@@ -3324,6 +3324,58 @@ def nlargest(self, n: int, columns, keep: str = "first"):
3324
3324
``df.sort_values(columns, ascending=False).head(n)``, but more
3325
3325
performant.
3326
3326
3327
+ **Examples:**
3328
+
3329
+ >>> import bigframes.pandas as bpd
3330
+ >>> bpd.options.display.progress_bar = None
3331
+
3332
+ >>> df = bpd.DataFrame({"A": [1, 1, 3, 3, 5, 5],
3333
+ ... "B": [5, 6, 3, 4, 1, 2],
3334
+ ... "C": ['a', 'b', 'a', 'b', 'a', 'b']})
3335
+ >>> df
3336
+ A B C
3337
+ 0 1 5 a
3338
+ 1 1 6 b
3339
+ 2 3 3 a
3340
+ 3 3 4 b
3341
+ 4 5 1 a
3342
+ 5 5 2 b
3343
+ <BLANKLINE>
3344
+ [6 rows x 3 columns]
3345
+
3346
+ Returns rows with the largest value in 'A', including all ties:
3347
+
3348
+ >>> df.nlargest(1, 'A', keep = "all")
3349
+ A B C
3350
+ 4 5 1 a
3351
+ 5 5 2 b
3352
+ <BLANKLINE>
3353
+ [2 rows x 3 columns]
3354
+
3355
+ Returns the first row with the largest value in 'A', default behavior in case of ties:
3356
+
3357
+ >>> df.nlargest(1, 'A')
3358
+ A B C
3359
+ 4 5 1 a
3360
+ <BLANKLINE>
3361
+ [1 rows x 3 columns]
3362
+
3363
+ Returns the last row with the largest value in 'A' in case of ties:
3364
+
3365
+ >>> df.nlargest(1, 'A', keep = "last")
3366
+ A B C
3367
+ 5 5 2 b
3368
+ <BLANKLINE>
3369
+ [1 rows x 3 columns]
3370
+
3371
+ Returns the row with the largest combined values in both 'A' and 'C':
3372
+
3373
+ >>> df.nlargest(1, ['A', 'C'])
3374
+ A B C
3375
+ 5 5 2 b
3376
+ <BLANKLINE>
3377
+ [1 rows x 3 columns]
3378
+
3327
3379
Args:
3328
3380
n (int):
3329
3381
Number of rows to return.
@@ -3359,6 +3411,59 @@ def nsmallest(self, n: int, columns, keep: str = "first"):
3359
3411
``df.sort_values(columns, ascending=True).head(n)``, but more
3360
3412
performant.
3361
3413
3414
+ **Examples:**
3415
+
3416
+ >>> import bigframes.pandas as bpd
3417
+ >>> bpd.options.display.progress_bar = None
3418
+
3419
+ >>> df = bpd.DataFrame({"A": [1, 1, 3, 3, 5, 5],
3420
+ ... "B": [5, 6, 3, 4, 1, 2],
3421
+ ... "C": ['a', 'b', 'a', 'b', 'a', 'b']})
3422
+ >>> df
3423
+ A B C
3424
+ 0 1 5 a
3425
+ 1 1 6 b
3426
+ 2 3 3 a
3427
+ 3 3 4 b
3428
+ 4 5 1 a
3429
+ 5 5 2 b
3430
+ <BLANKLINE>
3431
+ [6 rows x 3 columns]
3432
+
3433
+ Returns rows with the smallest value in 'A', including all ties:
3434
+
3435
+ >>> df.nsmallest(1, 'A', keep = "all")
3436
+ A B C
3437
+ 0 1 5 a
3438
+ 1 1 6 b
3439
+ <BLANKLINE>
3440
+ [2 rows x 3 columns]
3441
+
3442
+ Returns the first row with the smallest value in 'A', default behavior in case of ties:
3443
+
3444
+ >>> df.nsmallest(1, 'A')
3445
+ A B C
3446
+ 0 1 5 a
3447
+ <BLANKLINE>
3448
+ [1 rows x 3 columns]
3449
+
3450
+ Returns the last row with the smallest value in 'A' in case of ties:
3451
+
3452
+ >>> df.nsmallest(1, 'A', keep = "last")
3453
+ A B C
3454
+ 1 1 6 b
3455
+ <BLANKLINE>
3456
+ [1 rows x 3 columns]
3457
+
3458
+ Returns rows with the smallest values in 'A' and 'C'
3459
+
3460
+ >>> df.nsmallest(1, ['A', 'C'])
3461
+ A B C
3462
+ 0 1 5 a
3463
+ <BLANKLINE>
3464
+ [1 rows x 3 columns]
3465
+
3466
+
3362
3467
Args:
3363
3468
n (int):
3364
3469
Number of rows to return.
@@ -3384,23 +3489,61 @@ def nsmallest(self, n: int, columns, keep: str = "first"):
3384
3489
3385
3490
def idxmin (self ):
3386
3491
"""
3387
- Return index of first occurrence of minimum over requested axis .
3492
+ Return index of first occurrence of minimum over columns .
3388
3493
3389
3494
NA/null values are excluded.
3390
3495
3496
+ **Examples:**
3497
+
3498
+ >>> import bigframes.pandas as bpd
3499
+ >>> bpd.options.display.progress_bar = None
3500
+
3501
+ >>> df = bpd.DataFrame({"A": [3, 1, 2], "B": [1, 2, 3]})
3502
+ >>> df
3503
+ A B
3504
+ 0 3 1
3505
+ 1 1 2
3506
+ 2 2 3
3507
+ <BLANKLINE>
3508
+ [3 rows x 2 columns]
3509
+
3510
+ >>> df.idxmin()
3511
+ A 1
3512
+ B 0
3513
+ dtype: Int64
3514
+
3391
3515
Returns:
3392
- Series: Indexes of minima along the specified axis .
3516
+ Series: Indexes of minima along the columns .
3393
3517
"""
3394
3518
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
3395
3519
3396
3520
def idxmax (self ):
3397
3521
"""
3398
- Return index of first occurrence of maximum over requested axis .
3522
+ Return index of first occurrence of maximum over columns .
3399
3523
3400
3524
NA/null values are excluded.
3401
3525
3526
+ **Examples:**
3527
+
3528
+ >>> import bigframes.pandas as bpd
3529
+ >>> bpd.options.display.progress_bar = None
3530
+
3531
+ >>> df = bpd.DataFrame({"A": [3, 1, 2], "B": [1, 2, 3]})
3532
+ >>> df
3533
+ A B
3534
+ 0 3 1
3535
+ 1 1 2
3536
+ 2 2 3
3537
+ <BLANKLINE>
3538
+ [3 rows x 2 columns]
3539
+
3540
+ >>> df.idxmax()
3541
+ A 0
3542
+ B 2
3543
+ dtype: Int64
3544
+
3402
3545
Returns:
3403
- Series: Indexes of maxima along the specified axis .
3546
+ Series: Indexes of maxima along the columns .
3404
3547
"""
3405
3548
raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
3406
3549
0 commit comments