
Deletion Schemes for Classi�er Systems

Tim Kovacs

School of Computer Science
University of Birmingham

Birmingham B15 2TT United Kingdom
Email: T.Kovacs@cs.bham.ac.uk
Telephone: (44) 121 414 4773

Abstract

The issue of deletion schemes for classi�er
systems has received little attention. In a
standard genetic algorithm a chromosome
can be evaluated (assigned a reasonable �t-
ness) immediately. In classi�er systems, how-
ever, a chromosome can only be fully evalu-
ated after many interactions with the envi-
ronment, since a chromosome may generalise
over many environmental states. A new tech-
nique which protects poorly evaluated chro-
mosomes outperforms both techniques from
(Wilson, 1995) in two very di�erent single
step problems. Results indicate the XCS
classi�er system is able to learn single step
problems for which no (or few) useful gener-
alisations can be made over the input string,
despite its drive towards accurate generalisa-
tion.

1 Introduction

In genetic algorithms (GA) research the issue of se-
lecting individuals to delete from a population has re-
ceived little attention compared to the issue of select-
ing individuals for reproduction. Further, GA dele-
tion techniques have been incorporated into GA-based
Learning Classi�er Systems (LCS) without regard for
the di�erences between the two. This paper studies
existing deletion techniques and introduces one specif-
ically tailored for LCS in an attempt to optimise their
performance.

A classi�er system learns if-then rules (classi�ers) in-
crementally through interaction with a problem envi-
ronment. Interaction consists of cycles of: input to
the LCS, reaction by the LCS, and payo� (reward)
from the environment. LCS typically use a GA for

rule discovery. GAs are search mechanisms inspired
by natural selection in biological species which oper-
ate by evolving successively better generations of in-
dividuals. In a standard function optimisation GA in-
dividuals are codings of parameter values, while in a
classi�er system's GA individuals are classi�ers. In a
GA various search operators (typically crossover and
mutation) are used to obtain o�spring from parents.
In order to obtain a population of desirable individuals
those judged �tter (better) are given preference when
selecting parents.

XCS is a type of classi�er system introduced in [1] in
which the �tness of a classi�er is based on the accu-
racy of its payo� prediction and not on the prediction
itself. As a result, XCS, unlike standard LCS, tends
to learn complete and accurate representations of the
input/action/payo� function. In [2] I have shown that
XCS can in fact learn minimal, complete and accurate
representations (populations) for boolean functions. I
call a population with these three characteristics an
optimal population or [O] in my notation.1 The reader
is referred to [1] for a description of XCS, and to [4] for
a study of now-standard modi�cations to the system.
Questions and answers on XCS (and other papers on
complex adaptive system) are available via NetQ at
http://prediction-dynamics.com/

Another feature of XCS is the use of macroclassi�ers
[1], classi�ers with a numerosity parameter which in-
dicates the number of virtual copies of the classi�er
considered to be in the population. The numerosity of
a macroclassi�er is initially 1 but rises if the GA pro-
duces additional copies of the classi�er, and falls if they
are deleted. A macroclassi�er is always treated by the
system as the equivalent number of (micro)classi�ers.
Macroclassi�ers provide interesting statistics and al-

1[O] for the speci�c case of the 6 multiplexer was �rst
discussed by Wilson [3] who referred to it as [S6] { the
solution set for the 6 multiplexer.



low a considerable increase in run-time speed as ad-
ditional copies of a classi�er impose no further com-
putational load on the system. We could limit each
classi�er to a single or few copies and obtain increased
search rates, but this would be o�set by increased run
times.2 In this document graphs of population size
show the number of macroclassi�ers, as the size in mi-
croclassi�ers remains at the �xed population size limit.
For simplicity, macroclassi�ers will be referred to sim-
ply as classi�ers.

Two reproductive schemes have been used with the
GA: generational and steady state reproduction. In
generational reproduction the entire population is re-
placed at once,3 while in steady state reproduction
only a few individuals are replaced on each reproduc-
tive event. Generational reproduction is perhaps the
more widely studied approach, but steady state GAs
are also commonly used and are associated with clas-
si�er systems. See [5] (section C2.7) for comparison of
generational and steady state systems.

1.1 Deletion Schemes

Using a �xed population size requires that each time
we insert a new rule into the population we remove
an old rule. Thus, under generational reproduction we
need to select parents, but with steady state repro-
duction we need to select both parents and rules to be
replaced. Since there are two points at which selec-
tive pressure may be applied in the steady state GA
more 
exible schemes than are normally used are pos-
sible. For example, in [6] the use of a deletion scheme
with selective bias against un�t individuals removes
the burden of maintaining �t elements of the popu-
lation from the crossover operator. This allows the
use of more disruptive crossover operators, which were
found to yield better performance.

Many parent selection schemes (e.g. linear ranking,
roulette wheel, tournament selection) have been used
and studied (see for example [7, 8]) and all could be ap-
plied to selection of rules to be replaced. Little work,
however, has speci�cally addressed the issue of select-
ing rules for replacement ([9] is an exception). A sim-
ple scheme, which will be used as a benchmark in this
paper, is random selection of rules to be deleted. This
scheme has no bias at all. In practice, deletion schemes
which are biased against low-�tness rules are most of-
ten used. For example we might always delete the least

2This is supported by �ndings (not shown) on the 6
multiplexer test, which is to be introduced shortly.

3The best few members may be retained in the next
generation. This is called elitism. Also, if crossover is not
always applied clones may appear in the next generation.

�t rule, or we might use some stochastic scheme with
a bias against less �t rules. In addition to the normal
bias against low �tness rules, we can introduce other
biases to help optimise system performance. One of
the aims of this work is to demonstrate a successful
combination of two biases in a deletion scheme.

Wilson [1] proposed two deletion techniques for XCS:

\1. Every classi�er keeps an estimate of
the size of the match sets4 in which it occurs.
The estimate is updated every time the clas-
si�er takes part in an [M], using the MAM
technique5 with rate �. A classi�er's deletion
probability is set proportional to the match
set size estimate,6 which tends to make all
match sets have about the same size, so that
classi�er resources are allocated more or less
equally to all niches (match sets). This dele-
tion technique is similar to one introduced in
[10] for the same purpose.

2. A classi�er's deletion probability is
as in (1), except if its �tness is less than a
small fraction � of the population mean �t-
ness. Then the probability from (1) is multi-
plied by the mean �tness divided by the clas-
si�er's �tness." (Wilson, 1995)

We will refer to these techniques as t1 and t2 respec-
tively. The �rst technique is biased against classi�ers
with large action set sizes (i.e. classi�ers which match
inputs matched by many other classi�ers) in order to
help regulate the distribution of classi�ers between ac-
tion sets. Notice that there is no bias at all against
un�t classi�ers. The second technique is a modi�-
cation of the �rst in which a bias against un�t clas-
si�ers is added. These classi�ers have their deletion
probability steeply increased in inverse proportion to
their �tness. We can identify three desirable biases for
deletion schemes in XCS: i) against low �tness classi-
�ers, since they contribute least (or are detrimental) to
performance ii) against classi�ers which are subsumed
by more general and equally accurate classi�ers, since

4The match set [M] is the set of classi�ers which match
the current input.

5The MAM technique is a modi�cation of the delta rule
for reinforcement learning. Under the delta rule, an esti-
mated value approaches observed values by minimising the
di�erence between the two. The MAM technique improves
the learning rate by allowing for larger changes in the esti-
mated value early on, somewhat like simulated annealing.

6Wilson has since moved the GA to the action set [A]
(the subset of the match set which advocates the action
chosen by the system). Consequently, the deletion proba-
bility is actually proportional to the size of the action set.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15
Explore Problems (1000s)

Fitness and Numerosity of ######:0

%[O]

Numerosity / 20

Pop / 1000

Fit.

Figure 1: A single run of the 6 parity problem showing the high numerosity and low, spiky �tness of classi�er
######:0 using t1.

they only drain processing power, and iii) against large
action sets, in order to balance classi�er allocation be-
tween action sets. Only the �rst two will be addressed
here.

XCS will be evaluated on two two rather di�erent
Boolean functions. Both are single step problems:
each input to the system is independent of all oth-
ers (in fact, input strings are generated randomly). A
trial consists of a single input. System settings are in
appendix A.

In [1] the progress of the system in learning a problem
was monitored using a statistic called performance, de-
�ned as the proportion of the last 50 inputs to which
the system has responded correctly. In this work I use
instead the percent of the optimal population %[O]
which is present in the general population [P]. This
measure is more sensitive to the progress of evolution-
ary search than performance: in some cases two dele-
tion techniques have similar performance curves, but
rather di�erent %[O] curves.

1.2 The Multiplexer Function

The multiplexer function is de�ned for strings of length
L = k + 2k where k is an integer > 0. In the 6 multi-
plexer problem (k = 2), the input to the system con-

sists of a string of six binary digits, of which the �rst
two (the address) represent an index (in binary) into
the remaining bits (the data), and the value of the
function is the value of the indexed data bit. E.g., the
value of 101101 is 0 as the �rst two bits 10 represent
the index 2 (in base ten) which is the third bit follow-
ing the address. Similarly, the value of 001000 is 1 as
the 0th bit after the address is indexed. The optimal
population for this problem consists of the 8 classi�er
conditions of the form: 11###1 (i.e. where all digits
in the data part are # apart from the indexed one).
Unlike other classi�er systems, in XCS each possible
action in a state is advocated by at least one classi�er.
So [O] contains two classi�ers for each optimal classi-
�er condition; one for each of the two possible actions.
This results in a total of 16 classi�ers in [O].

Single step tests of XCS have to date been largely re-
stricted to the multiplexer series (speci�cally, the 6, 11
and 20 multiplexers). Multiplexer problems are of in-
terest as they are highly non-linear (and thus may be
di�cult to learn), and yet a�ord many useful general-
isations, allowing us to test XCS's generalisation abil-
ity. However, it is important to evaluate XCS on rather
di�erent problems in order to gain a more rounded un-
derstanding of its performance.



1.3 The Even Parity Function

The even parity function returns a value of 1 if an even
number of bits in the input string are 1s, otherwise it
returns a 0. Using the standard ternary alphabet of
classi�er conditions no useful generalisations can be
made for the parity function (i.e. a # in any position
will result in the classi�er being overgeneral). This
means that the optimal population for this problem
consists of one classi�er for each possible input/action
pair, or 26 = 64 inputs � 2 actions = 128 classi�ers.
The parity function is at one extreme in terms of the
useful generalisations which can be made. Since one
of the strengths of XCS is its ability to exploit use-
ful generalisations it will be of interest to evaluate its
performance when there are none.

2 Evaluating t1 and t2

I have used t1 on the 6 multiplexer function in [11, 2]
with satisfactory results. However, examination of
evolved populations revealed that un�t classi�ers (i.e.
those with a �tness of or close to 0.0) often had con-
siderable numerosity. Further, this problem is much
worse in the case of the 6 parity problem. We can at-
tribute this to the lack of bias against such classi�ers
under t1.

Although un�t classi�ers are unlikely to be selected
as parents, reproduction among other classi�ers may
produce additional copies of un�t classi�ers as a result
of crossover and mutation. Un�t o�spring from di�er-
ent niches are called lethals (see [12] section 11), and
their creation is not prevented by the use of restricted
mating.7 The extent to which this occurs will vary
from problem to problem. In some cases, two high
�tness strings will often cross to produce copies of a
particular un�t string, e.g. 0#1 and #01 will often pro-
duce ##1 as a result of crossover. If 0#1 and #01 are
�t they will tend to reproduce frequently, which will
periodically increment the numerosity of ##1 without
regard for its �tness.

Another possible cause of high numerosity in un�t clas-
si�ers is the presence of short periods during which
these classi�ers do have some �tness (�tness spikes),
and during which they may participate in reproduc-
tion. Fitness spikes are visible in �gure 1 which shows
the numerosity and �tness of ######:0 on a single
run of the 6 parity problem. This classi�er matches
all inputs and advocates the wrong action 50% of the
time.8 Despite the fact that its �tness is essentially

7In XCS only classi�ers from the same action set can
be crossed as parents.

8This classi�er may be interpreted as: if the input

0

20

40

60

80

100

0 2 4 6 8 10

%
 o

f [
O

]

Trials (1000s)

Single runs of t2 and t3 on the 6 multiplexer

t3

t2

Figure 2: Using t2 elements of [O] are often discovered
but then quickly discarded resulting in spikes and a
longer time to convergence. In contrast, t3 rises much
more steadily and converges much sooner.

0 most of the time, it accumulates a peak numerosity
of 28 (although mean peak �tness over 10 runs was
only 16). Its �tness curve has spikes (one of which
reaches approximately 0.45 out of a maximum of 1.0)
which appear on the graph to counteract numerosity
loss due to the deletion mechanism (i.e. numerosity
appears to fall mainly when spikes are absent). This
may not, however, be a reliable e�ect.

Evaluation of t2 on the multiplexer problem found that
it reduced population size considerably compared to
t1, but that XCS's ability to respond correctly to input
strings was noticeably impaired. Further, t2 is highly
detrimental to evolving optimal populations. Figure 2
demonstrates the di�cultly that members of [O] have
in becoming established under t2. They are often dis-
covered but quickly deleted resulting in a spiky %[O]
curve and a failure to converge completely.

As �gure 3 shows, t2 is very e�ective at eliminating
low �tness classi�ers. I hypothesise that it is in fact
too e�ective in doing this, and that it removes accu-
rate classi�ers before they have a chance to gain �t-
ness. (It may also remove inaccurate classi�ers before
they have a chance to contribute bene�cially to the ge-
netic search.) Part of the problem is that as accurate
(and thus high �tness) classi�ers are found the mean
�tness of the population rises. This makes it increas-
ingly di�cult for new classi�ers to become established
as they are more likely to fall under the � threshold
for low-�tness penalisation (see 1.1). So the search for
new classi�ers becomes more inhibited as the system
performs better.

matches ###### then perform action 0. #s are wild-
cards so this classi�er matches any input string.



0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

%
 U

nf
it

Trials (1000s)

6 multiplexer

random

t1

t2
t3

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

%
 U

nf
it

Trials (1000s)

6 parity

randomt1

t2t3

Figure 3: The % of total numerosity in the population held by classi�ers with �tness below 0.001 (maximum
�tness = 1). Many more un�t classi�ers are present in the parity problem. The multiplexer tests were averaged
over 100 runs, parity over 30.

3 Introducing t3: a technique which

protects new classi�ers

Because a new classi�er must normally be tested on
many trials before we can be certain of its �tness, we
initially set its �tness to a low default value and in-
crease it slightly each time it proves itself useful (see
[1] for details).9 This way good (i.e. accurate) classi-
�ers gradually increase their chances of participating
in reproduction as we become more con�dent of their
utility. Bad classi�ers tend not to increase in �tness
and so tend not to participate in reproduction. If we
were to set the initial �tness to a high value good clas-
si�ers could reproduce immediately, but then so could
bad ones.

But since all classi�ers initially have a low �tness, a
bias against low �tness classi�ers is also a bias against
new classi�ers, both good and bad. The stronger the
bias, the more the system will tend to delete useful
new classi�ers before it realises how good they are.
t2 su�ers greatly from this problem. As a remedy, I
developed a new technique called t3, which is a hybrid
in which t1 is used until a classi�er has been used on
n trials, after which t2 is used. n is called the delay
for t3 as it controls how long we delay the application
of the low �tness penalty.

On both tests t3 has the fastest convergence rate, the
second lowest population size and requires the least
computational e�ort to �nd the optimal population
(�gure 4). This supports the hypothesis that protect-
ing new classi�ers is bene�cial. Using t3 very little of
the total numerosity in the population is held by un�t
classi�ers (�gure 3).

9Fitness is initially set to 10% of the population mean.

3.1 Setting the delay parameter for t3

Figures 5 and 6 compare random, t1 and t2 to t3 with
various delays. Figure 5 shows the %[O] regret, de�ned
as 1-%[O] averaged over all trials. (This corresponds
to the mean distance between the top of the graph and
the %[O] curve in other �gures.) Perfect performance
would produce a %[O] regret of 0, while the worst pos-
sible performance would produce a regret of 1.

Recall that, although they have the same state space
size, the parity problem a�ords no generalisations
while the multiplexer a�ords many. The parity prob-
lem is one bounding case, while the multiplexer is close
to the other. The amount of generalisation possible
is an important dimension of problem di�culty for
classi�er systems: for one thing, a non-generalising
learner is likely be more e�cient when few generali-
sations are possible. A consequence of this dimension
in this study was that a larger population size and
more trials were required to learn the parity problem.
Nonetheless, that similar t3 delay values yielded best
results for these two very di�erent problems suggests
that the delay parameter is not very sensitive to the
amount of generalisation possible. A possible reason
that the parity problem requires less delay than the
multiplexer problem is that classi�ers in the former
tend to be much more speci�c. Speci�c classi�ers are
updated less frequently than general ones, and so are
protected by t3 for longer. Because the GA operates
in action sets, classi�ers which are not updated do not
participate in reproduction and so cannot clone them-
selves. However, they may still gain numerosity as a
consequence of other classi�ers mutating or recombin-
ing to produce additional copies of them. It is un-
known whether (or to what extent) this accounts for
the di�erence in optimal delays for the two problems.

Preliminary work indicates that other dimensions also



0

20

40

60

80

100

0 2 4 6 8

%
 o

f [
O

] a
nd

 P
op

 S
iz

e/
10

Trials (1000s)

6 multiplexer

t3

t2
t1

t2
t3

t1 20

40

60

80

100

0 5 10 15 20 25

%
[O

] a
nd

 P
op

 S
iz

e/
10

Trials (1000s)

6 parity

t3
t2 t1 and random

t3

t2

t1 and random

Figure 4: The upper three curves are the % of [O] while the lower three show population size. Multiplexer tests
were averaged over 10 runs, parity over 30. t3's delay was 20 for multiplexer and 10 for parity tests.

a�ect the relative utility of deletion schemes and the
optimal delay setting. One dimension is the ratio be-
tween problem space size and population size, which
has a major e�ect on the importance of e�cient dele-
tion and hence the e�ect of t3. With an in�nite pop-
ulation size our choice of deletion scheme is of no con-
sequence. However, even increasing or decreasing the
size limits used in this study by half would have a
signi�cant e�ect on the utility of t3 compared to the
other schemes. We can think of t3 as making e�cient
use of classi�ers when they are scarce.

Another factor which may be relevant is whether the
problem is sequential or not. Sequential problems ap-
pear to di�er greatly from single step problems even if
they share the same number of states and useful gen-
eralisations (see [13]). Because of these considerable
di�erences it seems likely that the optimal delay for
t3 will also di�er depending on whether the problem
is sequential or not. However, this area remains unex-
plored.

We could recast the idea of protecting unevaluated
classi�ers as an exploration problem: how many tri-
als should we allocate to a given classi�er before we
consider deleting it? This suggests that existing work
in reinforcement learning on exploration (see [14] for
a survey) is relevant to optimising deletion in classi-
�er systems. In particular, work on distal exploration
measures may be relevant in developing better deletion
schemes for sequential problems.

3.2 A variation on t3

If t3 works because it provides some protection from
the low-�tness bias to poorly evaluated classi�ers, it
may be bene�cial to protect them from deletion com-
pletely. One variation on t3 is to assign any classi�er
which has been updated fewer than x times a deletion
probability of 0, and to apply both biases from t3 to

all others. However, this approach resulted in very
bad performance on all measures on multiplexer tests
with x = 10 and x = 20 and was abandoned. This ap-
proach may disrupt well-evaluated classi�ers too much
because it cannot delete poorly evaluated ones. Solu-
tions would be to increase the population size limit, to
add a mechanism which dynamically adjusts the size
limit, or to introduce some mechanism by which the
system could modulate the amount of protection given
to new classi�ers in order to balance the desire to pro-
tect them with the desire not to disrupt old ones.

A similar line of reasoning suggests that it may be
bene�cial to exclude classi�ers from reproduction un-
til they have been well evaluated in order to make sure
that parents really are �t, but this too produced uni-
formly negative results on the multiplexer test. Ge-
netic search appears robust enough that, for optimal
search rates, a rapid turn-over in genetic material is
preferable to accurate �tness evaluation.

4 Summary

The new deletion technique t3, which protects new
classi�ers from deletion, found the optimal solutions
to the parity and multiplexer problems with the least
computational e�ort of the techniques tested. Al-
though this work has studied XCS, the delay princi-
ple of t3 should work in other evolutionary systems in
which chromosomes cannot be fully evaluated imme-
diately.

That XCS evolved complete optimal populations for
the parity problem shows that it is able to learn func-
tions with no or few useful generalisations despite
its drive towards accurate generalisation. This is in
contrast to Lanzi's �nding that XCS's generalisation
mechanism can make it unable to learn simple tasks
in environments which a�ord little generalisation [15].



0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

%
[O

] R
eg

re
t

t3 delay

6 multiplexer

t3

t1

random

t2

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

%
[O

] r
eg

re
t

t3 delay

6 parity

t3

random
t1

t2

Figure 5: t3 achieves best %[O] regret across a range of delays on both problems, but makes more of an impact
on the parity problem. Optimal delays are similar despite the di�erence in the problems. Multiplexer tests were
averaged over 100 runs of 8,000 trials, parity over 30 runs of 25,000 trials.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

M
ea

n 
po

p.
 s

iz
e

t3 delay

6 multiplexer

t3

t1

t2

random

0

100

200

300

400

0 5 10 15 20 25 30 35 40 45 50

M
ea

n 
po

p.
 s

iz
e

t3 delay

6 parity

t3

random
t1

t2

Figure 6: Population size increases steadily with t3's delay, but is still second best at delays which provide best
performance.

A potentially signi�cant di�erence between our stud-
ies is that Lanzi's Maze4 environment is a sequential
problem while the parity function is single step. Fur-
ther study of XCS's generalisation ability is required
to resolve the issue.

Acknowledgements

I would like to thank Stewart Wilson, Manfred Ker-
ber and Adrian Hartley for their comments and sug-
gestions on this work and earlier drafts of this paper.
This work was supported by the School of Computer
Science at the University of Birmingham.

Appendix A - General System Settings

System settings for the multiplexer were: population
size limit = 400, learning rate � = 0.2, crossover rate
� = 0.8, mutation rate � = 0.04, hash probability P#

= 0.33, low �tness deletion penalty threshold � = 0:1
(see 1.1), accuracy criterion "o = 0.01, accuracy fallo�
rate � = 0.1, and GA threshold � = 25. The GA was
conducted in the action sets and subsumption dele-

tion was used except in �gure 1. Population sizes were
selected after experiments (not shown) suggested they
were close to optimal for solving the problem as quickly
and with as little computational e�ort as possible.
\Trials" on the x axis of �gures refers to the number
of explore cycles using Wilson's pure explore/exploit
scheme. Unless otherwise indicated t3's delay was 20
on multiplexer and 10 on parity tests. Other settings
for the parity test were as for the multiplexer, except
that the population size limit was 800. For explana-
tion of these settings the reader is referred to one of
[1, 11]. If we set P# (the probability of creating a #
at a given bit when creating a classi�er condition) to
0, the parity problem becomes much easier to learn
(with 2000 classi�ers [O] is complete around 3,000 ex-
plore cycles rather than about 8,000). However, this
sort of hand-tuning requires a priori knowledge of the
nature of the problem, and in any case would not allow
us to test XCS's robustness in terms of learning when
useful generalisations are not available.



References

[1] Stewart W. Wilson. Classi�er �tness based on
accuracy. Evolutionary Computation, 3(2), 1995.
http://prediction-dynamics.com/

[2] Tim Kovacs. XCS Classi�er System Reli-
ably Evolves Accurate, Complete, and Min-
imal Representations for Boolean Functions.
In Roy, Chawdhry, and Pant, editors, Soft
Computing in Engineering Design and Manu-
facturing, pages 59{68. Springer-Verlag, Lon-
don, 1997. ftp://ftp.cs.bham.ac.uk/pub/authors/
T.Kovacs/index.html

[3] Stewart W. Wilson. Classi�er Systems and the
Animat Problem. Machine Learning, 2:199{228,
1987.

[4] Stewart W. Wilson. Generalization in the XCS
classi�er system. In J. Koza et al., editor, Genetic
Programming 1998: Proceedings of the Third An-
nual Conference, San Francisco, CA, 1998. Mor-
gan Kaufmann. http://prediction-dynamics.com/

[5] Thomas B�ack, David B. Fogel, and
Z. Michalewicz, editors. Handbook of Evolution-
ary Computation. Institute of Physics Publishing
and Oxford University Press, 1997.

[6] Cees H. M. van Kemenade, J. N. Kok, and
A. E. Eiben. Raising GA performance by
simultaneous tuning of selective pressure and
recombination disruptiveness. Technical Re-
port CS-R9558, Centrum voor Wiskunde en
Informatica (CWI), ISSN 0169-118X, August
31 1995. http://www.cwi.nl/static/publications/
reports/CS-1995.html

[7] David E. Goldberg and Kalyanmoy Deb. A Com-
parative Analysis of Selection Schemes Used in
Genetic Algorithms. In Gregory J. E. Rawlins, ed-
itor, Proceedings of the First Workshop on Foun-
dations of Genetic Algorithms, pages 69{93, San
Mateo, July 15{18 1991. Morgan Kaufmann.

[8] David Beasley, David R. Bull, and Ralph R. Mar-
tin. An overview of genetic algorithms: Part 1,
fundamentals. University Computing, 15(2):58{
69, 1993. ftp://ralph.cs.cf.ac.uk/pub/papers/
GAs/ga overview1.ps

[9] Gilbert Syswerda. A Study of Reproduction
in Generational and Steady-State Genetic Algo-
rithms. In Gregory J. E. Rawlins, editor, Pro-
ceedings of the First Workshop on Foundations
of Genetic Algorithms, pages 94{101, San Mateo,
July 15{18 1991. Morgan Kaufmann.

[10] Lashon B. Booker. Triggered rule discovery in
classi�er systems. In Proceedings Third Interna-
tional Conference on Genetic Algorithms (ICGA-
3), pages 265{274. Morgan Kaufmann, 1989.

[11] Tim Kovacs. Evolving Optimal Populations with
XCS Classi�er Systems. Technical Report CSR-
96-17 and CSRP-96-17, School of Computer Sci-
ence, University of Birmingham, Birmingham,
U.K., 1996. ftp://ftp.cs.bham.ac.uk/pub/tech-
reports/1996/CSRP-96-17.ps.gz

[12] David Beasley, David R. Bull, and Ralph R. Mar-
tin. An overview of genetic algorithms: Part 2, re-
search topics. University Computing, 15(4):170{
181, 1993. ftp://ralph.cs.cf.ac.uk/pub/papers/
GAs/ga overview2.ps

[13] Tim Kovacs. Strength or accuracy? A compar-
ison of two approaches to �tness calculation in
classi�er systems. In preparation, 1999.

[14] Leslie Pack Kaelbling, Michael L. Littman,
and Andrew W. Moore. Reinforcement Learn-
ing: A Survey. Journal of Arti�cial In-
telligence Research, 4, 1996. HTML ver-
sion: http://www.cs.brown.edu/people/lpk/rl-
survey/rl-survey.html

[15] Pier Luca Lanzi. A Study of the Gen-
eralization Capabilities of XCS. In Pro-
ceedings Seventh International Conference on
Genetic Algorithms (ICGA-7). Morgan Kauf-
mann, 1997. http://www.elet.polimi.it/people/
lanzi/index.html


