Masterclass in Machine Learning Graph clustering and the Stochastic Bloc Model

Villiers-le-lac

January 2022

https://jchiquet.github.io/

Setup and Reproducibility

library(tidyverse) # data manipulation library(igraph) # graph manipulation library(sbm) # stochastic bloc model library(missSBM) # stochastic bloc model with missing data library(aricode) # clustering measures comparison

Outline

1 Motivations

2 Graph Partionning

Hierarchical clustering for graph Spectral methods

3 The Stochastic Block Model (SBM)

Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Statistical Inference in the SBM SBM: some extensions

Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM)

Network data

Recommandation system: Epinion

Who-trust-whom online social network of a general consumer review site Epinions.com. Members of the site can decide whether to "trust" each other.

Social networks in ethnobiology

A seed exchange network in Kenya is collected on a limited space area, where all the 155 farmers are interviewed. Farmers provide information about other farmers with whom they have interacted.

Ecological networks: plant-pollinator network

Interaction network between predefined sets of plants and pollinators, by direct observation.

Companion data set: French political Blogosphere

Single day snapshot of almost 200 political blogs automatically extracted the 14 October 2006 and manually classified by the "Observatoire Présidentielle" project.

```
data("frenchblog2007", package = "missSBM")
blog <- frenchblog2007 %>% delete_vertices(which(degree(frenchblog2007) <= 1))
summary(blog)</pre>
```

```
## IGRAPH 997d6c3 UN-- 192 1431 --
## + attr: name (v/c), party (v/c)
```

```
party <- V(blog)$party %>% as_factor()
party %>% table() %>% knitr::kable("latex")
```

	Freq
green	9
right	40
center-rigth	32
left	57
center-left	11
far-left	7
liberal	25
analyst	11

Visualization: graph view

A visual representation of the network data with nodes colored according to the political party each blog belongs to is achieved as follows:

```
plot.igraph(blog,
  vertex.color = party,
  vertex.label = NA
)
```


Visualization: graph view (advanced)

party

- analyst
- center-left
- center-rigth
- far-left
- green
- left
- liberal
- right

degree

- 10
 20
- 30
- 4050

Visualization: matrix view

```
Y <- as_adj(blog, sparse = FALSE)
sbm::plotMyMatrix(
    Y, dimLabels = list('blog', "blog ordered per party"),
    clustering = list(row = party))</pre>
```


Problematic

Remarks

- The pattern of connections between the nodes is highly related to the blog classification (political party)
- The data may support a natural grouping of the node which is not necessarily related to a predefined classification
- Same remark holds for any kind of clustering and unsupervised leaning problem

Objective: Graph clustering

Automatically find a partitioning of the nodes, i.e. a clustering, that groups together nodes with similar connectivity pattern.

Network data and binary graphs: minimal notation

A network is a collection of interacting entities. A graph is the mathematical representation of a network.

Definition

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a mathematical structure consisting of

- a set $\mathcal{V} = \{1, \dots, n\}$ of vertices or nodes
- a set $\mathcal{E} = \{e_1, \dots, e_p : e_k = (i_k, j_k) \in (\mathcal{V} \times \mathcal{V})\}$ of edges or links
- The number of vertices $|\mathcal{V}|$ is called the order
- The number of edges $|\mathcal{E}|$ is called the size
- The neighbors of a vertex are the nodes directly connected to this vertex:

$$\mathcal{N}(i) = \left\{ j \in \mathcal{V} : (i, j) \in \mathcal{E} \right\}.$$

• The degree d_i of a node i is given by its number of neighbors $|\mathcal{N}(i)|$.

Representation: adjacency matrix

The connectivity of a binary undirected (symmetric) graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is captured by the $|\mathcal{V}| \times |\mathcal{V}|$ matrix Y, called the adjacency matrix

$$(Y)_{ij} = \begin{cases} 1 & \text{ if } i \sim j, \\ 0 & \text{ otherwise.} \end{cases}$$

For a valued of weighted graph, a similar definition would be

$$(Y)_{ij} = \begin{cases} w_{ij} & \text{ if } i \sim j, \\ 0 & \text{ otherwise.} \end{cases}$$

where w_{ij} is the weight associated with edge $i \sim j$.

Remark

If the list of vertices is known, the only information which needs to be stored is the list of edges. In terms of storage, this is equivalent to a sparse matrix representation.

Outline

1 Motivations

2 Graph Partionning

Hierarchical clustering for graph Spectral methods

3 The Stochastic Block Model (SBM)

References

📎 Statistical Analysis of Network Data: Methods and Models, Eric Kolazcyk Chapiter 4, Section 4

- 📎 Analyse statistique de graphes, Catherine Matias, Chapitre 3
- 📎 DS David Sontag's Lecture http://people.csail.mit.edu/dsontag/courses/ml13/ slides/lecture16.pdf
- 📎 A Tutorial on Spectral Clustering, Ulrike von Luxburg

Outline

1 Motivations

② Graph Partionning Hierarchical clustering for graph Spectral methods

3 The Stochastic Block Model (SBM)

Principle

Form a partition of the nodes composed by "cohesive" sets, e.g.

- vertices well connected among themselves
- 2 well separated from the remaining vertices

Agglomerative hierarchical clustering

- 1. Compute the dissimilarity between groups
- 2. Regroup the two most similar elements

Iterate until all element are in a single group

Output: n nested partitions from $\{\{1\}, \ldots, \{n\}\}$ to $\{\{1, \ldots, n\}\}$

Ingredients

- 1 a dissimilarity measure between nodes
- 2 a distance measure between sets

Dissimilarity measures

Graph-specific

• Modularity: fraction of edges that fall within a given groups minus expected fraction if edges were distributed at random

For $C = \{C_1, \ldots, C_K\}$ a candidate partition and $f_{ij}(C)$ the fraction of edges connecting vertices from C_i to C_j

modularity(
$$\mathcal{C}$$
) = $\sum_{k=1}^{K} (f_{kk}(\mathcal{C}) - \mathbb{E}_{H_0}(f_{kk}))^2$

• Betweeness: number of shortest paths that go through a node in a graph or network

Examples of graph partionning I

hc <- cluster_fast_greedy(blog)
plot(hc, blog, vertex.label=NA)</pre>

Examples of graph partionning II

```
hc <- cluster_edge_betweenness(blog)
plot(hc, blog, vertex.label=NA)</pre>
```


Outline

1 Motivations

2 Graph Partionning Hierarchical clustering for graph Spectral methods

3 The Stochastic Block Model (SBM)

Motivation: graph-cut

Definition

The cut between two sets of nodes that form a partition in the graph is

$$\operatorname{cut}(\mathcal{V}_A, \mathcal{V}_B) = \sum_{i \in \mathcal{V}_A, j \in \mathcal{V}_B} Y_{ij}, \qquad \mathcal{V}_A \cup \mathcal{V}_B = \mathcal{V}$$

Example: The graph cut between $V_A = \{1, 2, 3, 4, 5\}$ and $V_B = \{6, 7, 8, 9, 10\}$ is 2.

Min-cut

Idea: Find the 2-partition that minimizes the cut to form two homogeneous clusters.

Min-cut problem

Based on this principle, the normalized cut consider the connectivity between groups relative to the volume of each groups

$$\underset{\{\mathcal{V}_A,\mathcal{V}_B\}}{\operatorname{arg min}}\operatorname{cut}^N(\mathcal{V}_A,\mathcal{V}_B),$$

where $\operatorname{Vol}(\mathcal{V}_S)) = \sum_{i \in \mathcal{S}} d_i$ and

$$\operatorname{cut}^{N}(\mathcal{V}_{A}, \mathcal{V}_{B}) = \frac{\operatorname{cut}(\mathcal{V}_{A}, \mathcal{V}_{B})}{\operatorname{Vol}(\mathcal{V}_{A})} + \frac{\operatorname{cut}(\mathcal{V}_{A}, \mathcal{V}_{B})}{\operatorname{Vol}(\mathcal{V}_{B})}$$
$$= \operatorname{cut}(\mathcal{V}_{A}, \mathcal{V}_{B}) \frac{\operatorname{Vol}(\mathcal{V}_{A}) + \operatorname{Vol}(\mathcal{V}_{B})}{\operatorname{Vol}(\mathcal{V}_{A}) \operatorname{Vol}(\mathcal{V}_{B})}$$

 \rightsquigarrow The term in $(Vol(\mathcal{V}_A), Vol(\mathcal{V}_B))$ encourages balance groups/cuts

Solving min-cut for 2 clusters

Let

$$x = (x_i)_{i=1,\dots,n} = \begin{cases} -1 & \text{if } i \in \mathcal{V}_A, \\ 1 & \text{if } i \in \mathcal{V}_B. \end{cases}$$

Then, letting D the diagonal matrix of degrees,

$$x^{\top}(D-Y)x = x^{\top}Dx - (x^{\top}Dx - 2\operatorname{cut}(\mathcal{V}_A, \mathcal{V}_B)),$$

so that

$$\operatorname{cut}(\mathcal{V}_A, \mathcal{V}_B) = \frac{1}{2}x^{\top}(D - Y)x.$$

Solving Min-cut for 2 clusters

Normalized graph-cut \Leftrightarrow integer programming problem

 $\underset{\{\mathcal{V}_A,\mathcal{V}_B\}}{\arg\min \operatorname{cut}^N(\mathcal{V}_A,\mathcal{V}_B)}$

$$\Leftrightarrow \quad \underset{x \in \{-1,1\}^n}{\arg \min} \frac{x^\top (D - Y)x}{x^\top D x}, \quad \text{s.c.} \quad x^\top D \mathbf{1}_n = 0,$$

where the constraint imposes only discrete values in x.

Relax version If we relax to $x \in [-1,1]^n$, it turns to a simple eigenvalue problem

$$\underset{x \in [-1,1]^n}{\operatorname{arg min}} x^\top (D-Y)x, \quad \text{s.c.} \quad x^\top Dx = 1 \Leftrightarrow (D-Y)x = \lambda Dx.$$

where $\mathbf{L} = D - Y$ is called the Laplacian matrix of the graph \mathcal{G} .

Solving Min-cut for 2 clusters

Normalized graph-cut \Leftrightarrow integer programming problem

 $\underset{\{\mathcal{V}_A,\mathcal{V}_B\}}{\arg\min \operatorname{cut}^N(\mathcal{V}_A,\mathcal{V}_B)}$

$$\Leftrightarrow \quad \operatorname*{arg\,min}_{x \in \{-1,1\}^n} \frac{x^\top (D-Y)x}{x^\top Dx}, \quad \text{s.c.} \quad x^\top D \mathbf{1}_n = 0,$$

where the constraint imposes only discrete values in x.

Relax version

If we relax to $x \in [-1,1]^n$, it turns to a simple eigenvalue problem

$$\underset{x \in [-1,1]^n}{\arg\min} x^\top (D-Y)x, \quad \text{s.c.} \quad x^\top Dx = 1 \Leftrightarrow (D-Y)x = \lambda Dx.$$

where $\mathbf{L} = D - Y$ is called the Laplacian matrix of the graph \mathcal{G} .

Graph Laplacian: spectrum

Proposition (Spectrum of L)

The $n \times n$ matrix \mathbf{L} has the following properties:

$$\mathbf{x}^{\top}\mathbf{L}\mathbf{x} = \frac{1}{2}\sum_{i,j}Y_{ij}(x_i - x_j)^2, \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

- L is a symmetric, positive semi-definite matrix,
- $\mathbf{1}_n$ is in the kernel of L since $L\mathbf{1}_n = 0$,
- The first normalized eigen vector with eigen value $\lambda > 0$ is solution to the relaxed graph cut problem

The Laplacian is easily (and fastly) computed in R thanks to the **igraph** package:

```
L <- laplacian_matrix(blog)</pre>
```

Bi-partionning and the Fiedler vector

Fiedler vector is the named sometimes given to the normalized eigen vector associated with the smallest positive eigen-value of L.

- ightarrow solves the relaxed min-cut problem
- ightarrow can be used to compute a bi-partition of a graph.

```
spec_L <- eigen(L); practical_zero <- 1e-12
lambda <- min(spec_L$values[spec_L$values>practical_zero])
fiedler <- spec_L$vectors[, which(spec_L$values == lambda)]
qplot(y = fiedler, colour = party) + viridis::scale_color_viridis(discrete = TRUE)</pre>
```


Example on a simplied left/right view

```
left_vs_right <-
forcats::fct_collapse(party,
    left = c("green", "left", "far-left", "center-left"),
    right = c("right", "liberal", "center-rigth"),
    analyst = "analyst"
)</pre>
```

qplot(y = fiedler, colour = left_vs_right) + viridis::scale_color_viridis(discrete

"Validation"

```
thresholds <- seq(-.1, .1, len = 100)
ARIs <- map_dbl(thresholds, ~ARI(left_vs_right, fiedler > .))
qplot(thresholds, ARIs) + geom_vline(xintercept = thresholds[which.max(ARIs)]) + tl
```


Spectral clustering

From the definition of the Laplacian matrix,

- The multiplicity of the first eigen value (0) of L determines the number of connected components in the graph.
- The larger the second non trivial (positive) eigenvalue, the higher the connectivity of *G*.

General Heuristic

- Compute spectral decomposition of L to perform clustering in the eigen space
- 2 For a graph with K connected components, the first K eigen-vectors are 1 spanning the eigenspace associated with eigenvalue 0
- Applying a simple clustering algorithm to the rows of the K first eigenvectors separate the components

 \rightsquigarrow Generalizes to graphs with a single component (tends to separates groups of nodes which are highly connected together)

Some variants

Definition ((Normalized) Laplacian)

The normalized Laplacian matrix ${\bf L}$ is defined by

$$\mathbf{L}_N = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

Definition ((Absolute) Graph Laplacian)

The absolute Laplacian matrix \mathbf{L}_{abs} is defined by

$$\mathbf{L}_{abs} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{L}_N,$$

with eigenvalues $1 - \lambda_n \leq \cdots \leq 1 - \lambda_2 \leq 1 - \lambda_1 = 1$, where $0 = \lambda_1 \leq \cdots \leq \lambda_n$ are the eigenvalues of \mathbf{L}_N .

Normalized Spectral Clustering

by Ng, Jordan and Weiss (2002)

Input: Adjacency matrix and number of classes \boldsymbol{Q}

Compute the normalized graph Laplacian LCompute the eigen vectors of L associated with the Q smallest eigenvalues

Define U, the $n \times Q$ matrix that encompasses these Q vectors Define $\tilde{\mathbf{U}}$, the row-wise normalized version of U: $\tilde{u}_{ij} = \frac{u_{ij}}{\|\mathbf{U}_i\|_2}$ Apply k-means to $(\tilde{\mathbf{U}}_i)_{i=1,...,n}$

Output: vector of classes $\mathbf{C} \in \mathcal{Q}^n$, such as $C_i = q$ if $i \in q$

Implementation of normalized spectral clustering

```
spectral_clustering <- function(graph, nb_cluster, normalized = TRUE) {</pre>
```

```
## Compute Laplacian matrix
L <- laplacian_matrix(graph, normalized = normalized)
## Generates indices of last (smallest) K vectors
selected <- rev(1:ncol(L))[1:nb_cluster]
## Extract an normalized eigen-vectors
U <- eigen(L)$vectors[, selected, drop = FALSE] # spectral decomposition
U <- sweep(U, 1, sqrt(rowSums(U^2)), '/')
## Perform k-means
res <- kmeans(U, nb_cluster, nstart = 40)$cl</pre>
```

res

Application to the French blogosphere (1)

Perform spectral clustering on the blogosphere for various numbers of group:

```
nb_cluster <- 1:20
map(nb_cluster, ~spectral_clustering(blog, .)) %>%
map_dbl(ARI, party) %>% qplot(nb_cluster, y = .) + geom_line() + theme_bw()
```


Application to the French blogosphere (2)

Once reorder according to the best clustering (obtained k = 6) groups, the orginal data matrix looks as follows

```
plotMyMatrix(as_adj(blog, sparse = FALSE),
    clustering = list(row = spectral_clustering(blog, 6)))
```


Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM)

Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Statistical Inference in the SBM SBM: some extensions

References

Statistical Analysis of Network Data: Methods and Models Eric Kolazcyk Chapters 5 and 6

Mixture model for random graphs, Statistics and Computing Daudin, Robin, Picard

pbil.univ-lyon1.fr/members/fpicard/franckpicard_fichiers/pdf/DPR08.pdf

Analyse statistique de graphes, Catherine Matias Chapitre 4, Section 4

Motivations

Last section: find an underlying organization in a observed network Spectral or hierachical clustering for network data ~ Not model-based, thus no statistical inference possible

Now: clustering of network based on a probabilistic model of the graph Become familiar with

- the stochastic block model, a random graph model tailored for clustering vertices,
- the variational EM algorithm used to infer SBM from network data.

hierarchical/kmeans clustering \leftrightarrow Gaussian mixture models \uparrow hierarchical/spectral clustering for network \leftrightarrow Stochastic block model

Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM) Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Statistical Inference in the SBM SBM: some extensions

A mathematical model: Erdös-Rényi graph

Definition

Let $\mathcal{V} = 1, \ldots, n$ be a set of fixed vertices. The (simple) Erdös-Rényi model $\mathcal{G}(n, \pi)$ assumes random edges between pairs of nodes with probability π . In orther word, the (random) adjacency matrix \mathbf{X} is such that

 $Y_{ij} \sim \mathcal{B}(\pi)$

Proposition (degree distribution)

The (random) degree D_i of vertex *i* follows a binomial distribution:

$$D_i \sim b(n-1,\pi).$$

Erdös-Rényi - example

```
G1 <- igraph::sample_gnp(10, 0.1)
G2 <- igraph::sample_gnp(10, 0.9)
G3 <- igraph::sample_gnp(100, .02)
par(mfrow=c(1,3))
plot(G1, vertex.label=NA) ; plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)</pre>
```


Erdös-Rény - limitations: very homegeneous

average.path.length(G3); diameter(G3)

[1] 5.233395 ## [1] 12

Histogram of degree(G3)

Mechanism-based model: preferential attachment

The graph is defined dynamically as follows

Definition

Start from a initial graph $\mathcal{G}_0 = (\mathcal{V}_0, \mathcal{E}_0)$, then for each time step,

- 1 At t a new node V_t is added
- 2 V_t is connected to $i \in V_{t-1}$ with probability

 $D_i^{\alpha} + \text{cst.}$

~ Nodes with high degree get more connections thus richers get richers

Preferential attachment - example

```
G1 <- igraph::sample_pa(20, 1, directed=FALSE)
G2 <- igraph::sample_pa(20, 5, directed=FALSE)
G3 <- igraph::sample_pa(200, directed=FALSE)
par(mfrow=c(1,3))
plot(G1, vertex.label=NA) ; plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)</pre>
```


Preferential attachment - limitations

average.path.length(G3); diameter(G3)

[1] 6.019397 ## [1] 15

Histogram of degree(G3)

Limitations

• Erdös-Rényi

The ER model does not fit well real world network

- As can been seen from its degree distribution
- ER is generally too homogeneous
- Preferential attachment
 - Is defined through an algorithm so performing statistics is complicated
 - Is stucked to the power-law distribution of degrees

The Stochastic Block Model

The SBM¹ generalizes ER in a mixture framework. It provides

- a statistical framework to adjust and interpret the parameters
- a flexible yet simple specification that fits many existing network data

¹Other models exist (e.g. exponential model for random graphs) but less popular.

Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM) Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Statistical Inference in the SBM SBM: some extensions

Stochastic Block Model: definition

Mixture model point of view: mixture of Erdös-Rényi

Latent structure

Let $\mathcal{V} = \{1, ..., n\}$ be a fixed set of vertices. We give each $i \in \mathcal{V}$ a latent label among a set $\mathcal{Q} = \{1, ..., Q\}$ such that

•
$$\alpha_q = \mathbb{P}(i \in q), \quad \sum_q \alpha_q = 1;$$

• $Z_{iq} = \mathbf{1}_{\{i \in q\}}$ are independent hidden variables.

The conditional distribution of the edges

Connexion probabilities depend on the node class belonging:

$$Y_{ij}|\{i \in q, j \in \ell\} \sim \mathcal{B}(\pi_{q\ell}) \qquad \left(\Leftrightarrow Y_{ij}|\{Z_{iq}Z_{j\ell} = 1\} \sim \mathcal{B}(\pi_{q\ell}).\right)$$

The $Q \times Q$ matrix π gives for all couple of labels $\pi_{q\ell} = \mathbb{P}(Y_{ij} = 1 | i \in q, j \in \ell).$

Stochastic Block Model: the big picture

Stochastic Block Model Let *n* nodes divided into

• $\mathcal{Q} = \{\bullet, \bullet, \bullet\}$ classes

•
$$\alpha_{\bullet} = \mathbb{P}(i \in \bullet), \ \bullet \in \mathcal{Q}, i = 1, \dots, n$$

•
$$\pi_{\bullet\bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$$

$$Z_i = \mathbf{1}_{\{i \in \bullet\}} \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q},$$
$$Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet})$$

Stochastic Block Model: unknown parameters

Stochastic Block Model Let n nodes divided into • $Q = \{\bullet, \bullet, \bullet\}$, card(Q) known • $\alpha_{\bullet} = ?$, • $\pi_{\bullet\bullet} = ?$

$$Z_i = \mathbf{1}_{\{i \in \bullet\}} \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q},$$
$$Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet})$$

Stochastic block models – examples of topology

Community network

Stochastic block models - examples of topology

Star network

```
pi <- matrix(c(0.05,0.3,0.3,0),2,2)
star <- igraph::sample_sbm(100, pi, c(4, 96))
par(mfrow = c(1,2))
plot(star, vertex.label=NA, vertex.color = rep(1:2,c(4,96)))
corrplot(as_adj(star, sparse =FALSE), tl.pos = "n", cl.pos = 'n')</pre>
```


Stochastic block models – examples of topology Bipartite network

Degree distributions

Conditional degree distribution

The conditional degree distribution of a node $i \in q$ is

$$D_i | i \in q \sim \mathrm{b}(n-1,\bar{\pi}_q) \approx \mathcal{P}(\lambda_q), \qquad \bar{\pi}_q = \sum_{\ell=1}^Q \alpha_\ell \pi_{q\ell}, \quad \lambda_q = (n-1)\bar{\pi}_q$$

Conditional degree distribution

The degree distribution of a node i can be approximated by a mixture of Poisson distributions:

$$\mathbb{P}(D_i = k) = \sum_{q=1}^{Q} \alpha_q \exp\left\{-\lambda_q\right\} \frac{\lambda_q^k}{k!}$$

Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM)

Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Statistical Inference in the SBM SBM: some extensions

Likelihoods

Complete data likelihood

$$\ell_c(\mathbf{Y}, \mathbf{Z}; \theta) = p(\mathbf{Y} | \mathbf{Z}; \boldsymbol{\alpha}) p(\mathbf{Z}; \boldsymbol{\pi}) = \prod_{i,j} f_{\pi_{Z_i, Z_j}}(Y_{ij}) \times \prod_i \alpha_{Z_i}$$
$$= \prod_{i,j} \pi_{Z_i, Z_j}^{Y_{ij}} (1 - \pi_{Z_i, Z_j})^{1 - Y_{ij}} \prod_i \alpha_{Z_i}$$

Marginal likelihood (\mathbf{Y})

$$\log \ell(\mathbf{Y}; \theta) = \log \sum_{\mathbf{Z} \in \boldsymbol{\mathcal{Z}}} \ell_c(\mathbf{Y}, \mathbf{Z}; \theta) \,.$$

 $\mathcal{Z} = \{1, \dots, K\}^n$: impossible to compute when K and n increase.

Standard tool to maximize the likelihood when latent variables involved : EM algorithm.

From EM to variational EM

Standard EM

At iteration (t) :

• Step E: compute

$$Q(\theta|\theta^{(t-1)}) = \mathbb{E}_{\mathbf{Z}|\mathbf{Y},\theta^{(t-1)}} \left[\log \ell_c(\mathbf{Y},\mathbf{Z};\theta)\right]$$

• Step M:

$$\theta^{(t)} = \arg\max_{\theta} Q(\theta|\theta^{(t-1)})$$

With SBM,

$$\mathbb{E}_{\mathbf{Z}|\mathbf{Y}}\left[\log L(\boldsymbol{\theta}; \mathbf{Y}, \mathbf{Z})\right] = \sum_{i,q} \tau_{iq} \log \alpha_q + \sum_{i < j, q, \ell} \eta_{ijq\ell} \log \pi_{q\ell}^{Y_{ij}} (1 - \pi_{q\ell})^{1 - Y_{ij}}$$

where $\tau_{iq}, \eta_{ijq\ell}$ are the posterior probabilities:

- $\tau_{iq} = \mathbb{P}(Z_{iq} = 1 | \mathbf{Y}) = \mathbb{E}[Z_{iq} | \mathbf{Y}].$ • $\eta_{ijq\ell} = \mathbb{P}(Z_{iq} Z_{j\ell} = 1 | \mathbf{Y}) = \mathbb{E}[Z_{iq} Z_{j\ell} | \mathbf{Y}].$
 - $[Z_{iq}Z_{j\ell}=1|\mathbf{Y}) = \mathbb{E}[Z_{iq}Z_{j\ell}|\mathbf{Y}].$

The EM strategy does not apply directly for SBM

Ouch: another intractability problem

- the Z_{iq} are not independent conditional on $(X_{ij}, i < j)$...
- we cannot compute $\eta_{ijq\ell} = \mathbb{P}(Z_{iq}Z_{j\ell} = 1|\mathbf{Y}) = \mathbb{E}\left[Z_{iq}Z_{j\ell}|\mathbf{Y}\right]$,
- the conditional expectation $Q(\theta)$, i.e. the main EM ingredient, is intractable.

Solution: mean field approximation

Approximate $\eta_{ijq\ell}$ by $\tau_{iq}\tau_{j\ell}$, i.e., assume conditional independence between Z_{iq}

 \rightsquigarrow This can be formalized in the variational framework

Revisting the EM algorithm I

Proposition

Consider a distribution \mathbb{Q} for the $\{Z_{iq}\}$. We have

 $\log L(\boldsymbol{\theta}; \mathbf{Y}) = \mathbb{E}_{\mathbb{Q}}[\log L(\boldsymbol{\theta}, \mathbf{Y}, \mathbf{Z})] + \mathcal{H}(\mathbb{Q}) + \mathrm{KL}(\mathbb{Q} \mid \mathbb{P}(\mathbf{Z} | \mathbf{Y}; \boldsymbol{\theta})),$

where \mathcal{H} is the entropy and $KL(\cdot|\cdot)$ is the Kullback-Leibler divergence:

$$\mathcal{H}(\mathbb{Q}) = -\sum_{z} \mathbb{Q}(z) \log \mathbb{Q}(z) = -\mathbb{E}_{\mathbb{Q}}[\log \mathbb{Q}(Z)]$$
$$\mathrm{KL}(\mathbb{Q} \mid \mathbb{P}(\mathbf{Z} | \mathbf{Y}; \boldsymbol{\theta})) = \sum_{z} \mathbb{Q}(z) \log \frac{\mathbb{Q}(z)}{\mathbb{P}(\mathbf{Z} | \mathbf{Y}; \boldsymbol{\theta})} = \mathbb{E}_{\mathbb{Q}}\left[\log \frac{\mathbb{Q}(z)}{\mathbb{P}(\mathbf{Z} | \mathbf{Y}; \boldsymbol{\theta})}\right]$$

Revisting the EM algorithm II

Let

$$J(\mathbb{Q}, \boldsymbol{\theta}) \triangleq \mathbb{E}_{\mathbb{Q}} \left(\log L(\boldsymbol{\theta}; \mathbf{Y}, \mathbf{Z}) \right) + \mathcal{H}(\mathbb{Q})$$

The steps in the EM algorithm may be viewed as: Expectation step : choose \mathbb{Q} to maximize $J(\mathbb{Q}; \boldsymbol{\theta}^{(t)})$

The solution is $\mathbb{P}(\mathbf{Z}|\mathbf{Y}; \boldsymbol{\theta}^{(t)})$

Maximization step : choose $\boldsymbol{\theta}$ to maximize $J(\mathbb{Q}^{(t)}; \boldsymbol{\theta})$

The solution maximizes $\mathbb{E}_{\mathbf{Z}|\mathbf{Y};\boldsymbol{\theta}^{(t)}}\left(\log L(\boldsymbol{\theta};\mathbf{Y},\mathbf{Z})\right)$

Variational approximation for SBM

Problem for SBM $\mathbb{P}(\mathbf{Z}|\mathbf{Y};\boldsymbol{\theta}^{(t)}) \text{ cannot be computed thus the E-step cannot be solved.}$

Idea

Choose ${\mathbb Q}$ in a class of function so that the E-step can be solved.

Family of distribution that factorizes

We chose $\ensuremath{\mathbb{Q}}$ the multinomial distribution so that

$$\mathbb{Q}(\mathbf{Z}) = \prod_{i=1}^{n} \mathbb{Q}_i(Z_i) = \prod_{i=1}^{n} \prod_{q=1}^{Q} \tau_{iq}^{Z_{iq}},$$

where $\tau_{iq} = \mathbb{Q}_i(Z_i = q) = \mathbb{E}_{\mathbb{Q}}(Z_{iq})$, with $\sum_q \tau_{iq} = 1$ for all $i = 1, \dots, n$.

Variational EM for SBM: the criterion

Lower bound of the loglikehood

Since $\mathbb Q$ is an approximation of $\mathbb P(\mathbf Z|\mathbf Y),$ the Kullback-Leibler divergence is non-negative and

$$\log L(\boldsymbol{\theta}; \mathbf{Y}) \geq \mathbb{E}_{\mathbb{Q}}[\log L(\boldsymbol{\theta}, \mathbf{Y}, \mathbf{Z})] + \mathcal{H}(\mathbb{Q}) = J(\mathbb{Q}, \boldsymbol{\theta}).$$

For the SBM,

$$J(\mathbb{Q}, \boldsymbol{\theta}) = \sum_{i,q} \tau_{iq} \log \alpha_q + \sum_{i < j,q,\ell} \tau_{iq} \tau_{j\ell} \log b(X_{ij}; \pi_{q\ell}) - \sum_{i,q} \tau_{iq} \log(\tau_{iq}),$$

 \rightsquigarrow we optimize the loglikelihood lower bound $J(\mathbb{Q}, \theta) = J(\tau, \theta)$ in (τ, θ) .

E and M steps for SBM

Variational E-step

Maximizing $J(\boldsymbol{\tau})$ for fixed $\boldsymbol{\theta}$, we find a fixed-point relationship:

$$\hat{\tau}_{iq} \propto \alpha_q \prod_j \prod_\ell b(Y_{ij}, \pi_{q\ell})^{\hat{\tau}_{j\ell}}$$

M-step

Maximizing $J(\boldsymbol{\theta})$ for fixed $\boldsymbol{\tau}$, we find,

$$\hat{\alpha}_q = \frac{1}{n} \sum_i \hat{\tau}_{iq}, \quad \hat{\pi}_{q\ell} = \frac{\sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{j\ell} Y_{ij}}{\sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{j\ell}}.$$

Model selection

We use our lower bound of the loglikelihood to compute an approximation of the ICL

$$\operatorname{vICL}(Q) = \mathbb{E}_{\hat{\mathbb{Q}}}[\log L(\hat{\boldsymbol{\theta}}); \mathbf{Y}, \mathbf{Z}] - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} + (Q-1) \log(n) \right),$$

where

$$\mathbb{E}_{\hat{\mathbb{Q}}}[\log L(\hat{\boldsymbol{\theta}}; \mathbf{Y}, \mathbf{Z})] = J(\hat{\boldsymbol{\tau}}, \hat{\boldsymbol{\theta}}) - \mathcal{H}(\hat{\mathbb{Q}}).$$

The variational BIC is just

vBIC(Q) =
$$J(\hat{\tau}, \hat{\theta}) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} + (Q-1) \log(n) \right).$$

Example: French politcal blogosphere

```
my_sbm <-
blog %>% as_adj(sparse = FALSE) %>%
sbm::estimateSimpleSBM(estimOptions = list(plot = FALSE))
```

my_sbm

```
## Fit of a Simple Stochastic Block Model -- bernoulli variant
  _____
                    Dimension = (192) - (10) blocks and no covariate(s).
##
##
  _____
## * Useful fields
##
    $nbNodes, $modelName, $dimLabels, $nbBlocks, $nbCovariates, $nbDyads
    $blockProp, $connectParam, $covarParam, $covarList. $covarEffect
##
    $expectation. $indMemberships. $memberships
##
## * R6 and S3 methods
    $rNetwork, $rMemberships, $rEdges, plot, print, coef
##
## * Additional fields
    $probMemberships, $loglik, $ICL, $storedModels,
##
## * Additional methods
##
    predict, fitted, $setModel, $reorder
```

Example: model exploration (vICL)

Example: monitoring convergence (ELBO)

Vizualisation: matrix view

plot(my_sbm, dimLabels = list(row = "blogs", col = "blogs"))

Vizualisation: expected value

plot(my_sbm, "expected", dimLabels = list(row = "blogs", col = "blogs"))

Vizualisation: mesoscopic view

plot(my_sbm, "meso")

Accessing field I

aricode::ARI(my_sbm\$memberships, party)

[1] 0.4650112

barplot(my_sbm\$blockProp)

Accessing field II

corrplot(my_sbm\$connectParam\$mean)

Accessing field III

etc... see documentation and website

Outline

1 Motivations

2 Graph Partionning

3 The Stochastic Block Model (SBM)

Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Statistical Inference in the SBM

SBM: some extensions

SBM with covariates

- As before : (Y_{ij}) be an adjacency matrix
- Let $x^{ij} \in \mathbb{R}^p$ denote covariates describing the pair (i,j)

Latent variables : as before

- The nodes $i = 1, \ldots, n$ are partitioned into K clusters
- Z_i independent variables $\mathbb{P}(Z_i = k) = \pi_k$

Conditionally to $(Z_i)_{i=1,\ldots,n}$...

 (Y_{ij}) independent and

$$\begin{split} Y_{ij}|Z_i,Z_j &\sim \mathcal{B}ern(\mathsf{logit}(lpha_{Z_i,Z_j}+ heta\cdot x_{ij})) & \text{if binary data} \\ Y_{ij}|Z_i,Z_j &\sim \mathcal{P}(\exp(lpha_{Z_i,Z_j}+ heta\cdot x_{ij})) & \text{if counting data} \end{split}$$

If K = 1: all the connection heterogeneity is explained by the covariates.

Valued-edge networks

Values-edges networks

Information on edges can be something different from presence/absence. It can be:

- 1 a count of the number of observed interactions,
- 2 a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM

- **1** Poisson distribution: $Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\text{ind}} \mathcal{P}(\lambda_{\bullet\bullet}),$
- 2 Gaussian distribution: $Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\text{ind}} \mathcal{N}(\mu_{\bullet\bullet}, \sigma^2)$, [?]
- More generally,

$$Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{F}(\theta_{\bullet\bullet})$$

Latent Block Models aka Bipartite SBM

Let Y_{ij} be a bi-partite network. Individuals in row and cols are not the same.

Latent variables : bi-clustering

- Nodes $i = 1, ..., n_1$ partitionned into K_1 clusters, nodes $j = 1, ..., n_2$ partitionned into K_2 clusters
 - $Z_i^1 = k$ if node i belongs to cluster (block) k $Z_j^2 = \ell$ if node j belongs to cluster (block) ℓ
- Z_i^1, Z_j^2 independent variables

$$\mathbb{P}(Z_i^1 = k) = \pi_k^1, \quad \mathbb{P}(Z_j^2 = \ell) = \pi_\ell^2$$

Latent Block Model : illustration

Latent Block Model

• n_1 row nodes $\mathcal{K}_1 = \{\bullet, \bullet, \bullet\}$ classes

•
$$\pi^1_{\bullet} = \mathbb{P}(i \in \bullet), \ \bullet \in \mathcal{K}_1, i = 1, \dots, n$$

• n_2 column nodes $\mathcal{K}_2 = \{\bullet, \bullet\}$ classes

•
$$\pi^2_{\bullet} = \mathbb{P}(j \in \bullet), \ \bullet \in \mathcal{K}_2, j = 1, \dots, m$$

•
$$\alpha_{\bullet\bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$$

$$Z_i^1 = \mathbf{1}_{\{i \in \bullet\}} \sim^{\mathsf{iid}} \mathcal{M}(1, \pi^1), \quad \forall \bullet \in \mathcal{Q}_1,$$
$$Z_j^2 = \mathbf{1}_{\{j \in \bullet\}} \sim^{\mathsf{iid}} \mathcal{M}(1, \pi^2), \quad \forall \bullet \in \mathcal{Q}_2,$$
$$Y_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}ern(\alpha_{\bullet \bullet})$$

To go further...

- Group GroßBM : https://github.com/GrossSBM/ sbm;
- Documentation of package sbm: https://grosssbm.github.io/sbm/
- missSBM SBM with missing data https://github.com/GrossSBM/misssbm Slides : https:

//grosssbm.github.io/slideshow-missSBM/slides.html