therapy in this manuscript is counter to what has been
previously demonstrated (Cell Rep Med. 2020;1(7):100127, Nat Immunol. 2017;18(8):940-950., J
Immunol. 2015;194(7):3475-3486.). However, it should be noted that the authors in this
manuscript chose to employ alternative markers of TRM characterisation when defining their
clusters and this could indicate a potential rationale for differences in these findings. TRM
population is generally characterised through the inclusion of the classical TRM markers
CD69 (tissue retention marker) and CD103 (TCR experienced integrin that supports epithelial
adhesion), which are both absent from the TRM definition in this study. Additional markers
often used are CD44, CXCR6, and CD49a, of which only CXCR6 has been included by the
authors. Conversely, the majority of markers used by the authors in the cell type clustering
are not specific to TRM (eg. CD6, which is included in the TRM cluster but is expressed at its
lowest in cluster 3 which the authors have highlighted as the CD8+ TRM population).
Therefore, whilst there is an interesting finding of this particular cell cluster being associated
with resistance to ICI, its annotation as a TRM cluster should be interpreted with caution.

https://doi.org/10.7554/eLife.98366.1.sa0

Author response:

We appreciate the comprehensive reviews and would like to address the critiques and
suggestions provided by both reviewers. We will make significant revisions to the manuscript
to address these concerns. These include a more cautious interpretation of our results, an
expanded discussion on key findings, additional analyses for TRM characterization, and a
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clearer outline of future validation efforts. We believe these changes will enhance the clarity
and robustness of our study, and we hope they meet the reviewer’s expectations.

Reviewer 1:

Weaknesses:

(1) Heterogeneous and small cohort:

Increasing the cohort size is not feasible due to resource constraints. We acknowledge the
challenges posed by the heterogeneous and small cohort, which complicate adjustments for
confounding. We will apply multiple testing corrections to transparently assess and
accurately report the robustness of our findings in the revision.

(2) Influence of tissue of origin on RNAseq:

We agree that RNAseq results can be heavily influenced by the tissue of origin. While
immune cell composition in the normal lung tissues and lymph nodes is quite different, we
found that in tumor tissues and metastatic lymph nodes, these differences diminish and
common features dominate. Although we depicted this data in the supplementary figure 1,
we did not provide a quantitative test in the original submission. In the revision, we will
perform additional quantitative tests to compare immune cell composition across different
tissue origins. These tests will provide a more precise understanding of the cellular
composition and support our argument regarding the similarity of tumor-sculpted
microenvironment. We will include these results and detailed methodologies in the revision.

(3) Accuracy performance and overfitting:

We acknowledge the concern regarding the high “accuracy” performance potentially
indicating overfitting. We will clarify the evaluation methods used and moderate our claims
regarding accuracy in the revision.

(4) Specificity of the tumor cell program/state analysis to the setting of ICIs:

The comment suggests that the tumor programs in our study may not be specific to the ICI
group but rather prognostic in lung cancer. We acknowledge this possibility as we performed
comparisons between responders and non-responders (with different cut-offs) to find
common trends and interpreted them in terms of their association with ICI. In the revision,
we will test the prognostic association of the tumor programs using public lung cancer data.

(5) More external validation needed:

We recognize the importance of external validation for reproducibility. While increasing the
cohort size is not feasible, we will propose future directions for validation using larger,
independent cohorts and potential experimental validations.

Reviewer 2:

Weaknesses:

(1) Small sample size and heterogeneous populations:

Increasing the cohort size is not feasible due to resource constraints. We acknowledge the
challenges posed by the heterogeneous and small cohort, which complicate adjustments for
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confounding. We will apply multiple testing corrections to transparently assess and
accurately report the robustness of our findings in the revision.

(2) Limited validation of signatures/ methods in independent cohorts:

We recognize the importance of external validation for reproducibility. While increasing the
cohort size is not feasible, we will propose future directions for validation using larger,
independent cohorts and potential experimental validations.

(3) Lack of functional characterization and discussion on key findings:

We appreciate the feedback regarding the need for functional characterization and a more
thorough discussion of key findings on the roles of specific cell populations and genes. In the
revised manuscript, we will expand the discussion section to include in-depth analysis of
these findings and their relevance to the study. This includes a detailed interpretation of how
these factors contribute to the immune response and potential implications for therapy.

(4) TRM findings and marker selection:

We understand the concern regarding the association between TRM involvement in response
to IO therapy, which appears counter to previous demonstrations. It is indeed important to
note that we employed alternative markers for TRM characterization. Our choice of markers
was based on transcriptional references relevant to our study. However, we agree that
classical TRM markers such as CD69 and CD103, which were absent in our definition, are
critical for accurate TRM identification. To address this, we will include a detailed rationale
for our marker selection and acknowledge the limitations of our TRM characterization. We
will include additional analyses using classical TRM markers where possible and incorporate
these findings into the revision. This will provide a clearer understanding of our TRM
population and its role in the immune response to IO therapy.

https://doi.org/10.7554/eLife.98366.1.sa3
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