use std::collections::VecDeque; use std::ffi::{CStr, CString}; use std::fmt::Write; use std::path::Path; use std::sync::Once; use std::{ptr, slice, str}; use libc::c_int; use rustc_codegen_ssa::base::wants_wasm_eh; use rustc_codegen_ssa::codegen_attrs::check_tied_features; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::small_c_str::SmallCStr; use rustc_data_structures::unord::UnordSet; use rustc_fs_util::path_to_c_string; use rustc_middle::bug; use rustc_session::Session; use rustc_session::config::{PrintKind, PrintRequest}; use rustc_span::Symbol; use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport}; use rustc_target::target_features::{RUSTC_SPECIAL_FEATURES, RUSTC_SPECIFIC_FEATURES}; use crate::back::write::create_informational_target_machine; use crate::errors::{ FixedX18InvalidArch, ForbiddenCTargetFeature, PossibleFeature, UnknownCTargetFeature, UnknownCTargetFeaturePrefix, UnstableCTargetFeature, }; use crate::llvm; static INIT: Once = Once::new(); pub(crate) fn init(sess: &Session) { unsafe { // Before we touch LLVM, make sure that multithreading is enabled. if llvm::LLVMIsMultithreaded() != 1 { bug!("LLVM compiled without support for threads"); } INIT.call_once(|| { configure_llvm(sess); }); } } fn require_inited() { if !INIT.is_completed() { bug!("LLVM is not initialized"); } } unsafe fn configure_llvm(sess: &Session) { let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len(); let mut llvm_c_strs = Vec::with_capacity(n_args + 1); let mut llvm_args = Vec::with_capacity(n_args + 1); unsafe { llvm::LLVMRustInstallErrorHandlers(); } // On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog // box for the purpose of launching a debugger. However, on CI this will // cause it to hang until it times out, which can take several hours. if std::env::var_os("CI").is_some() { unsafe { llvm::LLVMRustDisableSystemDialogsOnCrash(); } } fn llvm_arg_to_arg_name(full_arg: &str) -> &str { full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("") } let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref); let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref); let sess_args = cg_opts.chain(tg_opts); let user_specified_args: FxHashSet<_> = sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect(); { // This adds the given argument to LLVM. Unless `force` is true // user specified arguments are *not* overridden. let mut add = |arg: &str, force: bool| { if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) { let s = CString::new(arg).unwrap(); llvm_args.push(s.as_ptr()); llvm_c_strs.push(s); } }; // Set the llvm "program name" to make usage and invalid argument messages more clear. add("rustc -Cllvm-args=\"...\" with", true); if sess.opts.unstable_opts.time_llvm_passes { add("-time-passes", false); } if sess.opts.unstable_opts.print_llvm_passes { add("-debug-pass=Structure", false); } if sess.target.generate_arange_section && !sess.opts.unstable_opts.no_generate_arange_section { add("-generate-arange-section", false); } match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) { MergeFunctions::Disabled | MergeFunctions::Trampolines => {} MergeFunctions::Aliases => { add("-mergefunc-use-aliases", false); } } if wants_wasm_eh(sess) { add("-wasm-enable-eh", false); } if sess.target.os == "emscripten" && !sess.opts.unstable_opts.emscripten_wasm_eh && sess.panic_strategy() == PanicStrategy::Unwind { add("-enable-emscripten-cxx-exceptions", false); } // HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes // during inlining. Unfortunately these may block other optimizations. add("-preserve-alignment-assumptions-during-inlining=false", false); // Use non-zero `import-instr-limit` multiplier for cold callsites. add("-import-cold-multiplier=0.1", false); if sess.print_llvm_stats() { add("-stats", false); } for arg in sess_args { add(&(*arg), true); } match ( sess.opts.unstable_opts.small_data_threshold, sess.target.small_data_threshold_support(), ) { // Set up the small-data optimization limit for architectures that use // an LLVM argument to control this. (Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => { add(&format!("--{arg}={threshold}"), false) } _ => (), }; } if sess.opts.unstable_opts.llvm_time_trace { unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() }; } rustc_llvm::initialize_available_targets(); unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) }; } pub(crate) fn time_trace_profiler_finish(file_name: &Path) { unsafe { let file_name = path_to_c_string(file_name); llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr()); } } enum TargetFeatureFoldStrength<'a> { // The feature is only tied when enabling the feature, disabling // this feature shouldn't disable the tied feature. EnableOnly(&'a str), // The feature is tied for both enabling and disabling this feature. Both(&'a str), } impl<'a> TargetFeatureFoldStrength<'a> { fn as_str(&self) -> &'a str { match self { TargetFeatureFoldStrength::EnableOnly(feat) => feat, TargetFeatureFoldStrength::Both(feat) => feat, } } } pub(crate) struct LLVMFeature<'a> { llvm_feature_name: &'a str, dependency: Option<TargetFeatureFoldStrength<'a>>, } impl<'a> LLVMFeature<'a> { fn new(llvm_feature_name: &'a str) -> Self { Self { llvm_feature_name, dependency: None } } fn with_dependency( llvm_feature_name: &'a str, dependency: TargetFeatureFoldStrength<'a>, ) -> Self { Self { llvm_feature_name, dependency: Some(dependency) } } fn contains(&self, feat: &str) -> bool { self.iter().any(|dep| dep == feat) } fn iter(&'a self) -> impl Iterator<Item = &'a str> { let dependencies = self.dependency.iter().map(|feat| feat.as_str()); std::iter::once(self.llvm_feature_name).chain(dependencies) } } impl<'a> IntoIterator for LLVMFeature<'a> { type Item = &'a str; type IntoIter = impl Iterator<Item = &'a str>; fn into_iter(self) -> Self::IntoIter { let dependencies = self.dependency.into_iter().map(|feat| feat.as_str()); std::iter::once(self.llvm_feature_name).chain(dependencies) } } // WARNING: the features after applying `to_llvm_features` must be known // to LLVM or the feature detection code will walk past the end of the feature // array, leading to crashes. // // To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td // where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`. // // Check the current rustc fork of LLVM in the repo at https://github.com/rust-lang/llvm-project/. // The commit in use can be found via the `llvm-project` submodule in // https://github.com/rust-lang/rust/tree/master/src Though note that Rust can also be build with // an external precompiled version of LLVM which might lead to failures if the oldest tested / // supported LLVM version doesn't yet support the relevant intrinsics. pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> { let arch = if sess.target.arch == "x86_64" { "x86" } else if sess.target.arch == "arm64ec" { "aarch64" } else if sess.target.arch == "sparc64" { "sparc" } else if sess.target.arch == "powerpc64" { "powerpc" } else { &*sess.target.arch }; match (arch, s) { ("x86", "sse4.2") => Some(LLVMFeature::with_dependency( "sse4.2", TargetFeatureFoldStrength::EnableOnly("crc32"), )), ("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")), ("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")), ("x86", "bmi1") => Some(LLVMFeature::new("bmi")), ("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")), ("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")), ("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")), ("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")), ("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")), ("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")), ("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")), ("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")), ("aarch64", "paca") => Some(LLVMFeature::new("pauth")), ("aarch64", "pacg") => Some(LLVMFeature::new("pauth")), ("aarch64", "pauth-lr") if get_version().0 < 19 => None, // Before LLVM 20 those two features were packaged together as b16b16 ("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")), ("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")), ("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")), // Rust ties fp and neon together. ("aarch64", "neon") => { Some(LLVMFeature::with_dependency("neon", TargetFeatureFoldStrength::Both("fp-armv8"))) } // In LLVM neon implicitly enables fp, but we manually enable // neon when a feature only implicitly enables fp ("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")), ("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")), // Filter out features that are not supported by the current LLVM version ("aarch64", "fpmr") if get_version().0 != 18 => None, ("arm", "fp16") => Some(LLVMFeature::new("fullfp16")), // In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single // feature called `fast-unaligned-access`. In LLVM 19, it was split back out. ("riscv32" | "riscv64", "unaligned-scalar-mem") if get_version().0 == 18 => { Some(LLVMFeature::new("fast-unaligned-access")) } // Filter out features that are not supported by the current LLVM version ("riscv32" | "riscv64", "zaamo") if get_version().0 < 19 => None, ("riscv32" | "riscv64", "zabha") if get_version().0 < 19 => None, ("riscv32" | "riscv64", "zalrsc") if get_version().0 < 19 => None, ("riscv32" | "riscv64", "zama16b") if get_version().0 < 19 => None, ("riscv32" | "riscv64", "zacas") if get_version().0 < 20 => None, // Enable the evex512 target feature if an avx512 target feature is enabled. ("x86", s) if s.starts_with("avx512") => { Some(LLVMFeature::with_dependency(s, TargetFeatureFoldStrength::EnableOnly("evex512"))) } // Support for `wide-arithmetic` will first land in LLVM 20 as part of // llvm/llvm-project#111598 ("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None, ("sparc", "leoncasa") => Some(LLVMFeature::new("hasleoncasa")), // In LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available and SPARC-V8+ ABI used". // https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L27-L28 // Before LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available". // https://github.com/llvm/llvm-project/blob/llvmorg-18.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L26 ("sparc", "v8plus") if get_version().0 == 19 => Some(LLVMFeature::new("v9")), ("sparc", "v8plus") if get_version().0 < 19 => None, ("powerpc", "power8-crypto") => Some(LLVMFeature::new("crypto")), (_, s) => Some(LLVMFeature::new(s)), } } /// Used to generate cfg variables and apply features. /// Must express features in the way Rust understands them. /// /// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen. pub(crate) fn target_features_cfg(sess: &Session) -> (Vec<Symbol>, Vec<Symbol>) { // Add base features for the target. // We do *not* add the -Ctarget-features there, and instead duplicate the logic for that below. // The reason is that if LLVM considers a feature implied but we do not, we don't want that to // show up in `cfg`. That way, `cfg` is entirely under our control -- except for the handling of // the target CPU, that is still expanded to target features (with all their implied features) // by LLVM. let target_machine = create_informational_target_machine(sess, true); // Compute which of the known target features are enabled in the 'base' target machine. We only // consider "supported" features; "forbidden" features are not reflected in `cfg` as of now. let mut features: FxHashSet<Symbol> = sess .target .rust_target_features() .iter() .filter(|(feature, _, _)| { // skip checking special features, as LLVM may not understand them if RUSTC_SPECIAL_FEATURES.contains(feature) { return true; } if let Some(feat) = to_llvm_features(sess, feature) { for llvm_feature in feat { let cstr = SmallCStr::new(llvm_feature); // `LLVMRustHasFeature` is moderately expensive. On targets with many // features (e.g. x86) these calls take a non-trivial fraction of runtime // when compiling very small programs. if !unsafe { llvm::LLVMRustHasFeature(target_machine.raw(), cstr.as_ptr()) } { return false; } } true } else { false } }) .map(|(feature, _, _)| Symbol::intern(feature)) .collect(); // Add enabled and remove disabled features. for (enabled, feature) in sess.opts.cg.target_feature.split(',').filter_map(|s| match s.chars().next() { Some('+') => Some((true, Symbol::intern(&s[1..]))), Some('-') => Some((false, Symbol::intern(&s[1..]))), _ => None, }) { if enabled { // Also add all transitively implied features. // We don't care about the order in `features` since the only thing we use it for is the // `features.contains` below. #[allow(rustc::potential_query_instability)] features.extend( sess.target .implied_target_features(feature.as_str()) .iter() .map(|s| Symbol::intern(s)), ); } else { // Remove transitively reverse-implied features. // We don't care about the order in `features` since the only thing we use it for is the // `features.contains` below. #[allow(rustc::potential_query_instability)] features.retain(|f| { if sess.target.implied_target_features(f.as_str()).contains(&feature.as_str()) { // If `f` if implies `feature`, then `!feature` implies `!f`, so we have to // remove `f`. (This is the standard logical contraposition principle.) false } else { // We can keep `f`. true } }); } } // Filter enabled features based on feature gates. let f = |allow_unstable| { sess.target .rust_target_features() .iter() .filter_map(|(feature, gate, _)| { // The `allow_unstable` set is used by rustc internally to determined which target // features are truly available, so we want to return even perma-unstable // "forbidden" features. if allow_unstable || (gate.in_cfg() && (sess.is_nightly_build() || gate.requires_nightly().is_none())) { Some(Symbol::intern(feature)) } else { None } }) .filter(|feature| features.contains(&feature)) .collect() }; let target_features = f(false); let unstable_target_features = f(true); (target_features, unstable_target_features) } pub(crate) fn print_version() { let (major, minor, patch) = get_version(); println!("LLVM version: {major}.{minor}.{patch}"); } pub(crate) fn get_version() -> (u32, u32, u32) { // Can be called without initializing LLVM unsafe { (llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch()) } } pub(crate) fn print_passes() { // Can be called without initializing LLVM unsafe { llvm::LLVMRustPrintPasses(); } } fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> { let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) }; let mut ret = Vec::with_capacity(len); for i in 0..len { unsafe { let mut feature = ptr::null(); let mut desc = ptr::null(); llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc); if feature.is_null() || desc.is_null() { bug!("LLVM returned a `null` target feature string"); } let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); ret.push((feature, desc)); } } ret } pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) { require_inited(); let tm = create_informational_target_machine(sess, false); match req.kind { PrintKind::TargetCPUs => print_target_cpus(sess, tm.raw(), out), PrintKind::TargetFeatures => print_target_features(sess, tm.raw(), out), _ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req), } } fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) { let cpu_names = llvm::build_string(|s| unsafe { llvm::LLVMRustPrintTargetCPUs(&tm, s); }) .unwrap(); struct Cpu<'a> { cpu_name: &'a str, remark: String, } // Compare CPU against current target to label the default. let target_cpu = handle_native(&sess.target.cpu); let make_remark = |cpu_name| { if cpu_name == target_cpu { // FIXME(#132514): This prints the LLVM target string, which can be // different from the Rust target string. Is that intended? let target = &sess.target.llvm_target; format!( " - This is the default target CPU for the current build target (currently {target})." ) } else { "".to_owned() } }; let mut cpus = cpu_names .lines() .map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) }) .collect::<VecDeque<_>>(); // Only print the "native" entry when host and target are the same arch, // since otherwise it could be wrong or misleading. if sess.host.arch == sess.target.arch { let host = get_host_cpu_name(); cpus.push_front(Cpu { cpu_name: "native", remark: format!(" - Select the CPU of the current host (currently {host})."), }); } let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0); writeln!(out, "Available CPUs for this target:").unwrap(); for Cpu { cpu_name, remark } in cpus { // Only pad the CPU name if there's a remark to print after it. let width = if remark.is_empty() { 0 } else { max_name_width }; writeln!(out, " {cpu_name:<width$}{remark}").unwrap(); } } fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) { let mut llvm_target_features = llvm_target_features(tm); let mut known_llvm_target_features = FxHashSet::<&'static str>::default(); let mut rustc_target_features = sess .target .rust_target_features() .iter() .filter_map(|(feature, gate, _implied)| { if !gate.in_cfg() { // Only list (experimentally) supported features. return None; } // LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these // strings. let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name; let desc = match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() { Some(index) => { known_llvm_target_features.insert(llvm_feature); llvm_target_features[index].1 } None => "", }; Some((*feature, desc)) }) .collect::<Vec<_>>(); // Since we add this at the end ... rustc_target_features.extend_from_slice(&[( "crt-static", "Enables C Run-time Libraries to be statically linked", )]); // ... we need to sort the list again. rustc_target_features.sort(); llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f)); let max_feature_len = llvm_target_features .iter() .chain(rustc_target_features.iter()) .map(|(feature, _desc)| feature.len()) .max() .unwrap_or(0); writeln!(out, "Features supported by rustc for this target:").unwrap(); for (feature, desc) in &rustc_target_features { writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap(); } writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap(); for (feature, desc) in &llvm_target_features { writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap(); } if llvm_target_features.is_empty() { writeln!(out, " Target features listing is not supported by this LLVM version.") .unwrap(); } writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap(); writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n") .unwrap(); writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap(); writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap(); } /// Returns the host CPU name, according to LLVM. fn get_host_cpu_name() -> &'static str { let mut len = 0; // SAFETY: The underlying C++ global function returns a `StringRef` that // isn't tied to any particular backing buffer, so it must be 'static. let slice: &'static [u8] = unsafe { let ptr = llvm::LLVMRustGetHostCPUName(&mut len); assert!(!ptr.is_null()); slice::from_raw_parts(ptr, len) }; str::from_utf8(slice).expect("host CPU name should be UTF-8") } /// If the given string is `"native"`, returns the host CPU name according to /// LLVM. Otherwise, the string is returned as-is. fn handle_native(cpu_name: &str) -> &str { match cpu_name { "native" => get_host_cpu_name(), _ => cpu_name, } } pub(crate) fn target_cpu(sess: &Session) -> &str { let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu); handle_native(cpu_name) } /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). pub(crate) fn global_llvm_features( sess: &Session, diagnostics: bool, only_base_features: bool, ) -> Vec<String> { // Features that come earlier are overridden by conflicting features later in the string. // Typically we'll want more explicit settings to override the implicit ones, so: // // * Features from -Ctarget-cpu=*; are overridden by [^1] // * Features implied by --target; are overridden by // * Features from -Ctarget-feature; are overridden by // * function specific features. // // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly // through LLVM TargetMachine implementation. // // FIXME(nagisa): it isn't clear what's the best interaction between features implied by // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always // override anything that's implicit, so e.g. when there's no `--target` flag, features implied // the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence // should be taken in cases like these. let mut features = vec![]; // -Ctarget-cpu=native match sess.opts.cg.target_cpu { Some(ref s) if s == "native" => { // We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set // that for LLVM, so the features implied by that CPU name will be available everywhere. // However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if // some of the instructions are available or not. So we have to also explicitly ask for // the exact set of features available on the host, and enable all of them. let features_string = unsafe { let ptr = llvm::LLVMGetHostCPUFeatures(); let features_string = if !ptr.is_null() { CStr::from_ptr(ptr) .to_str() .unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 features string: {}", e); }) .to_owned() } else { bug!("could not allocate host CPU features, LLVM returned a `null` string"); }; llvm::LLVMDisposeMessage(ptr); features_string }; features.extend(features_string.split(',').map(String::from)); } Some(_) | None => {} }; // Features implied by an implicit or explicit `--target`. features.extend( sess.target .features .split(',') .filter(|v| !v.is_empty()) // Drop +v8plus feature introduced in LLVM 20. .filter(|v| *v != "+v8plus" || get_version() >= (20, 0, 0)) .map(String::from), ); if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind { features.push("+exception-handling".into()); } // -Ctarget-features if !only_base_features { let known_features = sess.target.rust_target_features(); // Will only be filled when `diagnostics` is set! let mut featsmap = FxHashMap::default(); // Compute implied features let mut all_rust_features = vec![]; for feature in sess.opts.cg.target_feature.split(',') { if let Some(feature) = feature.strip_prefix('+') { all_rust_features.extend( UnordSet::from(sess.target.implied_target_features(feature)) .to_sorted_stable_ord() .iter() .map(|&&s| (true, s)), ) } else if let Some(feature) = feature.strip_prefix('-') { // FIXME: Why do we not remove implied features on "-" here? // We do the equivalent above in `target_features_cfg`. // See <https://github.com/rust-lang/rust/issues/134792>. all_rust_features.push((false, feature)); } else if !feature.is_empty() { if diagnostics { sess.dcx().emit_warn(UnknownCTargetFeaturePrefix { feature }); } } } // Remove features that are meant for rustc, not LLVM. all_rust_features.retain(|(_, feature)| { // Retain if it is not a rustc feature !RUSTC_SPECIFIC_FEATURES.contains(feature) }); // Check feature validity. if diagnostics { for &(enable, feature) in &all_rust_features { let feature_state = known_features.iter().find(|&&(v, _, _)| v == feature); match feature_state { None => { let rust_feature = known_features.iter().find_map(|&(rust_feature, _, _)| { let llvm_features = to_llvm_features(sess, rust_feature)?; if llvm_features.contains(feature) && !llvm_features.contains(rust_feature) { Some(rust_feature) } else { None } }); let unknown_feature = if let Some(rust_feature) = rust_feature { UnknownCTargetFeature { feature, rust_feature: PossibleFeature::Some { rust_feature }, } } else { UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None } }; sess.dcx().emit_warn(unknown_feature); } Some((_, stability, _)) => { if let Err(reason) = stability.toggle_allowed() { sess.dcx().emit_warn(ForbiddenCTargetFeature { feature, enabled: if enable { "enabled" } else { "disabled" }, reason, }); } else if stability.requires_nightly().is_some() { // An unstable feature. Warn about using it. It makes little sense // to hard-error here since we just warn about fully unknown // features above. sess.dcx().emit_warn(UnstableCTargetFeature { feature }); } } } // FIXME(nagisa): figure out how to not allocate a full hashset here. featsmap.insert(feature, enable); } } // Translate this into LLVM features. let feats = all_rust_features .iter() .filter_map(|&(enable, feature)| { let enable_disable = if enable { '+' } else { '-' }; // We run through `to_llvm_features` when // passing requests down to LLVM. This means that all in-language // features also work on the command line instead of having two // different names when the LLVM name and the Rust name differ. let llvm_feature = to_llvm_features(sess, feature)?; Some( std::iter::once(format!( "{}{}", enable_disable, llvm_feature.llvm_feature_name )) .chain(llvm_feature.dependency.into_iter().filter_map( move |feat| match (enable, feat) { (_, TargetFeatureFoldStrength::Both(f)) | (true, TargetFeatureFoldStrength::EnableOnly(f)) => { Some(format!("{enable_disable}{f}")) } _ => None, }, )), ) }) .flatten(); features.extend(feats); if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) { sess.dcx().emit_err(rustc_codegen_ssa::errors::TargetFeatureDisableOrEnable { features: f, span: None, missing_features: None, }); } } // -Zfixed-x18 if sess.opts.unstable_opts.fixed_x18 { if sess.target.arch != "aarch64" { sess.dcx().emit_fatal(FixedX18InvalidArch { arch: &sess.target.arch }); } else { features.push("+reserve-x18".into()); } } features } pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> { let name = sess.opts.unstable_opts.tune_cpu.as_ref()?; Some(handle_native(name)) }