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Setup and Reproducibility

library(tidyverse) # data manipulation

library(igraph) # graph manipulation

library (sbm) # stochastic bloc model

library(missSBM)  # stochastic bloc model with missing data
library(aricode) # clustering measures comparison
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Outline

@ Motivations
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Network data

Recommandation system: Epinion

Who-trust-whom online social network of a general consumer review site
Epinions.com. Members of the site can decide whether to "trust” each
other.

Social networks in ethnobiology

A seed exchange network in Kenya is collected on a limited space area,
where all the 155 farmers are interviewed. Farmers provide information
about other farmers with whom they have interacted.

Ecological networks: plant-pollinator network

Interaction network between predefined sets of plants and pollinators, by
direct observation.
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Companion data set: French political Blogosphere

Single day snapshot of almost 200 political blogs automatically extracted
the 14 October 2006 and manually classified by the " Observatoire
Présidentielle” project.

data("frenchblog2007",
blog <- frenchblog2007

summary (blog)

## IGRAPH 997d6c3 UN--
## + attr: name (v/c),

party <- V(blog)$party

package = "missSBM")
%>% delete_vertices(which(degree(frenchblog2007) <= 1))

192 1431 --
party (v/c)

%>% as_factor()

party %>% table() %>% knitr::kable("latex")

. Freq
green 9
right 40
center-rigth 32
left 57
center-left 11
far-left 7
liberal 25
analyst 11
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Visualization: graph view

A visual representation of the network data with nodes colored according
to the political party each blog belongs to is achieved as follows:

plot.igraph(blog,
vertex.color = party,
vertex.label = NA
)
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Visualization: graph view (advanced)

party

analyst
center-left
center-rigth
far-left
green

left

liberal

right
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Visualization: matrix view

Y <- as_adj(blog, sparse = FALSE)
sbm: :plotMyMatrix(

Y, dimLabels = list('blog', "blog ordered per party"),

clustering = list(row = party))
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Problematic

Remarks
® The pattern of connections between the nodes is highly related to
the blog classification (political party)

® The data may support a natural grouping of the node which is not
necessarily related to a predefined classification

® Same remark holds for any kind of clustering and unsupervised
leaning problem

Objective: Graph clustering

Automatically find a partitioning of the nodes, i.e. a clustering, that
groups together nodes with similar connectivity pattern.
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Network data and binary graphs: minimal notation

A network is a collection of interacting entities. A graph is the

mathematical representation of a network.

Definition

A graph G = (V, ) is a mathematical structure consisting of
® aset V={1,...,n} of vertices or nodes

® aset & ={e1,...,ep e = (i, Jr) € (V x V)} of edges or links

The number of vertices |V] is called the order

The number of edges |€| is called the size

The neighbors of a vertex are the nodes directly connected to this
vertex:

NG)={j €V (ij) € €}
The degree d; of a node i is given by its number of neighbors [N (7).
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Representation: adjacency matrix

The connectivity of a binary undirected (symmetric) graph G = (V,€)
captured by the |V| x |V| matrix Y, called the adjacency matrix

1 ifi~y,
V). —
(V)i {0 otherwise.
For a valued of weighted graph, a similar definition would be
Wi 4 if 4~ j,
V). —
(Vi {() otherwise.
where w;; is the weight associated with edge i ~ j.

Remark

If the list of vertices is known, the only information which needs to be
stored is the list of edges. In terms of storage, this is equivalent to a
sparse matrix representation.

is
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Outline

@® Graph Partionning
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References

¥ Statistical Analysis of Network Data: Methods and Models,
Eric Kolazcyk
Chapiter 4, Section 4

¥ Analyse statistique de graphes,
Catherine Matias, Chapitre 3

¥ DS David Sontag's Lecture
http://people.csail.mit.edu/dsontag/courses/ml13/
slides/lecturel6.pdf

¥ A Tutorial on Spectral Clustering,
Ulrike von Luxburg
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Outline

@® Graph Partionning
Hierarchical clustering for graph
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Principle

Form a partition of the nodes composed by " cohesive” sets, e.g.
@ vertices well connected among themselves

® well separated from the remaining vertices

Agglomerative hierarchical clustering

1. Compute the dissimilarity between groups
2. Regroup the two most similar elements

Iterate until all element are in a single group

Output: n nested partitions from {{1},...,{n}} to {{1,...,n}}

Ingredients

@ a dissimilarity measure between nodes

® a distance measure between sets
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Dissimilarity measures

Graph-specific
® Modularity: fraction of edges that fall within a given groups minus

expected fraction if edges were distributed at random

For C = {C,...,Ck} a candidate partition and f;;(C) the fraction
of edges connecting vertices from C; to C}

K

modularity(C) = Z (fir(C) = Exy (frr))?
k=1

® Betweeness: number of shortest paths that go through a node in a
graph or network
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Examples of graph partionning |

hc <- cluster_fast_greedy(blog)
plot(hc, blog, vertex.label=NA)
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Examples of graph partionning Il

hc <- cluster_edge_betweenness(blog)
plot(hc, blog, vertex.label=NA)
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Outline

@® Graph Partionning

Spectral methods
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Motivation: graph-cut

Definition
The cut between two sets of nodes that form a partition in the graph is

caut(Va,Ve)= > Yy, VaUVp=V
1€V A,JEVE

Example: The graph cut between V4 = {1,2,3,4,5} and
Vi = {6,7,8,9,10} is 2.
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Min-cut

Idea: Find the 2-partition that minimizes the cut to form two
homogeneous clusters.

Min-cut problem

Based on this principle, the normalized cut consider the connectivity
between groups relative to the volume of each groups

arg min cut” (Va, Vg),
{Va,Ve}

where Vol(Vs)) = > s di and

cut™ (Va, Vi) = cutVa, Vs) + cut(Va, V)

Vol(V4) Vol(Vs)
- Vol(V4) + Vol(VB)
= cut(Va, VB) Vol(V4)Vol(Vp)

~> The term in (Vol(V4), Vol(Vp)) encourages balance groups/cuts
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Solving min-cut for 2 clusters

Let

—1 if i€ Vy,
T = (T;)i=1,.,n = L
1 if i€ Vg.

Then, letting D the diagonal matrix of degrees,

2" (D—-Y)z=z2"Dx— (" Dz — 2cut(Va, Vg)),

so that

1
cut(Va,Vp) = imT(D —Y)x.
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Solving Min-cut for 2 clusters

Normalized graph-cut < integer programming problem

arg min cut™ (V4, Vi)
{VA,VB}

.z (D-Y)z
& arg min —————

T
, s.c x D1,=0,
l‘e{—l,l}" xTDx "

where the constraint imposes only discrete values in x.
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Solving Min-cut for 2 clusters

Normalized graph-cut < integer programming problem

arg min cut™ (V4, Vi)
{Va,Vp}

T
2 (D-=-Y)x
& arg min %, sc. z'D1l,=0,
J/‘E{—l,l}" z' Dx
where the constraint imposes only discrete values in x.

Relax version

If we relax to x € [—1, 1], it turns to a simple eigenvalue problem

argminz' (D —Y)z, sc. z' Dr=1& (D—-Y)z=\Dz.

ze[—1,1]"

where L = D — Y is called the Laplacian matrix of the graph G.

24/78



Graph Laplacian: spectrum

Proposition (Spectrum of L)

The n x n matrix L has the following properties:
1
x'Lx = 5 ZYW(% — ;)% Vxe€R™
l?]

® L is a symmetric, positive semi-definite matrix,

® 1, isin the kernel of L since L1, =0,

® The first normalized eigen vector with eigen value A > 0 is solution
to the relaxed graph cut problem

The Laplacian is easily (and fastly) computed in R thanks to the igraph
package:

L <- laplacian_matrix(blog)
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Bi-partionning and the Fiedler vector

Fiedler vector is the named sometimes given to the normalized eigen
vector associated with the smallest positive eigen-value of L.
— solves the relaxed min-cut problem
— can be used to compute a bi-partition of a graph.
spec_L <- eigen(L); practical_zero <- le-12
lambda <- min(spec_L$values[spec_L$values>practical_zero])

fiedler <- spec_L$vectors[, which(spec_L$values == lambda)]
gplot(y = fiedler, colour = party) + viridis::scale_color_viridis(discrete = TRUE)
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Example on a simplied left/right view

left_vs_right <-
forcats::fct_collapse(party,

left = c("green",
right = c("right", "liberal", "center-rigth"),
analyst = "analyst"

)

"left", "far-left", "center-left"),

gplot(y = fiedler, colour = left_vs_right) + viridis::scale_color_viridis(discrete
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"Validation”

thresholds <- seq(-.1, .1, len = 100)
ARIs <- map_dbl(thresholds, “ARI(left_vs_right, fiedler > .))
gplot (thresholds, ARIs) + geom_vline(xintercept = thresholds[which.max(ARIs)]) + ti
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Spectral clustering

From the definition of the Laplacian matrix,

® The multiplicity of the first eigen value (0) of L determines the
number of connected components in the graph.

® The larger the second non trivial (positive) eigenvalue, the higher
the connectivity of G.

General Heuristic

@ Compute spectral decompostion of L to perform clustering in the
eigen space

® For a graph with K connected components, the first K eigen-vectors
are 1 spanning the eigenspace associated with eigenvalue 0

® Applying a simple clustering algorithm to the rows of the K first
eigenvectors separate the components

~ Generalizes to graphs with a single component (tends to separates

groups of nodes which are highly connected together)
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Some variants

Definition ((Normalized) Laplacian)

The normalized Laplacian matrix L is defined by

Ly =D YLD Y2 =1-D 2AD V2

Definition ((Absolute) Graph Laplacian)

The absolute Laplacian matrix L is defined by
Lus = D7V/2AD7V2 =1 - Ly,

with eigenvalues 1 — A\, <--- <1 — Xy <1— X1 =1, where
0= XA <--- <\, are the eigenvalues of Ly.
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Normalized Spectral Clustering
by Ng, Jordan and Weiss (2002)

Input: Adjacency matrix and number of classes ()

Compute the normalized graph Laplacian L

Compute the eigen vectors of L associated with the () smallest
eigenvalues

Define U, the n x () matrix that encompasses these () vectors

Define U, the row-wise normalized version of U: u;; = ”817“
1

2

Apply k-means to (U;)i=1,..n

Output: vector of classes C € Q", such as C; =q ifi € g
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Implementation of normalized spectral clustering

spectral_clustering <- function(graph, nb_cluster, normalized = TRUE) {

## Compute Laplacian matriz

L <- laplacian_matrix(graph, normalized = normalized)

## Generates indices of last (smallest) K vectors

selected <- rev(l:ncol(L))[1:nb_cluster]

## Extract an normalized eigen-vectors

U <- eigen(L)$vectors[, selected, drop = FALSE] # spectral decomposition
U <- sweep(U, 1, sqrt(rowSums(U~2)), '/')

## Perform k-means

res <- kmeans(U, nb_cluster, nstart = 40)$cl

res
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Application to the French blogosphere (1)

Perform spectral clustering on the blogosphere for various numbers of
group:

nb_cluster <- 1:20
map (nb_cluster, ~spectral_clustering(blog, .)) %>%
map_dbl(ARI, party) %>% gplot(nb_cluster, y = .) + geom_line() + theme_bw()

0.6+

0.4+

0.2+

0.0+

10
nb_cluster
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Application to the French blogosphere (2)

Once reorder according to the best clustering (obtained k& = 6) groups,
the orginal data matrix looks as follows

plotMyMatrix(as_adj(blog, sparse = FALSE),
clustering = list(row = spectral_clustering(blog, 6)))
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Outline

© The Stochastic Block Model (SBM)
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Motivations

Last section: find an underlying organization in a observed network

Spectral or hierachical clustering for network data

~» Not model-based, thus no statistical inference possible

Now: clustering of network based on a probabilistic model of the graph

Become familiar with

® the stochastic block model, a random graph model tailored for
clustering vertices,

® the variational EM algorithm used to infer SBM from network data.

hierarchical /kmeans clustering <» Gaussian mixture models

)

hierarchical /spectral clustering for network <+ Stochastic block model
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Outline

© The Stochastic Block Model (SBM)
Some Graphs Models and their limitations
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A mathematical model: Erdos-Rényi graph

Definition
Let V =1,...,n be a set of fixed vertices. The (simple) Erdos-Rényi
model G(n, ) assumes random edges between pairs of nodes with
probability 7. In orther word, the (random) adjacency matrix X is such
that

Yij ~ B(m)

Proposition (degree distribution)

The (random) degree D; of vertex i follows a binomial distribution:

Di Nb(ﬂ— 1,71’).
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Erdos-Rényi - example

Gl <- igraph::sample_gnp(10, 0.1)

G2 <- igraph::sample_gnp(10, 0.9)

G3 <- igraph::sample_gnp(100, .02)

par (mfrow=c(1,3))

plot(Gl, vertex.label=NA) ; plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)
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Erdos-Rény - limitations: very homegeneous

average.path.length(G3); diameter(G3)

## [1] 5.233395
## [1] 12

Frequency
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Histogram of degree(G3)

degree(G3)
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Mechanism-based model: preferential attachment

The graph is defined dynamically as follows
Definition
Start from a initial graph Go = (M, &p), then for each time step,

@ At t a new node V; is added
® V, is connected to ¢ € V;_1 with probability

D{* + cst.

~> Nodes with high degree get more connections thus richers get richers
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Preferential attachment - example

Gl <- igraph::sample_pa(20, 1, directed=FALSE)

G2 <- igraph::sample_pa(20, 5, directed=FALSE)

G3 <- igraph::sample_pa(200, directed=FALSE)

par (mfrow=c(1,3))

plot(Gl, vertex.label=NA) ; plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)

o
°
°0
©g00 %
o oo "
°e
1}
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Preferential attachment - limitations

average.path.length(G3); diameter(G3)

## [1] 6.019397
## [1] 15

Histogram of degree(G3)

150
|
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1

Frequency
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degree(G3)
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Limitations

® Erdos-Rényi
The ER model does not fit well real world network

® As can been seen from its degree distribution
® ER is generally too homogeneous

e Preferential attachment

® |s defined through an algorithm so performing statistics is complicated
® |s stucked to the power-law distribution of degrees

The Stochastic Block Model
The SBM! generalizes ER in a mixture framework. It provides
® a statistical framework to adjust and interpret the parameters

® a flexible yet simple specification that fits many existing network
data

'Other models exist (e.g. exponential model for random graphs) but less popular.
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Outline

© The Stochastic Block Model (SBM)

Mixture of Erdos-Rényi and the SBM
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Stochastic Block Model: definition

Mixture model point of view: mixture of Erdos-Rényi

Latent structure

Let V = {1,..,n} be a fixed set of vertices. We give each i € V a latent
label among a set Q = {1,...,Q} such that

*a,=Pli€q), >, =1
® Ziq = 1;cqy are independent hidden variables.

The conditional distribution of the edges

Connexion probabilities depend on the node class belonging:
Vollicade~Bn (&Yl {ZuZ=1) ~ Bl

The @ x Q matrix 7t gives for all couple of labels
T =P =1licqjel).
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Stochastic Block Model: the big picture

. @\”"

Stochastic Block Model
/ Let n nodes divided into
/ \ \/e Tee e Q=1{¢,e 0} classes

® aq,=P(ice),0ecQi=1,...

T & ° T.a=Plirjlicejceo)

Z; = 1{2’60} ~iid M(l,a), Ve € Q,
Yij | {i € .5 €0}~ B(m.a)

48/78



Stochastic Block Model: unknown parameters

Stochastic Block Model
Let n nodes divided into

\/G ® Q=1{ e 0} card(Q) known
/ ® a, =7,
0\/& o 1. ="
[ 2

Z; = 1{2'60} ~iid M(l,a), Ve € Q,
Yij | {i€ejeet~B(r.)
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Stochastic block models — examples of topology

Community network

pi <- matrix(c(0.3,0.02,0.02,0.02,0.3,0.02,0.02,0.02,0.3),3,3)
communities <- igraph::sample_sbm(100, pi, c(25, 50, 25))

par(mfrow = c(1,2))

plot(communities, vertex.label=NA, vertex.color = rep(1:3,c(25, 50, 25)))
corrplot(as_adj(communities, sparse =FALSE), tl.pos = "n", cl.pos = 'n')
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Stochastic block models — examples of topology

Star network

pi <- matrix(c(0.05,0.3,0.3,0),2,2)

star <- igraph::sample_sbm(100, pi, c(4, 96))

par(mfrow = c(1,2))

plot(star, vertex.label=NA, vertex.color = rep(1:2,c(4,96)))
corrplot(as_adj(star, sparse =FALSE), tl.pos = "n", cl.pos = 'n')

z
:
i

B e
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Stochastic block models — examples of topology

Bipartite network

pi <- matrix(c(.2,1-.2,.2,.2,1-.2,.2,.2,.2,.2,.2, .2,1-.2,.2,.2,1-.2,.2),4,4)
bipar <- igraph::sample_sbm(100, pi, c(15, 35, 5, 45))

par (mfrow = c(1,2))

plot(bipar, vertex.label=NA, vertex.color = rep(1:4,c(15, 35, 5, 45)))
corrplot(as_adj(bipar, sparse =FALSE), tl.pos = "n", cl.pos = 'n')
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Degree distributions

Conditional degree distribution

The conditional degree distribution of a node i € ¢ is

Q
Dili € g ~b(n —1,79) = P(A,), g = Zaéwqéa Ag = (n—1)7g
(=1

Conditional degree distribution
The degree distribution of a node ¢ can be approximated by a mixture of

Poisson distributions:

Q Ak
P(D; =k) = agexp{-Ag} o

q=1
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Outline

© The Stochastic Block Model (SBM)

Statistical Inference in the SBM
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Likelihoods
Complete data likelihood
(Y, Z:0) = p(Y|Z; )p(Z; ) = [ [ frz, 2, (Yij) x [ [ @z,
ij i

— Yij 1-Y;;

%,] %

Marginal likelihood (Y)
log £(Y;0) =1log Y £(Y,Z;0).
ZcZ

Z={1,...,K}" impossible to compute when K and n increase.

Standard tool to maximize the likelihood when latent variables involved :
EM algorithm.
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From EM to variational EM

Standard EM
At iteration (¢) :
e Step E: compute

Q(9’9(t_1)) = Ezy g1 [log (Y, Z; 0)]
e Step M:
6" = arg max Q0)0¢=1)

With SBM,

Yij v,
EZ‘Y[log L(0;Y,Z)] = Zﬂ;q log oy + Z Nijqelog m,," (1 — Tge) ' Y

1,9 1<4,q,¢
where 74, 7;j4¢ are the posterior probabilities:
* 1y =P(Ziy = 1Y) = E [Z;4]Y].
® Nijge =P(ZigZje = 1|Y) =K [Z;gZ| Y] .
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The EM strategy does not apply directly for SBM

Ouch: another intractability problem

® the Z;, are not independent conditional on (Xj;,7 < j) ...
® we cannot compute 1o = P(ZigZje = 1|1Y) = E [Z;4Z;0| Y],

® the conditional expectation Q(0), i.e. the main EM ingredient, is
intractable.

Solution: mean field approximation

Approximate 7;;q¢ by TiqTje, i.€., assume conditional independence
between Z;,

~~ This can be formalized in the variational framework
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Revisting the EM algorithm |

Proposition
Consider a distribution Q for the {Z;;}. We have

log L(8; Y) = Eqllog L(6, Y, Z)] + H(Q) + KL(Q | P(Z[Y;8)),
where H is the entropy and KL(:|-) is the Kullback-Leibler divergence:
Z@ )log Q(z) = —Eq[log Q(2)]

Q(= ) Q(=) ]
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Revisting the EM algorithm ||

Let
J(Q,0) £ Eqg (log L(6;Y,Z)) + H(Q)

The steps in the EM algorithm may be viewed as:
Expectation step : choose Q to maximize J(Q; G(t))

The solution is P(Z|Y;0®)

Maximization step : choose 8 to maximize J(Q®); @)

The solution maximizes E,, . o) (log L(6;Y,Z))

Z|Y;
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Variational approximation for SBM
Problem for SBM

P(Z[Y;0®) cannot be computed thus the E-step cannot be solved.

Idea
Choose Q in a class of function so that the E-step can be solved.

Family of distribution that factorizes

We chose Q@ the multinomial distribution so that

n n Q
Q) =[Jz) =TI
=1

i=1g=1

where 73y = Qi(Z; = q) = Eq(Zi4), with Zq Tig=1foralli=1,...,n.
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Variational EM for SBM: the criterion

Lower bound of the loglikehood

Since Q is an approximation of P(Z|Y), the Kullback-Leibler divergence
is non-negative and

log L(0;Y) > Egllog L(6,Y,Z)] + H(Q) = J(Q, 9).

For the SBM,

J(Q, an log og + Z TigTje 1og b( X5 Tqe) an log(Tiq),
i,q 1<7,q,¢

~~ we optimize the loglikelihood lower bound J(Q, @) = J(7,0) in (7,0).
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E and M steps for SBM

Variational E-step

Maximizing J(7) for fixed €, we find a fixed-point relationship:

i o g | [ [T 0¥ mqe) "
VA

M-step
Maximizing J (@) for fixed T, we find,

. 1 . . Zi;éj TiqTjeYij
Oéq = — E Tiq, 7qu = —Z A .
n= i#j TiqTje
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Model selection
We use our lower bound of the loglikelihood to compute an

approximation of the ICL

VICL(Q) = Eg|log L(6);Y,Z]
1 Q(Q +1), nm-1)
~3 ( o

where R R
Egllog L(6; Y, Z)] = J(,60) — H(Q).

The variational BIC is just

;(Q(QH)

vBIC(Q) = J(+,6) — > gE——
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Example: French politcal blogosphere

my_sbm <-
blog %>% as_adj(sparse = FALSE) %>%
sbm: :estimateSimpleSBM(estimOptions = list(plot = FALSE))

my_sbm

## Fit of a Simple Stochastic Block Model -- bernoulli variant
##
## Dimension = ( 192 ) - ( 10 ) blocks and no covariate(s).
##
## *x Useful fields

## $nbNodes, $modelName, $dimLabels, $nbBlocks, $nbCovariates, $nbDyads
##  $blockProp, $connectParam, $covarParam, $covarList, $covarEffect

##  $expectation, $indMemberships, $memberships

## * R6 and S3 methods

##  $rNetwork, $rMemberships, $rEdges, plot, print, coef

## * Additional fields

##  $probMemberships, $loglik, $ICL, $storedModels,

## * Additional methods

## predict, fitted, $setModel, $reorder
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Example: model exploration (vICL)

® @e oo
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Example: monitoring convergence (ELBO)

Evidence (variational) Lower Bound

-3500

-4000

-4500

-5000

Optimization monitoring

100
# cumulated V-EM iterations

nBlock

Phb bbbt bbb bbbttt
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Vizualisation: matrix view

plot(my_sbm, dimLabels = list(row = "blogs", col = "blogs"))

Ty 2
Rz ER
aweNapou
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Vizualisation: expected value

plot(my_sbm, "expected", dimLabels = list(row = "blogs", col = "blogs"))
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Vizualisation: mesoscopic view

plot(my_sbm, "meso")
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Accessing field |

aricode: : ARI (my_sbm$memberships, party)

## [1] 0.4650112

barplot (my_sbm$blockProp)
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Accessing field |l

corrplot (my_sbm$connectParam$mean)
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]

0.10
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0.05
]

0.00
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Accessing field Il

8

L

10

etc... see documentation and website
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0.2
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Outline

© The Stochastic Block Model (SBM)

SBM: some extensions
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SBM with covariates

* As before : (Yj;) be an adjacency matrix

® Let 7/ € RP denote covariates describing the pair (i, j)

Latent variables : as before

® The nodes i =1,...,n are partitioned into K clusters
e Z; independent variables P(Z; = k) = 7y,
Conditionally to (Z;)i=1,...n-.-
(Yi;) independent and
YijlZi, Z; ~ Bern(logit(az, z, + 0 - xi;)) if binary data
YijlZi, Z; ~ Plexp(az,z, +0-xi)) if counting data

If K =1 : all the connection heterogeneity is explained by the covariates.
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Valued-edge networks

Values-edges networks

Information on edges can be something different from presence/absence.
It can be:

@ a count of the number of observed interactions,

@ a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM

@ Poisson distribution: Y;; | {i € «,5 € o} ~" P(A\.,),
@ Gaussian distribution: Y;; | {i € «,j € o} ~" N (pu.4,0?), [7]
©® More generally,

Yij | {i € o,5 € o} ~" F(0.4)
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Latent Block Models aka Bipartite SBM

Let Y;; be a bi-partite network. Individuals in row and cols are not the
same.

Latent variables : bi-clustering

® Nodes i =1,...,nq partitionned into K clusters, nodes
j=1,...,n9 partitionned into K5 clusters

Z! =k if node i belongs to cluster (block) &
Z]2 =/{ if node j belongs to cluster (block) ¢

* Z},Z? independent variables

P(Zi =k)=m, P(Z;=0)=m]
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Latent Block Model : illustration

ccee 00 O Latent Block Model

® ny row nodes K1 = {e, e, ¢} classes

o ml=Plice),ecKii=1,..,n

® ngy column nodes Ko = {, e} classes

o m2=P(jce)eckyji=1,....m
O O e e ° a, =P(i+>jlice,je )

ZH = 1esy ~M(1,7), Vee Qy,
ij = 1{]6.} Niid M(1,7T2), Ve € QQ,
Yij|{tceje } ~ind Bern(a.)
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To go further...

® Group GroBBM : https://github.com/GrossSBM/ sbm;

® Documentation of package sbm:
https://grosssbm.github.io/sbm/

® missSBM SBM with missing data
https://github.com/GrossSBM/misssbm

Slides : https:
//grosssbm.github.io/slideshow-missSBM/slides.html
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