@@ -90,7 +90,7 @@ def index(self):
90
90
dtype=object)
91
91
92
92
Returns:
93
- The index labels of the Series.
93
+ Index: The index object of the Series.
94
94
"""
95
95
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
96
96
@@ -138,7 +138,7 @@ def transpose(self) -> Series:
138
138
Return the transpose, which is by definition self.
139
139
140
140
Returns:
141
- Series
141
+ Series: Series.
142
142
"""
143
143
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
144
144
@@ -593,7 +593,7 @@ def corr(self, other, method="pearson", min_periods=None) -> float:
593
593
are not yet supported, so a result will be returned for at least two observations.
594
594
595
595
Returns:
596
- float; Will return NaN if there are fewer than two numeric pairs, either series has a
596
+ float: Will return NaN if there are fewer than two numeric pairs, either series has a
597
597
variance or covariance of zero, or any input value is infinite.
598
598
"""
599
599
raise NotImplementedError ("abstract method" )
@@ -611,7 +611,7 @@ def diff(self) -> Series:
611
611
values.
612
612
613
613
Returns:
614
- {klass} : First differences of the Series.
614
+ Series : First differences of the Series.
615
615
"""
616
616
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
617
617
@@ -1317,7 +1317,7 @@ def le(self, other) -> Series:
1317
1317
other: Series, or scalar value
1318
1318
1319
1319
Returns:
1320
- bigframes.series.Series. The result of the comparison.
1320
+ bigframes.series.Series: The result of the comparison.
1321
1321
1322
1322
"""
1323
1323
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
@@ -1331,7 +1331,7 @@ def lt(self, other) -> Series:
1331
1331
Args:
1332
1332
other (Series, or scalar value):
1333
1333
1334
- Returns:
1334
+ Returns:
1335
1335
bigframes.series.Series: The result of the operation.
1336
1336
1337
1337
"""
@@ -1588,7 +1588,7 @@ def divmod(self, other) -> Series:
1588
1588
other: Series, or scalar value
1589
1589
1590
1590
Returns:
1591
- 2-Tuple of Series. The result of the operation. The result is always
1591
+ 2-Tuple of Series: The result of the operation. The result is always
1592
1592
consistent with (floordiv, mod) (though pandas may not).
1593
1593
1594
1594
"""
@@ -1603,7 +1603,7 @@ def rdivmod(self, other) -> Series:
1603
1603
other: Series, or scalar value
1604
1604
1605
1605
Returns:
1606
- 2-Tuple of Series. The result of the operation. The result is always
1606
+ 2-Tuple of Series: The result of the operation. The result is always
1607
1607
consistent with (rfloordiv, rmod) (though pandas may not).
1608
1608
1609
1609
"""
@@ -1650,7 +1650,7 @@ def max(
1650
1650
1651
1651
1652
1652
Returns:
1653
- scalar or scalar
1653
+ scalar: Scalar.
1654
1654
"""
1655
1655
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1656
1656
@@ -1664,7 +1664,7 @@ def min(
1664
1664
of the ``numpy.ndarray`` method ``argmin``.
1665
1665
1666
1666
Returns:
1667
- scalar or scalar
1667
+ scalar: Scalar.
1668
1668
"""
1669
1669
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1670
1670
@@ -1692,7 +1692,7 @@ def var(
1692
1692
Normalized by N-1 by default.
1693
1693
1694
1694
Returns:
1695
- scalar or Series (if level specified)
1695
+ scalar or Series (if level specified): Variance.
1696
1696
"""
1697
1697
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1698
1698
@@ -1702,15 +1702,15 @@ def sum(self):
1702
1702
This is equivalent to the method ``numpy.sum``.
1703
1703
1704
1704
Returns:
1705
- scalar
1705
+ scalar: Scalar.
1706
1706
"""
1707
1707
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1708
1708
1709
1709
def mean (self ):
1710
1710
"""Return the mean of the values over the requested axis.
1711
1711
1712
1712
Returns:
1713
- scalar
1713
+ scalar: Scalar.
1714
1714
"""
1715
1715
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1716
1716
@@ -1723,15 +1723,15 @@ def median(self, *, exact: bool = False):
1723
1723
one. Note: ``exact=True`` not yet supported.
1724
1724
1725
1725
Returns:
1726
- scalar
1726
+ scalar: Scalar.
1727
1727
"""
1728
1728
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1729
1729
1730
1730
def prod (self ):
1731
1731
"""Return the product of the values over the requested axis.
1732
1732
1733
1733
Returns:
1734
- scalar
1734
+ scalar: Scalar.
1735
1735
"""
1736
1736
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1737
1737
@@ -1741,7 +1741,7 @@ def skew(self):
1741
1741
Normalized by N-1.
1742
1742
1743
1743
Returns:
1744
- scalar
1744
+ scalar: Scalar.
1745
1745
"""
1746
1746
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1747
1747
@@ -1932,7 +1932,7 @@ def clip(self):
1932
1932
Maximum threshold value. All values above this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
1933
1933
1934
1934
Returns:
1935
- Series.
1935
+ Series: Series .
1936
1936
"""
1937
1937
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
1938
1938
@@ -2083,7 +2083,7 @@ def is_monotonic_increasing(self) -> bool:
2083
2083
Return boolean if values in the object are monotonically increasing.
2084
2084
2085
2085
Returns:
2086
- bool
2086
+ bool: Boolean.
2087
2087
"""
2088
2088
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
2089
2089
@@ -2093,7 +2093,7 @@ def is_monotonic_decreasing(self) -> bool:
2093
2093
Return boolean if values in the object are monotonically decreasing.
2094
2094
2095
2095
Returns:
2096
- bool
2096
+ bool: Boolean.
2097
2097
"""
2098
2098
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
2099
2099
0 commit comments