
World in Vectors
Cross-platform maps rendering using RUST! 🦀

❝ Imagine being able to
fly from outer space to
any place on Earth.

Being able to discover the world
through computers was a
groundbreaking idea in the 90s.

TerraVision 1998
NTT InterCommunication Center Tokyo

“What is a Vector Map?”

1. Examples of Vector Maps

2. How Map Data is Rendered

3. Data Visualisation Pipeline

4. Overview of maplibre-rs and

the Advantages of Using Rust

Disclaimer
I’m NOT an expert in:

○ Geoinformatics,
○ graphics programming, or
○ Rust.

But … I’m a Software Engineer
who has a lot of free time!

What did we just see?

● The previous examples are rendered in real-time using a state-of-the-art
vector renderer

● The style of the map is decided during the runtime

You probably use one of these regularly:

Comparison

Vector Tiles

Pros:
● Smaller data size and therefore lower

disk space requirement
● Better user experience - smooth

zooming
● Easy and powerful customization

Cons:
● The map is rendering on the client’s

side and requires more powerful
hardware

Raster Tiles

Pros:
● Suitable for raster data like satellite

imagery
● Lower requirements for end-users

hardware

Cons:
● A bigger size of each tile

Maptiler: https://www.maptiler.com/news/2019/02/what-are-vector-tiles-and-why-you-should-care/

The World is Huge. Let’s divide it up!

The World is Huge. Let’s divide it up!

● Projected world is divided into tiles in X, Y and Z (zoom level) direction
● The zoom level influences the extent of the world
● Per zoom level the count of tiles increases exponentially: 2⁰, 2¹, 2², 2³ …

Maptiler: https://www.maptiler.com/news/2019/02/what-are-vector-tiles-and-why-you-should-care/

Web Mercator projection

Different kinds of Tiles

Maptiler: https://www.maptiler.com/news/2019/02/what-are-vector-tiles-and-why-you-should-care/

Different Kind of Tiles

What is a Vector Tile?

● Each “feature” on the map is represented by a geometry (line, polygon or
point with text)

● A vector tile encodes geographic geometries in a lossless way

Essentially: Vector Tile = SVG Path

Encoding Step 0: An empty vector tile

The vector tile to the right is a 10x10
grid with 2 cell buffer.

Let's encode some geometry to the grid
starting with a blue polygon.

The following commands will be relative
to the pen.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Step 1: MoveTo(1,2)

The first action when encoding a
polygon is to point the command to a
starting point.

This uses the MoveTo(x,y) command.
The pen is at 1, 2 starting at the top left
of the grid

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Encoding Step 2: LineTo(3,-1)

In order to move from a starting
position, we use a LineTo(x,y)
command.

The X and Y values are relative to the
previous command, rather than the
origin of the grid, to keep file size down.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Step 3: LineTo(3,4)

Drawing another path of the blue
polygon.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Step 4: LineTo(-4,2)

Drawing another path of the blue
polygon.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Step 5: ClosePath()

Finally, we close a path. This uses the
ClosePath() command that closes the
path to most recently used MoveTo(x,y)
command, which is our starting point.

This DOES NOT move the pen.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Step 6

Let’s draw another polygon in the
opposite direction.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Encoding Step 7

Encoding is complete!

Decoding works the same way just in
opposite direction.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Tessellation for GPU

GPUs work with triangles.

Some algorithm has to create a mesh of
“vertices” which are in fact vectors.

The term tessellation has its origin in
the tessellation of mosaiks.

Mapbox: https://docs.mapbox.com/data/tilesets/guides/vector-tiles-standards/

Example from the Rendering Engine

Overview of the Data Visualisation Pipeline

Rendering maps is in fact data visualisation, where the
dataset is OpenStreetMaps

world.osm.bz2 /
world.osm.pbf

1 File, 114GB / 63GB

Vector Tiles

 = 1.4 Billion Files,
~100KB

➔ Tessellated Mesh
➔ Geospatial Index (r*-tree)
➔ Text, Metadata
➔ etc.

Map Style

CPU Intensive Processing

Simplification,
Clustering,

Aggregation

Tessellation,
Geospatial
Indexing

Upload Data to
GPU

Render

Multiple Datasets

world.osm.bz2 /
world.osm.pbf Vector Tiles

➔ Tessellated Mesh
➔ Geospatial Index

Map Style

Upload Data to
GPU

Render

Paris Taxi Stations Vector Tiles ➔ Tessellated Mesh
➔ Geospatial Index

Simplify

Simplify Tessellate

Tessellate …

Project: maplibre-rs
❝ maplibre-rs is a portable and performant vector maps renderer written in Rust

Goals of maplibre-rs

● Aims to support the web, mobile and desktop applications with a single code
base

● Create a truly FLOSS experience to render vector tiles
● Experiment with new (web) technologies

Non-goals:

● Compete with quality of Google and Apple

Rendering Stack

+ +

What is WebGPU?

● Upcoming technology in 2023-2025
● Platform independent 3D graphics API
● Quite unstable specification
● Possibly support for multi-threaded rendering in the browser.
● Plenty of native implementations are already available.

Multi-Threading Support

● Important feature because we need to offload heavy work from the render
thread

● Multi-threading support in browsers and on bare metal
○ Browser: WebWorker
○ Linux/Windows/macOS/iOS/Android: plain POSIX threads

● Communication between threads via shared memory
○ Support for std::sync including Mutex, mpsc channels, Arc etc.

Shared Memory in Browsers

● Rust supports shared memory and atomic instructions in Browsers!
● Shared memory can be accessed from several web workers.

Without shared memory we would have to stick to multi-processing primitives.

Other Rust Ecosystem Benefits

● Performant tessellator for polygons called lyon
● winit for handling mouse or touch input
● Native and simple crates for handling geospatial data by the

GeoRust project and community
● Plenty of crates like glam, cgmath for linear algebra

operations available, including SIMD support
● Tokio for scheduling tasks on POSIX threads
● reqwest for HTTP requests
● wasm-bindgen for communication between Rust and

JavaScript
GeoRust

lyon

Side-artifacts of maplibre-rs

● Crate for a thread pool based on WebWorkers in-progress

● Tools for handling MBTiles (tile container) databases in-progress

● Blog posts on WebGPU and 3D Rendering done and planned

● Contributions to GeoRust projects planned

● Novel and state-of-the-art solution to render text planned

State of the Project

● Multi-threaded rendering engine works but is very barebones.

● Proof of concept is done.
○ Runs at > 60FPS in debug mode
○ It’s running smooth on iOS, Android, WebGL, WebGPU, Linux, Windows and macOS (yes also M1)

● Continuous Integration works for all platforms.

What is missing?

● Text/font rendering

● Feature rich rendering engine which supports outlines, transparency or
“per-feature” styling

● A logo! (If you haven’t noticed: I like logos!)

Future Work

● Smooth geometries in pre-processing and render Bézier
curve (yields proper circles)

● Focus on accessibility (impaired vision)

Google Maps
with beautiful circle

Reach out to us or try maplibre-rs out yourself!

Explore Europe at:
https://maplibre-rs-demos.pages.dev/webgl or
https://maplibre-rs-demos.pages.dev/webgpu/ (requires Firefox Nightly or

Chrome Canary)

Matrix: matrix.to/#/#maplibre:matrix.org
Twitter: maxammann_
Github: github.com/maplibre/maplibre-rs
Web: maplibre.org

I’m happy about any feedback about maplibre-rs!

https://maplibre-rs-demos.pages.dev/webgl
https://maplibre-rs-demos.pages.dev/webgpu/
https://twitter.com/maxammann_
https://github.com/maplibre/maplibre-rs
https://maplibre.org/

