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Setup and Reproducibility

library(tidyverse) # data manipulation

library(igraph) # graph manipulation

library(sbm) # stochastic bloc model

library(missSBM) # stochastic bloc model with missing data

library(aricode) # clustering measures comparison
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Network data

Recommandation system: Epinion

Who-trust-whom online social network of a general consumer review site
Epinions.com. Members of the site can decide whether to ”trust” each
other.

Social networks in ethnobiology

A seed exchange network in Kenya is collected on a limited space area,
where all the 155 farmers are interviewed. Farmers provide information
about other farmers with whom they have interacted.

Ecological networks: plant-pollinator network

Interaction network between predefined sets of plants and pollinators, by
direct observation.
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Companion data set: French political Blogosphere

Single day snapshot of almost 200 political blogs automatically extracted
the 14 October 2006 and manually classified by the ”Observatoire
Présidentielle” project.

data("frenchblog2007", package = "missSBM")

blog <- frenchblog2007 %>% delete_vertices(which(degree(frenchblog2007) <= 1))

summary(blog)

## IGRAPH 997d6c3 UN-- 192 1431 --

## + attr: name (v/c), party (v/c)

party <- V(blog)$party %>% as_factor()

party %>% table() %>% knitr::kable("latex")

. Freq
green 9
right 40
center-rigth 32
left 57
center-left 11
far-left 7
liberal 25
analyst 11
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Visualization: graph view

A visual representation of the network data with nodes colored according
to the political party each blog belongs to is achieved as follows:

plot.igraph(blog,

vertex.color = party,

vertex.label = NA

)
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Visualization: graph view (advanced)
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Visualization: matrix view

Y <- as_adj(blog, sparse = FALSE)

sbm::plotMyMatrix(

Y, dimLabels = list('blog', "blog ordered per party"),

clustering = list(row = party))

blog ordered per party

blog
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Problematic

Remarks

• The pattern of connections between the nodes is highly related to
the blog classification (political party)

• The data may support a natural grouping of the node which is not
necessarily related to a predefined classification

• Same remark holds for any kind of clustering and unsupervised
leaning problem

Objective: Graph clustering

Automatically find a partitioning of the nodes, i.e. a clustering, that
groups together nodes with similar connectivity pattern.

10 / 78



Network data and binary graphs: minimal notation

A network is a collection of interacting entities. A graph is the
mathematical representation of a network.

Definition

A graph G = (V, E) is a mathematical structure consisting of

• a set V = {1, . . . , n} of vertices or nodes

• a set E = {e1, . . . , ep : ek = (ik, jk) ∈ (V × V)} of edges or links

• The number of vertices |V| is called the order

• The number of edges |E| is called the size

• The neighbors of a vertex are the nodes directly connected to this
vertex:

N (i) = {j ∈ V : (i, j) ∈ E} .

• The degree di of a node i is given by its number of neighbors |N (i)|.
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Representation: adjacency matrix

The connectivity of a binary undirected (symmetric) graph G = (V, E) is
captured by the |V| × |V| matrix Y , called the adjacency matrix

(Y )ij =

{
1 if i ∼ j,
0 otherwise.

For a valued of weighted graph, a similar definition would be

(Y )ij =

{
wij if i ∼ j,
0 otherwise.

where wij is the weight associated with edge i ∼ j.

Remark

If the list of vertices is known, the only information which needs to be
stored is the list of edges. In terms of storage, this is equivalent to a
sparse matrix representation.
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Principle

Form a partition of the nodes composed by ”cohesive” sets, e.g.

1 vertices well connected among themselves

2 well separated from the remaining vertices

Agglomerative hierarchical clustering

1. Compute the dissimilarity between groups
2. Regroup the two most similar elements

Iterate until all element are in a single group

Output: n nested partitions from {{1} , . . . , {n}} to {{1, . . . , n}}

Ingredients

1 a dissimilarity measure between nodes

2 a distance measure between sets
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Dissimilarity measures

Graph-specific

• Modularity: fraction of edges that fall within a given groups minus
expected fraction if edges were distributed at random

For C = {C1, . . . , CK} a candidate partition and fij(C) the fraction
of edges connecting vertices from Ci to Cj

modularity(C) =

K∑
k=1

(fkk(C)− EH0(fkk))
2

• Betweeness: number of shortest paths that go through a node in a
graph or network
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Examples of graph partionning I

hc <- cluster_fast_greedy(blog)

plot(hc, blog, vertex.label=NA)
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Examples of graph partionning II

hc <- cluster_edge_betweenness(blog)

plot(hc, blog, vertex.label=NA)
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Motivation: graph-cut

Definition

The cut between two sets of nodes that form a partition in the graph is

cut(VA,VB) =
∑

i∈VA,j∈VB

Yij , VA ∪ VB = V

Example: The graph cut between VA = {1, 2, 3, 4, 5} and
VB = {6, 7, 8, 9, 10} is 2.

1
2

3

45

10

6

7
8

9
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Min-cut

Idea: Find the 2-partition that minimizes the cut to form two
homogeneous clusters.

Min-cut problem

Based on this principle, the normalized cut consider the connectivity
between groups relative to the volume of each groups

arg min
{VA,VB}

cutN (VA,VB),

where Vol(VS)) =
∑

i∈S di and

cutN (VA,VB) =
cut(VA,VB)

Vol(VA)
+

cut(VA,VB)

Vol(VB)

= cut(VA,VB)
Vol(VA) + Vol(VB)

Vol(VA)Vol(VB)

 The term in (Vol(VA),Vol(VB)) encourages balance groups/cuts
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Solving min-cut for 2 clusters

Let

x = (xi)i=1,...,n =

{
−1 if i ∈ VA,
1 if i ∈ VB.

Then, letting D the diagonal matrix of degrees,

x>(D − Y )x = x>Dx− (x>Dx− 2cut(VA,VB)),

so that

cut(VA,VB) =
1

2
x>(D − Y )x.
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Solving Min-cut for 2 clusters

Normalized graph-cut ⇔ integer programming problem

arg min
{VA,VB}

cutN (VA,VB)

⇔ arg min
x∈{−1,1}n

x>(D − Y )x

x>Dx
, s.c. x>D1n = 0,

where the constraint imposes only discrete values in x.

Relax version

If we relax to x ∈ [−1, 1]n, it turns to a simple eigenvalue problem

arg min
x∈[−1,1]n

x>(D − Y )x, s.c. x>Dx = 1⇔ (D − Y )x = λDx.

where L = D − Y is called the Laplacian matrix of the graph G.
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Graph Laplacian: spectrum

Proposition (Spectrum of L)

The n× n matrix L has the following properties:

x>Lx =
1

2

∑
i,j

Yij(xi − xj)2, ∀x ∈ Rn.

• L is a symmetric, positive semi-definite matrix,

• 1n is in the kernel of L since L1n = 0,

• The first normalized eigen vector with eigen value λ > 0 is solution
to the relaxed graph cut problem

The Laplacian is easily (and fastly) computed in R thanks to the igraph
package:

L <- laplacian_matrix(blog)

25 / 78



Bi-partionning and the Fiedler vector

Fiedler vector is the named sometimes given to the normalized eigen
vector associated with the smallest positive eigen-value of L.

→ solves the relaxed min-cut problem
→ can be used to compute a bi-partition of a graph.

spec_L <- eigen(L); practical_zero <- 1e-12

lambda <- min(spec_L$values[spec_L$values>practical_zero])

fiedler <- spec_L$vectors[, which(spec_L$values == lambda)]

qplot(y = fiedler, colour = party) + viridis::scale_color_viridis(discrete = TRUE)
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Example on a simplied left/right view

left_vs_right <-

forcats::fct_collapse(party,

left = c("green", "left", "far-left", "center-left"),

right = c("right", "liberal", "center-rigth"),

analyst = "analyst"

)

qplot(y = fiedler, colour = left_vs_right) + viridis::scale_color_viridis(discrete = TRUE)
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”Validation”

thresholds <- seq(-.1, .1, len = 100)

ARIs <- map_dbl(thresholds, ~ARI(left_vs_right, fiedler > .))

qplot(thresholds, ARIs) + geom_vline(xintercept = thresholds[which.max(ARIs)]) + theme_bw()
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Spectral clustering

From the definition of the Laplacian matrix,

• The multiplicity of the first eigen value (0) of L determines the
number of connected components in the graph.

• The larger the second non trivial (positive) eigenvalue, the higher
the connectivity of G.

General Heuristic

1 Compute spectral decompostion of L to perform clustering in the
eigen space

2 For a graph with K connected components, the first K eigen-vectors
are 1 spanning the eigenspace associated with eigenvalue 0

3 Applying a simple clustering algorithm to the rows of the K first
eigenvectors separate the components

 Generalizes to graphs with a single component (tends to separates
groups of nodes which are highly connected together)

29 / 78



Some variants

Definition ((Normalized) Laplacian)

The normalized Laplacian matrix L is defined by

LN = D−1/2LD−1/2 = I−D−1/2AD−1/2.

Definition ((Absolute) Graph Laplacian)

The absolute Laplacian matrix Labs is defined by

Labs = D−1/2AD−1/2 = I− LN ,

with eigenvalues 1− λn ≤ · · · ≤ 1− λ2 ≤ 1− λ1 = 1, where
0 = λ1 ≤ · · · ≤ λn are the eigenvalues of LN .
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Normalized Spectral Clustering
by Ng, Jordan and Weiss (2002)

Input: Adjacency matrix and number of classes Q

Compute the normalized graph Laplacian L
Compute the eigen vectors of L associated with the Q smallest

eigenvalues
Define U, the n×Q matrix that encompasses these Q vectors

Define Ũ, the row-wise normalized version of U: ũij =
uij
‖Ui‖2

Apply k-means to (Ũi)i=1,...,n

Output: vector of classes C ∈ Qn, such as Ci = q if i ∈ q
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Implementation of normalized spectral clustering

spectral_clustering <- function(graph, nb_cluster, normalized = TRUE) {

## Compute Laplacian matrix

L <- laplacian_matrix(graph, normalized = normalized)

## Generates indices of last (smallest) K vectors

selected <- rev(1:ncol(L))[1:nb_cluster]

## Extract an normalized eigen-vectors

U <- eigen(L)$vectors[, selected, drop = FALSE] # spectral decomposition

U <- sweep(U, 1, sqrt(rowSums(U^2)), '/')
## Perform k-means

res <- kmeans(U, nb_cluster, nstart = 40)$cl

res

}
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Application to the French blogosphere (1)

Perform spectral clustering on the blogosphere for various numbers of
group:

nb_cluster <- 1:20

map(nb_cluster, ~spectral_clustering(blog, .)) %>%

map_dbl(ARI, party) %>% qplot(nb_cluster, y = .) + geom_line() + theme_bw()
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Application to the French blogosphere (2)

Once reorder according to the best clustering (obtained k = 6) groups,
the orginal data matrix looks as follows

plotMyMatrix(as_adj(blog, sparse = FALSE),

clustering = list(row = spectral_clustering(blog, 6)))

col

row
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Statistical Inference in the SBM
SBM: some extensions

35 / 78



References

Statistical Analysis of Network Data: Methods and Models
Eric Kolazcyk
Chapters 5 and 6

Mixture model for random graphs, Statistics and Computing
Daudin, Robin, Picard
pbil.univ-lyon1.fr/members/fpicard/franckpicard_fichiers/pdf/DPR08.pdf

Analyse statistique de graphes,
Catherine Matias
Chapitre 4, Section 4

36 / 78

pbil.univ-lyon1.fr/members/fpicard/franckpicard_fichiers/pdf/DPR08.pdf 


Motivations

Last section: find an underlying organization in a observed network

Spectral or hierachical clustering for network data

 Not model-based, thus no statistical inference possible

Now: clustering of network based on a probabilistic model of the graph

Become familiar with

• the stochastic block model, a random graph model tailored for
clustering vertices,

• the variational EM algorithm used to infer SBM from network data.

hierarchical/kmeans clustering ↔ Gaussian mixture models
m

hierarchical/spectral clustering for network ↔ Stochastic block model
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A mathematical model: Erdös-Rényi graph

Definition

Let V = 1, . . . , n be a set of fixed vertices. The (simple) Erdös-Rényi
model G(n, π) assumes random edges between pairs of nodes with
probability π. In orther word, the (random) adjacency matrix X is such
that

Yij ∼ B(π)

Proposition (degree distribution)

The (random) degree Di of vertex i follows a binomial distribution:

Di ∼ b(n− 1, π).
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Erdös-Rényi - example

G1 <- igraph::sample_gnp(10, 0.1)

G2 <- igraph::sample_gnp(10, 0.9)

G3 <- igraph::sample_gnp(100, .02)

par(mfrow=c(1,3))

plot(G1, vertex.label=NA) ; plot(G2, vertex.label=NA)

plot(G3, vertex.label=NA, layout=layout.circle)
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Erdös-Rény - limitations: very homegeneous

average.path.length(G3); diameter(G3)

## [1] 5.233395

## [1] 12

Histogram of degree(G3)
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Mechanism-based model: preferential attachment

The graph is defined dynamically as follows

Definition

Start from a initial graph G0 = (V0, E0), then for each time step,

1 At t a new node Vt is added

2 Vt is connected to i ∈ Vt−1 with probability

Dα
i + cst.

 Nodes with high degree get more connections thus richers get richers
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Preferential attachment - example

G1 <- igraph::sample_pa(20, 1, directed=FALSE)

G2 <- igraph::sample_pa(20, 5, directed=FALSE)

G3 <- igraph::sample_pa(200, directed=FALSE)

par(mfrow=c(1,3))

plot(G1, vertex.label=NA) ; plot(G2, vertex.label=NA)

plot(G3, vertex.label=NA, layout=layout.circle)
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Preferential attachment - limitations

average.path.length(G3); diameter(G3)

## [1] 6.019397

## [1] 15

Histogram of degree(G3)
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Limitations

• Erdös-Rényi
The ER model does not fit well real world network
• As can been seen from its degree distribution
• ER is generally too homogeneous

• Preferential attachment
• Is defined through an algorithm so performing statistics is complicated
• Is stucked to the power-law distribution of degrees

The Stochastic Block Model

The SBM1 generalizes ER in a mixture framework. It provides

• a statistical framework to adjust and interpret the parameters

• a flexible yet simple specification that fits many existing network
data

1Other models exist (e.g. exponential model for random graphs) but less popular.
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Stochastic Block Model: definition
Mixture model point of view: mixture of Erdös-Rényi

Latent structure

Let V = {1, .., n} be a fixed set of vertices. We give each i ∈ V a latent
label among a set Q = {1, . . . , Q} such that

• αq = P(i ∈ q),
∑

q αq = 1;

• Ziq = 1{i∈q} are independent hidden variables.

The conditional distribution of the edges

Connexion probabilities depend on the node class belonging:

Yij | {i ∈ q, j ∈ `} ∼ B(πq`)

(
⇔ Yij | {ZiqZj` = 1} ∼ B(πq`).

)
The Q×Q matrix π gives for all couple of labels
πq` = P(Yij = 1|i ∈ q, j ∈ `).
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Stochastic Block Model: the big picture

A1 A2

A3

π••

B1

B2

B3

B4

B5

π••

C1

C2

π••

π••

π••

π••

Stochastic Block Model

Let n nodes divided into

• Q = {•, •, •} classes

• α• = P(i ∈ •), • ∈ Q, i = 1, . . . , n

• π•• = P(i↔ j|i ∈ •, j ∈ •)

Zi = 1{i∈•} ∼iidM(1, α), ∀• ∈ Q,
Yij | {i ∈ •, j ∈ •} ∼ind B(π••)
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Stochastic Block Model: unknown parameters

N1 N2

N3 N1

N2

N3

N4

N5

N1

N2

Stochastic Block Model

Let n nodes divided into

• Q = {•, •, •}, card(Q) known

• α• =?,

• π•• =?

Zi = 1{i∈•} ∼iidM(1, α), ∀• ∈ Q,
Yij | {i ∈ •, j ∈ •} ∼ind B(π••)
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Stochastic block models – examples of topology
Community network

pi <- matrix(c(0.3,0.02,0.02,0.02,0.3,0.02,0.02,0.02,0.3),3,3)

communities <- igraph::sample_sbm(100, pi, c(25, 50, 25))

par(mfrow = c(1,2))

plot(communities, vertex.label=NA, vertex.color = rep(1:3,c(25, 50, 25)))

corrplot(as_adj(communities, sparse =FALSE), tl.pos = "n", cl.pos = 'n')
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Stochastic block models – examples of topology
Star network

pi <- matrix(c(0.05,0.3,0.3,0),2,2)

star <- igraph::sample_sbm(100, pi, c(4, 96))

par(mfrow = c(1,2))

plot(star, vertex.label=NA, vertex.color = rep(1:2,c(4,96)))

corrplot(as_adj(star, sparse =FALSE), tl.pos = "n", cl.pos = 'n')
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Stochastic block models – examples of topology
Bipartite network

pi <- matrix(c(.2,1-.2,.2,.2,1-.2,.2,.2,.2,.2,.2, .2,1-.2,.2,.2,1-.2,.2),4,4)

bipar <- igraph::sample_sbm(100, pi, c(15, 35, 5, 45))

par(mfrow = c(1,2))

plot(bipar, vertex.label=NA, vertex.color = rep(1:4,c(15, 35, 5, 45)))

corrplot(as_adj(bipar, sparse =FALSE), tl.pos = "n", cl.pos = 'n')
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Degree distributions

Conditional degree distribution

The conditional degree distribution of a node i ∈ q is

Di|i ∈ q ∼ b(n− 1, π̄q) ≈ P(λq), π̄q =

Q∑
`=1

α`πq`, λq = (n− 1)π̄q

Conditional degree distribution

The degree distribution of a node i can be approximated by a mixture of
Poisson distributions:

P(Di = k) =

Q∑
q=1

αq exp {−λq}
λkq
k!
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Likelihoods

Complete data likelihood

`c(Y,Z; θ) = p(Y|Z;α)p(Z;π) =
∏
i,j

fπZi,Zj
(Yij)×

∏
i

αZi

=
∏
i,j

π
Yij
Zi,Zj

(1− πZi,Zj )
1−Yij

∏
i

αZi

Marginal likelihood (Y)

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) .

Z = {1, . . . ,K}n: impossible to compute when K and n increase.

Standard tool to maximize the likelihood when latent variables involved :
EM algorithm.
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From EM to variational EM

Standard EM

At iteration (t) :

• Step E: compute

Q(θ|θ(t−1)) = EZ|Y,θ(t−1) [log `c(Y,Z; θ)]

• Step M:
θ(t) = arg max

θ
Q(θ|θ(t−1))

With SBM,

EZ|Y
[

logL(θ;Y,Z)
]

=
∑
i,q

τiq logαq +
∑
i<j,q,`

ηijq` log π
Yij
q` (1− πq`)1−Yij

where τiq, ηijq` are the posterior probabilities:
• τiq = P(Ziq = 1|Y) = E [Ziq|Y] .
• ηijq` = P(ZiqZj` = 1|Y) = E [ZiqZj`|Y] .
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The EM strategy does not apply directly for SBM

Ouch: another intractability problem

• the Ziq are not independent conditional on (Xij , i < j) . . .

• we cannot compute ηijq` = P(ZiqZj` = 1|Y) = E [ZiqZj`|Y],

• the conditional expectation Q(θ), i.e. the main EM ingredient, is
intractable.

Solution: mean field approximation

Approximate ηijq` by τiqτj`, i.e., assume conditional independence
between Ziq
 This can be formalized in the variational framework
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Revisting the EM algorithm I

Proposition

Consider a distribution Q for the {Ziq}. We have

logL(θ;Y) = EQ[logL(θ,Y,Z)] +H(Q) + KL(Q | P(Z|Y;θ)),

where H is the entropy and KL(·|·) is the Kullback-Leibler divergence:

H(Q) = −
∑
z

Q(z) logQ(z) = −EQ[logQ(Z)]

KL(Q | P(Z|Y;θ)) =
∑
z

Q(z) log
Q(z)

P(Z|Y;θ)
= EQ

[
log

Q(z)

P(Z|Y;θ)

]

58 / 78



Revisting the EM algorithm II

Let
J(Q,θ) , EQ (logL(θ;Y,Z)) +H(Q)

The steps in the EM algorithm may be viewed as:

Expectation step : choose Q to maximize J(Q;θ(t))

The solution is P(Z|Y;θ(t))

Maximization step : choose θ to maximize J(Q(t);θ)

The solution maximizes EZ|Y;θ(t) (logL(θ;Y,Z))
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Variational approximation for SBM

Problem for SBM

P(Z|Y;θ(t)) cannot be computed thus the E-step cannot be solved.

Idea

Choose Q in a class of function so that the E-step can be solved.

Family of distribution that factorizes

We chose Q the multinomial distribution so that

Q(Z) =

n∏
i=1

Qi(Zi) =

n∏
i=1

Q∏
q=1

τ
Ziq

iq ,

where τiq = Qi(Zi = q) = EQ(Ziq), with
∑

q τiq = 1 for all i = 1, . . . , n.
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Variational EM for SBM: the criterion

Lower bound of the loglikehood

Since Q is an approximation of P(Z|Y), the Kullback-Leibler divergence
is non-negative and

logL(θ;Y) ≥ EQ[logL(θ,Y,Z)] +H(Q) = J(Q,θ).

For the SBM,

J(Q,θ) =
∑
i,q

τiq logαq +
∑
i<j,q,`

τiqτj` log b(Xij ;πq`)−
∑
i,q

τiq log(τiq),

 we optimize the loglikelihood lower bound J(Q,θ) = J(τ ,θ) in (τ ,θ).
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E and M steps for SBM

Variational E-step

Maximizing J(τ ) for fixed θ, we find a fixed-point relationship:

τ̂iq ∝ αq
∏
j

∏
`

b(Yij , πq`)
τ̂j`

M-step

Maximizing J(θ) for fixed τ , we find,

α̂q =
1

n

∑
i

τ̂iq, π̂q` =

∑
i 6=j τ̂iq τ̂j`Yij∑
i 6=j τ̂iq τ̂j`

.
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Model selection

We use our lower bound of the loglikelihood to compute an
approximation of the ICL

vICL(Q) = EQ̂[logL(θ̂);Y,Z]

− 1

2

(
Q(Q+ 1)

2
log

n(n− 1)

2
+ (Q− 1) log(n)

)
,

where
EQ̂[logL(θ̂;Y,Z)] = J(τ̂ , θ̂)−H(Q̂).

The variational BIC is just

vBIC(Q) = J(τ̂ , θ̂)− 1

2

(
Q(Q+ 1)

2
log

n(n− 1)

2
+ (Q− 1) log(n)

)
.

63 / 78



Example: French politcal blogosphere

my_sbm <-

blog %>% as_adj(sparse = FALSE) %>%

sbm::estimateSimpleSBM(estimOptions = list(plot = FALSE))

my_sbm

## Fit of a Simple Stochastic Block Model -- bernoulli variant

## =====================================================================

## Dimension = ( 192 ) - ( 10 ) blocks and no covariate(s).

## =====================================================================

## * Useful fields

## $nbNodes, $modelName, $dimLabels, $nbBlocks, $nbCovariates, $nbDyads

## $blockProp, $connectParam, $covarParam, $covarList, $covarEffect

## $expectation, $indMemberships, $memberships

## * R6 and S3 methods

## $rNetwork, $rMemberships, $rEdges, plot, print, coef

## * Additional fields

## $probMemberships, $loglik, $ICL, $storedModels,

## * Additional methods

## predict, fitted, $setModel, $reorder
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Example: model exploration (vICL)
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Example: monitoring convergence (ELBO)
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Optimization monitoring
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Vizualisation: matrix view

plot(my_sbm, dimLabels = list(row = "blogs", col = "blogs"))

NA

nodeN
am

e
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Vizualisation: expected value

plot(my_sbm, "expected", dimLabels = list(row = "blogs", col = "blogs"))

NA

nodeN
am

e
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Vizualisation: mesoscopic view

plot(my_sbm, "meso")

nod1

nod2

nod3

nod4

nod5

nod6

nod7

nod8

nod9

nod10
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Accessing field I

aricode::ARI(my_sbm$memberships, party)

## [1] 0.4650112

barplot(my_sbm$blockProp)
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Accessing field II
0.
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corrplot(my_sbm$connectParam$mean)
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Accessing field III
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etc... see documentation and website
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Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM)
Some Graphs Models and their limitations
Mixture of Erdös-Rényi and the SBM
Statistical Inference in the SBM
SBM: some extensions
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SBM with covariates

• As before : (Yij) be an adjacency matrix

• Let xij ∈ Rp denote covariates describing the pair (i, j)

Latent variables : as before

• The nodes i = 1, . . . , n are partitioned into K clusters

• Zi independent variables P(Zi = k) = πk

Conditionally to (Zi)i=1,...,n...

(Yij) independent and

Yij |Zi, Zj ∼ Bern(logit(αZi,Zj + θ · xij)) if binary data

Yij |Zi, Zj ∼ P(exp(αZi,Zj + θ · xij)) if counting data

If K = 1 : all the connection heterogeneity is explained by the covariates.
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Valued-edge networks

Values-edges networks

Information on edges can be something different from presence/absence.
It can be:

1 a count of the number of observed interactions,

2 a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM

1 Poisson distribution: Yij | {i ∈ •, j ∈ •} ∼ind P(λ••),

2 Gaussian distribution: Yij | {i ∈ •, j ∈ •} ∼ind N (µ••, σ
2), [?]

3 More generally,

Yij | {i ∈ •, j ∈ •} ∼ind F(θ••)
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Latent Block Models aka Bipartite SBM

Let Yij be a bi-partite network. Individuals in row and cols are not the
same.

Latent variables : bi-clustering

• Nodes i = 1, . . . , n1 partitionned into K1 clusters, nodes
j = 1, . . . , n2 partitionned into K2 clusters

•
Z1
i = k if node i belongs to cluster (block) k
Z2
j = ` if node j belongs to cluster (block) `

• Z1
i , Z

2
j independent variables

P(Z1
i = k) = π1k, P(Z2

j = `) = π2`
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Latent Block Model : illustration

Latent Block Model

• n1 row nodes K1 = {•, •, •} classes

• π1
• = P(i ∈ •), • ∈ K1, i = 1, . . . , n

• n2 column nodes K2 = {•, •} classes

• π2
• = P(j ∈ •), • ∈ K2, j = 1, . . . ,m

• α•• = P(i↔ j|i ∈ •, j ∈ •)

Z1
i = 1{i∈•} ∼iidM(1,π1), ∀• ∈ Q1,

Z2
j = 1{j∈•} ∼iidM(1,π2), ∀• ∈ Q2,

Yij | {i ∈ •, j ∈ •} ∼ind Bern(α••)
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To go further...

• Group GroßBM : https://github.com/GrossSBM/ sbm;

• Documentation of package sbm:
https://grosssbm.github.io/sbm/

• missSBM SBM with missing data
https://github.com/GrossSBM/misssbm

Slides : https:

//grosssbm.github.io/slideshow-missSBM/slides.html
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