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Abstract 
In many geometric modeling systems it is not possible 

to create new modeling primitives and transformations. Us· 
ing ideas from object-oriented programming, we generalize the 
conventional graphics modeling hierarchy to include arbitrary 
3D deformations, boolean operations, and shaders (nodes which 
describe the reflectance properties of a material). The repre· 
sentation used decouples model description from other aspects 
of the system, making the definition of new types of models 
possible without detailed knowledge of the sampling, render­
ing, or user interface implementations. Other benefits of this 
approach are also discussed, in particular its implications for 
the user interface. 
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I. Introduction 

Most geometric modeling systems have a limited set of 
primitives, and adding new primitives is either difficult 
or impossible for the average user. The modeling testbed 
described here is designed to allow extensions and thus 
encourage experimentation with various types of models. 
Another major goal of the system is to formulate modeling 
primitives and transformations such that they can be ar­
bitrarily connected; a primitive defined in the system can 
be modified by any transformations, in any order. To ac­
complish these goals, we concentrate on modularity in the 
design, achieved using an object oriented approach. By 
defining a standard protocol for communicating with the 
modeling code, we ensure a consistent interface between 
modeling operations (for arbitrary connectivity), and we 
isolate the mathematical model of an object from the par­
ticular methods used to sample and render it. These goals 
enable a user to define new modeling operations (eg. a 
Sphere primitive or a Bend transformation) and dynam­
ically integrate them with existing code without concern 
for the implementation of other modeling operations, sam­
pling, or rendering. 

Information about the reflectance properties of a sur­
face are traditionally bound up in the code implementing a 
shading algorithm. In an effort to provide the same mod­
ularity for surface appearance as for shape, we have de­
veloped a technique of specifying shading which enables it 

to fit nicely into the modeling hierarchy, in nodes called 
3hader3. 

The design of the system is presented in Section Ill. 
Section IV gives examples that show how the system looks 
to the user, including an example of the introduction of a 
new geometric transformation. In Section V, more elabo­
rate extensions to the test bed are discussed. The imple­
mentation of the user interface is a similar extension, de­
scribed in Section V-C. Our experiences with the system 
and some of the consequences of the modular design are 
given in the conclusion, along with ideas for future work. 

Object oriented programming, a useful tool for build­
ing modular systems, was used extensively in the develop­
ment of this system. A cursory knowledge of it is assumed 
in the presentation, but is not absolutely necessary since 
the required concepts are introduced in conjunction with 
concrete design goals and examples. Definitions of itali­
cized terms can be found in a glossary at the end of the 
paper. 

II. Related Work 

Geometric modeling and rendering systems are generally 
large, often consisting of thousands of lines of code and 
taking years of effort. Such complex programs must be 
extremely well organized if they are to be at all flexible or 
extensible. Several test bed systems have been developed 
which provide the graphics researcher/programmer with 
these capabilities [6, 18, 30], but few of them provide the 
ability to create and combine new modeling transforma­
tions and primitives at a high level. 

New programming paradigms such as object oriented 
programming can provide more programmer-efficient de­
sign and implementation strategies. Systems applying 
these techniques to geometric modeling and animation are 
becoming more common [7, 9, 11, 13, 16, 21], and have 
produced encouraging results. 

Nadas and Fournier [17] present a nice overview of 
test bed systems, and a good discussion of the issues in­
volved in designing a modeling testbed. Although our 
systems developed independently, there is a striking sim­
ilarity between our choice of messages and their choice of 
data tokens (appeu), which speaks well for the representa­
tion. There are still major differences between the systems: 
the way rendering is incorporated, the user interface, and 
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Figure 1: The system as it appears to the user, on a Symbolics 3670.1 The model represented by the DAG on the lef~ is 
rendered on the right . Note that the triple branching out of the shader creates three paths to the Sphere, each of whIch 
corresponds to a different object (from left to right: squished by .5, undeformed, squished by 1.5). 

the implementation environment. These can have conse­
quences on the capabilities of the systems as well. For in­
stance, our message passing scheme and dual shape repre­
sentation allow calculation of Booleans directly from prim­
itive shape descriptions, without using intermediate rep­
resentations (such as polygonal or spline approximation). 
Their system, GRAPE, is written in C, and programmer 
discipline is relied upon to enforce the modular design. Our 
system is written in Flavors, an object oriented extension 
to Zetalisp,1 which makes the implementation somewhat 
more straightforward. In an interpreted, object oriented 
environment we are able to avoid the compilation phase 
used in GRAPE. 

Ill. The System Structure 
There are three levels to the design of this system: a con­
ceptual model (which corresponds to that seen by the high 
level user), the underlying mathematical representation, 
and the object oriented implementation. The conceptual 
model is a generalization of the graphics modeling hierar­
chy. This directed acyclic graph (DAG) is manipulated by 
the user to indicate how to transform and combine mod­
eling primitives. In the internal mathematical represen­
tation, applying multiple transformations is equivalent to 
function composition. The mathematical model is imple­
mented as a standard set of messages (a protocol) passed 
among nodes in the DAG . The protocol is a modular in­
terface to the model, accounting for interactions between 
modeling operations as well as between modeling and sam­
pling or rendering. 

1 Zetalisp and Symbolics 3670 are trademarlcs of Symbolics, Inc. 

A. The Conceptual Model 
The DAG we use to describe models is probably famil­
iar to most graphics practitioners [8, 25}. Leaf nodes are 
primitives, and interior nodes are transformations applied 
to their children. Each node in the graph, together with 
its subgraph, represents an object or a collection of ob­
jects. Multiple arcs out of a node indicate the duplication 
(by instantiation) of the object(s) described by that node's 
subgraph. Multiple arcs into a node indicate a merge of 
objects (Boolean union). The modeling graph in Figure 1, 
a screen dump of the test bed in operation, exhibits these 
properties. 

Modeling operations generally have some modifying 
parameters. A Scale transformation has a scale factor, a 
Sphere primitive has a radius, etc. These $tatic parame­
ter$ [17J affect the calculation of the operation, but do not 
change during the course of a message evaluation (hence 
the term static). 

The conventional modeling hierarchy is usually lim­
ited to polygonal primitives and affine transforms. Sev­
eral generalizations can greatly extend the power of this 
modeling scheme. Incorporating Boolean operations into 
the graph seems a natural step [20J. Instead of restrict­
ing transformations to be affine, Barr [I} and Sederberg 
and Parry [23} have used more general 3D transformations. 
To model different light reflectance properties we include 
Shader nodes which contain information about the shading 
model to be applied as well as static parameters indicating 
the exact characteristics of this object (e.g. diffuse reflec­
tion, light sources) [4} . 

The resulting graphs are able to model a wide range of 
objects, and are easy to construct and modify. The Figures 
show graphs as they appear to users of the system. Note 
that the user is able to interact directly with the model 
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at the conceptual level. Allowing the user to manipulate 
these nodes and their connections with a graphical user 
interface provides a convenient way to manipulate, test, 
and compare new modeling operations. 

Examining the Figures will immediately reveal the ex­
istence of a node which is neither a primitive nor a transfor­
mation, a Camera node. The Camera node is a convenient 
way to encapsulate information concerning the sampling 
and rendering operations to be performed on the model 
represented by the graph. Cameras have static parameters 
for the associated rendering algorithm (wireframe, zbuffer, 
antialiased, shadows, etc), as well as viewing information. 

In order to evaluate modeling graphs to produce im­
ages (i.e. render the models), we need a precise definition 
of the internal shape representation. 

B. Shape Representation 
Modeling, in this paper, refers to the process of describ­
ing physical objects in mathematical terms; a model for 
a physical object is a bundle of mathematical functions 
which describe the shape, reflectance, mass, and other 
properties of that object. The modeling graphs described 
above are a means of describing complex objects as com­
binations of primitive parts which have undergone various 
transformations. 

Our model for shape is dual, containing both paramet­
ric and implicit functions which represent the surface and 
volume (respectively) of an object. This dual formulation 
enables us to do computations in the most convenient and 
accurate representation. For instance, sampling a neigh­
borhood of points on a surface can be done quite naturally 
with a parametric function, whereas Boolean operations 
are more conveniently specified using the implicit function, 
or a combination of the two. Because transformations in 
both parametric and implicit representations can be com­
posed in a modular way, we need only compute the dual 
for the component primitives and transformations, which 
is usually straightforward. The disadvantage is that in 
some cases one of the representations may be difficult or 
impossible to find from its dual [22] . 2 

In addition to the parametric and implicit functions, 
we include a normal function. Although this could be de­
termined numerically, keeping it as a separate function en­
ables the implementation to be decided in each object, so 
that objects with the capability to compute the normals 
analytically are able to do so. 

Surface Position PA:(U,v) -+ (z,y,z) 
The piecewise parametric function PA:: R2 -+ ~ is de­
fined on the unit patch (u, v E [0,1]). Evaluated at 
some point (u,v), it returns a 3D position on the sur­
face. Each patch k describes a surface in 3-space, and 

lIn caaea where the implicit function hu not been defined, the ob­
ject in question will still be available for use u a parametric surface, 
but operations such u Booleana will fail . This could be circumvented 
by using an approximation to the implicit function generated by sam­
pling the parametric surface, but we have not found this necessary. 
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the ensemble of the PA: patches describe the entire sur­
face of an object. 

Surface Normal NA:(u,v) -+ (nz, ny, nz) 
Normals are computed using NA:: R2 -+ R3 , another 
piecewise parametric function similar in form to PA:. 

Implicit I(z,y,z) -+ 8 

The implicit function I: R3 -+ RI describes the volume 
enclosed by the PA: patches. This function is positive 
for points outside the object, negative for points inside 
the object, and zero for points on the surface. Thus 
the solution to I( z, y, z) = 0 is the same surface as the 
Pie patches. Note that I may correspond to a volume 
enclosed by one or more patches. 

The preceding functions describe the behavior of a 
modeling primitive (leaf node in the modeling graph). 
Modeling transformations (interior nodes) are character­
ized as follows: 

Transform T(z,y,z) -+ (z',y',z') 
The transformation function T: R3 -+ R3 is a global 
3-space deformation. In the case of translate, T is just 
a vector addition of the argument and the translation 
vector (a static parameter). 

Transform Normal TN(nz,ny,nz) -+ (nz',ny',nz') 
The normal transformation function is the inverse Ja­
cobian of the transformation T [1]. 

Inverse Transform T-I(z,y,z) -+ (z',y',z') 
The inverse transformation is another R3 -+ R3 func­
tion, the inverse of T. 

Using function composition, the transformation func­
tions can be composed (recursively) with the primitive 
functions to create valid parametric, normal, and implicit 
functions. Given a position function, P : R2 -+ R3 and 
a 3D transformation function T: R3 -+ R3 the function 
(T 0 P): R2 -+ ~ exists. So we can apply any valid trans­
formation T to the surface position function and obtain an­
other valid parametric surface position function. A similar 
result holds for the normal and inverse transformations. 

These functions provide a mathematical basis for eval­
uating objects represented by a modeling graph, and we 
can use them to produce an image. There are many differ­
ent techniques for sampling and rendering a mathematical 
shape model. They range from polygonal approximation, 
which samples in object space, to ray tracing, which sam­
ples in world space. Adaptive sampling based on image 
criteria, Boolean boundaries, etc, also works well with this 
model [28]. With each technique the model is first sam­
pled, and then the samples are used to create an image. 
Here is high level pseudocode for rendering these models 
using polygonal approximation: 

for each patch le 
for u, tJ over patch [O,1]l 

sample using Pk(U,tJ) and Nk(U ,tJ) 
save sample in sample array 

for i,i over sample array 
perform viewing transformations on sample points 
create triangles between adjacent samples 
shade triangles 
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A sample here is a nugget of information about a point 
on the surface, containing position and normal. Given this 
information the shade triangle step can be computed us­
ing some standard shading algorithm (more sophisticated 
shading methods are described in Section V-A). 

By defining modeling in a modular way with a consis­
tent functional representation, we reap two immediate ben­
efits. First, the separation from rendering makes changes 
to the modeling operations much easier. Second, relation­
ships between modeling operations are well defined so we 
can compose them easily with each other. Note that defin­
ing a transformation or primitive is merely a matter of 
specifying the functions associated with its geometry. A 
programmer writing code for a new shape model need not 
be concerned with shading, sampling, or rendering, since 
they are guaranteed to work with this same mathematical 
definition. 

c. Object Oriented Programming Imple-
mentation 

Use of the object oriented paradigm should be clear in the 
preceding exposition of the mathematical model: there is a 
well defined interface to nodes in the modeling graph, with­
out a specification of how the nodes will implement their 
pieces of the functions. All that remains is to apply object 
oriented programming terminology. The position, normal 
and implicit functions are implemented as messages which 
are sent to the nodes. Each node is an object in the ob­
ject oriented programming sense (unfortunate collision of 
terminology). The ensemble of the three messages is a pro· 
tocol, a standard set of messages implementing a particular 
facility [24J. 

IV. Examples of the Benefits of 
this Scheme 

A. An Example of the Modeling Graph 

Consider the graph shown in Figure 6. This graph repre­
sents a model of two objects. At the top is the Camera 
node, which contains the code for viewing and rendering. 
Beneath that are several interior nodes which correspond 
to familiar transformations such as Translate, as well as 
deformations (e.g. Bend), and shader nodes (e.g. Layer­
cake Solid Shader). At the bottom, the leaves of the graph 
correspond to geometric primitives (e.g. Block). 

Every path in the graph terminates at the Camera. 
Each path describes a part of the object, and traversing 
the path gives the transformations that are successively 
applied to the primitive to produce the transformed part. 
All of the paths considered together comprise a complex 
object (or scene) which are interpreted by the rendering 
code to create an image. 
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B. Defining and Integrating New Model-
ing Operations 

One of our original goals was to allow users to define new 
modeling operations succinctly and integrate them into the 
rest of the system with ease. This example of the definition 
of a simple node will help to show both the desirability this 
goal, and that it has been achieved. 

The macro deftransform is used to define a geometric 
transformation (an interior node in the modeling graph). 
The user must specify the static parameters of the transfor­
mation, position and normal transformation functions (T 
and T N), and the inverse transformation function (T- 1 ). 

The macro then expands into code that creates an object 
with a user interface (for setting the static parameters and 
connecting into the graph) and provides dummy handlers 
for all messages of the protocol. Messages such as Color 
and Shadingjnfo which are not affected by this type of 
transform are simply forwarded to the children. Analo­
gous macros define primitives, shaders and other modeling 
operations. 

The definition of the new transform Squish given be­
low is an actual definition that is used in the test bed. It 
consists almost entirely of the equations for the modeling 
functions, which is as it should be. 

;;; Squish in z, e:lpand in :l and y to preserve volume. 
(deftransform squish 

«sz 1.0» 
squish-sample 
inverse·squish· point) 

; static parameter - z scale factor 
; transform function 

; inverse :lform function 

;;; Definition of Squish's transform function 
(defun squish-sample (x y z nx ny nz sz) 

(let «sxy (/ 1.0 sz))) 
(return 

(* sxy x) (* sxy y) (* sz z) ; return position 
(/ nx sxy) (/ ny sxy) (/ nz sz) ; return normal 
))) 

;;; Definition of Squish's inverse transform function 
(defun inverse·squish·point (x y Z sz) 

(let «sxy (/ 1.0 sz))) 
(return (/ (x vect) sxy) 

(/ (y vect) sxy) 
(/ (z vect) sz»))) 

After defining Squish we can use it just as we would 
use any other transformation. Figure 1 shows the Squish 
operation in action. Figures 3 and 6 provide examples 
of the variety of transformations which can be accommo­
dated. The free form deformations of Sederberg and Parry 
were implemented in about an hour, using the equations 
specified in their paper [23J. 

v. Extending the Protocol 

The object-oriented programming concept of inheritance 
enables the easy creation of objects which are almost like 
other objects with a few incremental changes[24J. We have 
already used this to create nodes which by default handle 
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all of the messages in the protocol by passing them on 
to their children (as in the Squish example). To make 
a node type that modifies only the shading function, we 
merely add a method (a procedure) to handle the shading 
message, and the other the messages of the protocol are 
handled as before (getting passed through to the children). 
This is what deftransform does, providing dummy methods 
for the shading messages and adding new methods for the 
specified functions. 

Inheritance is simply the idea that we can add a new 
message to the protocol (hence a new attribute to our 
model) without making any changes to the old messages. 
First we must redefine the protocol to include the new 
message, then we create methods to handle the message. 
Then we create nodes which handle the extended proto­
col by inheriting methods for the new message. The next 
three sections describe extensions to the protocol to im­
plement shaders, Boolean operations and elements of the 
user interface. 

A. Shaders 
Computer graphics is primarily concerned with the appear­
ance of objects, and a part of modeling this is modeling 
the light reflectance properties of various surfaces. From 
a more practical point of view, it is often useful to repre­
sent scenes where different shading and lighting models are 
applied to different objects. These concerns motivate the 
inclusion of shading nodes in the modeling hierarchy. Plac­
ing a node such as Phong[19], Texture Map, or Torrance­
Cook[3], in the graph indicates the shading algorithm to be 
performed on objects which are composed with that node. 

As with shape representation, the conceptual model 
constrains but does not completely determine the internal 
representation for shading. In Cook's Shade Tree$ paper 
[4], he begins by stating 

"The traditional approach to $hading iJ to divide 
the calculation$ into two JtageJ: 

1. Determining the value$ of the appearance pa· 
rameterJ. 

2. UJing thoJe valueJ to evaluate the Jized Jhad· 
ing equation. " 

He then goes on to point out that fixing the shad­
ing equation severely limits the generality of the system, 
and proposes a method which abandons the two stage ap­
proach, and avoids this problem. We solve the problem 
in a different way, by allowing the shading equations to 
vary based on which object is being shaded. Clearly the 
first and second stages need to be closely related so that 
the computed appearance parameter6 are those expected 
by the shading equation. 

The reason for keeping the two stage approach is that 
the results of the first stage, calculated at sample points, 
can be interpolated across an approximating surface (e.g. 
a triangle) and the interpolated values can be used at each 
pixel to complete the second stage of the shading calcula­
tion. For example, in Gouraud shading[10] the first stage 

131 

computes colors and these are interpolated across the tri­
angle, and the second stage at each pixel merely uses the 
given color. In Phong shading[19], the first stage returns a 
normal which is interpolated across the triangle. The sec­
ond stage, called at each pixel, computes the color using 
the appropriate algorithm. 

Other relevant information such as diffuse reflectance, 
reflectance spectra, light sources, etc, are contained in the 
static parameters of the node which is handling the two 
stages of the shading function. 

Composition of shaders is not currently handled as 
generally as composition of shape models. A shader node 
either responds to the messages regarding shading, or al­
lows them to pass through to another shader node (this is 
decided via a static parameter switch). With this protocol 
it is not possible for more than one shader node to affect 
the appearance parameters of a single object. Adding ap­
propriate messages to the protocol would enable more flex­
ibility, so that specifying a texture map could be done or­
thogonally from the specification of the reflectance model. 

The actual implementation of these functions uses clo-
6ure$[26] instead of message passing to obtain greater ef­
ficiency, since Col or will be evaluated at least once for ev­
ery non-background pixel in the final image. The closure 
contains code to evaluate the shading algorithm as well 
as pointers to relevant local information from the shad­
ing node (such as light sources, diffuse reflectance, texture 
map, etc). Despite the difference in implementation, the 
object oriented program structure is retained. 

Shading_info(position, normal, u, v) -+ ap 
This function is called at every sample point. It gath­
ers all of the surface-dependent information needed to 
evaluate the shading function at this u, v point, and 
returns it as a vector of appearance parameter num­
bers, (ap). In the case of Gouraud shading[10], it sim­
ply returns a color, whereas for Phong shading [19], 
it returns a vector containing the position and normal 
of the point. 

Color(ap) -+ (r,g,b) 
The light reflectance calculations are performed in this 
function. All of the information needed for the partic­
ular shading algorithm is provided in the appearance 
parameter argument (ap), and is used to calculate a 
final color. In the case of Gouraud shading, ap is 
the output color. For Phong shading, ap contains a 
normal used in conjunction with light source and re­
flectance properties to compute the final color. The 
other information (object color, light source, etc.) is 
available locally since the node handling the message 
holds these as static parameters. 

A rendering scheme such as the polygonal approxi­
mation described above can be modified to use this for­
mulation for shading. During triangle display, the vectors 
containing shading information are interpolated across the 
triangle. At each pixel, the Color message is sent with the 
interpolated vector, producing the output color. Other in-
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Figure 9: Images for the models of Figures 3 through 8. 
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formation needed during the shading calculation which is 
constant over the surface is incorporated directly into the 
object receiving the Color message . For ray tracing no in­
terpolation is necessary, and the messages can be composed 
and called at each sample point (ray), where the color is 
Color(Shading_info(position, normal, '1.£, v)). 

This characterization of shading is quite general, and 
has allowed us to implement a wide variety of shading al­
gorithms, including Gouraud, Phong, texture and bump 
maps [12], solid textures [18], Torrance-Cook [3], and oth­
ers. It enables shading to be separated from sampling and 
rendering processes, so that new shading models can be 
tested without changes to the underlying system. All of 
the code a user writes to define a new shading model in­
volves shading; the sampling, rendering, and shape mod­
eling code need not be changed or even consulted. 

B. Boolean Operations 
Boolean set operations (subtract, intersect, union) on vol­
umes are a useful modeling tool which can be added to 
the system. Booleans operate on solid models, hence the 
implicit form of the shape model is used for their imple­
mentation (this formulation is due to Von Herzen [28]). 

The parametric surface position function of a Boolean 
operation must be some combination of pieces of the sur­
faces of the source objects for the operation. No new 
surfaces will be added, but some previously visible sur­
faces may be removed, or some previously hidden (em­
.bedded) surfaces may be revealed. Since the surfaces are 
unchanged, a single visibility message will suffice for in­
dicating which points on the surfaces are visible on the 
resulting object: 

Visibility Vk(U,V) -+ r 
Vk: ~2 -+ ~l, like Pk earlier, is a piecewise (for each 
patch k) parametric function defined on the unit patch 
('1.£, V E [0,1]) which describes the visibility of each 
point on the surface. Vk is negative where the surface 
is visible, positive where it is not visible, and crosses 
zero at the boundary. 

The visibility function could just be a binary function, 
but in practice that is unwise since it may be used to locate 
a Boolean boundary with standard root finding methods. 
A visibility number calculated from the implicit function 
(already in the protocol), is appropriate for root finding 
methods. 

Now we can implement Boolean operations, for exam­
ple .subtract. To respond properly to the entire protocol, a 
subtract node must handle several messages: 

Visibility Vk(U,V) -+ r 
First calculate the position Pk(u,v), and figure 
whether the patch k is generated by a positive or neg­
ative child. If k is a positive surface, then a point 
is visible only if it is outside the object defined by 
the negative children. Alternatively, if k is a negative 
surface, points are visible only if they fall within the 
object defined by the positive children. We use the 
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implicit functions of the children to determine when a 
point is inside the object . 

Surface Normal Nk(u,v) -+ (nz,ny,nz) 
This function negates normals from negative children, 
and leaves normals from positive children unchanged. 

Implicit I(point) -+ .s 
The functionality that we want is that a point in­
side this composite object will have to be inside 
the positive object and outside the negative ob­
ject. A function to do this (using the implicit 
functions of the positive and negative children) IS 

maz(Ipo6itive (point), -(INege>tive(point))). 

Shadingjnfo and Col or 
When a subtract is used to cut open an object, the 
color of the interior can be determined either by the 
shaders in the negative object or the positive object . 
Thus we can express things like "the inside of this red 
object is green," or we can explore the internal struc­
ture of an object by using the same solid texture for all 
surfaces (Figure 7). A switch (as a static parameter) 
is provided for this purpose. 

The Boolean operations Intersect and Subtract are 
used to create the core sample shown in Figure 7. 

c. The User Interface 
Another extension to the protocol provides handles for the 
user interface. The particular user interface we have chosen 
displays the modeling graph on the screen as labeled boxes 
connected by arrows, and enables the user to change the 
connectivity of the graph interactively. Parameters such as 
rotation angle and cylinder radius are available for inspec­
tion and modification using pop-up menus (see Figures 5 
and 7). 

As with the protocols to describe shape and mate­
rial properties, the messages in the user interface protocol 
can be handled by each node in a different way. How­
ever, since all nodes are essentially identical from a graph 
editing point of view (each is a node with directed ports 
and static parameters), we provide a group of methods for 
nodes to handle the user interface protocol. Changes to 
these methods can be made for specific node types, as in 
the case of a special node like Camera, but for most nodes 
the default is sufficient. 

The user interface is a directed graph editor, and it 
expects to deal with nodes according to a simple protocol. 
It expects the nodes to have a list of slots with values and 
properties. The properties determine whether the slot is a 
connection or a static parameter, the name of the slot, and 
details about valid data types for that slot. The user inter­
face also offers the nodes the opportunity to handle mouse 
clicks in special ways, in case there is a special purpose 
interface for setting the parameters. 

When a new node is defined and presented to the user 
interface, the slot information is used to create a box on the 
screen with appropriate mouse-sensitive ports for connec-
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Core 
( Sol id Int e r sec t 1 > 

~ ~ 

Ed i t i ng group : CORE 

< Tr a n s lat e 1 ) 

T ~E < Rot a t e 1 ) :z 
( Cylinder 1 ) 

Figure 2: Core: A Cla33 Definition. The Core transfor­
mation (to take a core sample) was defined using exist­
ing primitives and transformations. A message sent to the 
Core from outside is handled by the nodes inside the group. 
Messages sent from objects inside the group are passed to 
the appropriately connected nodes outside. 

tions, and a pop-up menu for selecting static parameters 
(Figures 4, 5). 

1. Hierarchy of Nodes 

When creating a model for an object that has many 
parts, the modeling graph gets unwieldy very quickly, fill­
ing up the screen with little boxes. We can hide some of 
the complexity by collapsing a subgraph into a single node 
(another hierarchy). This can be done without changing 
the protocol. A group is defined to handle the protocol by 
passing all messages from outside through to the nodes on 
the inside, and vice versa (Figure 2). The user interface 
can then display this group node instead of the subgraph 
of nodes inside. Since each level of group will pass the mes­
sages through properly, this works re cursively to create a 
hierarchy of groups within groups. 

2. Physical Object Classes & Instances 

The definition of groups can be extended to make 
object classes (templates) by saving the structure of the 
group. Instances of the class can be used throughout the 
system just as regular nodes, since they obey the same pro­
tocol. For example, the class JPL Finger is instantiated 
three times in the final Stanford JPL Hand (Figure 4) . An 
instance is not the same as a copy, since changing the class 
will cause all of the instances to be updated to maintain 
consistency with the class definition. 

Note that a class or group need not be a primitive 
(leaf node) like JPL Finger; it could be a transformation 
such as Core (Figures 2, 7), involving several inputs and/or 
outputs. 

3. Parameterized Instances 

Instances are more useful if they can be parameter­
ized. In our previous example, JPL Finger has parameters 
lower-angle, middle-angle, and upper-angle, which spec­
ify the angles to bend the respective joints in the finger 
(Figure 4). In this way the three fingers can be bent inde­
pendently. In this case, the parameter lower-angle to the 
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group merely sets the rotation angle parameter in an in­
ternal Rotate node to the given value. A more general ver­
sion of this concept allows the attachment of an arbitrary 
function to a node's parameter. This can be a function of 
any combination of the group's parameters, so the node's 
parameter function gets re-evaluated whenever any of the 
group's parameters is changed. Using this mechanism we 
can do simple downward-only constraints such as keeping 
the aspect ratio of a block constant. 

VI. Experience with the System 

In addition to enabling the definition of new geometric 
models, we have found the modularity of the system lends 
itself to the development of other modeling techniques as 
well. Included here are examples of how the modeling 
test bed aided in the development of two very different 
modeling schemes. 

A. Energy Constraints 

The model represented by an entire graph depends on the 
union of all of the static parameters in all of the nodes. We 
can define constraints in world space which depend on the 
functions implemented by the protocol, and do optimiza­
tion to find the parameter settings which solve the con­
straint. For instance, given a model of a bent pipe, we can 
modify the parameters of the Bend (and other components 
of the model such as length of pipe, position, etc.) until 
the end of the pipe touches a given point in space. The 
constraint in this case is the distance between the end of 
the pipe and the point, and a requirement that the normals 
be opposing (Figure ??). This formulation of constraints 
and their solution was partially inspired by the structure 
of this testbed. It is sometimes a tedious process to set 
the static parameters appropriately for the desired scene. 
Since it is easy to get functions describing physical objects 
and their parameters from the system, optimizing those 
functions based on constraint goals seemed a natural step. 
A detailed description of this work can be found in [31]. 

B. Deformable Models 

By numerically simulating the behavior of elastically de­
formable models we can obtain a variety of materials such 
as cloth, rubber, paper, and flexible metal, as described 
in [27] . In our work on deformable models, the model­
ing test bed provided initial shapes for deformable objects, 
objects with which to interact, and a variety of rendering 
techniques (Figure ??). The functional definitions of the 
geometric models made it easy to use existing geometric 
models in conjunction with the new deformable models. 
After the simulations were complete, it was also simple to 
create a geometric model containing the shape of the de­
formable model at an instant in time, enabling us to use 
existing rendering tools. 
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VII. Future Work 
We envision many potential improvements and extensions 
in the user interface and rendering/sampling methods. De­
velopments to increase the speed are also being considered. 

The user interface for setting static parameters is cur­
rently tailored to specific parameters by specifying the data 
type (number, string, etc), and the user is not allowed 
to put incorrect data types into slots. This could be ex­
tended by attaching specific interaction methods to partic­
ular static parameters, allowing users to set numbers using 
the mouse or some other input device. With sufficient im­
provements in speed, it would be possible for the user to 
interactively modify any numeric parameter in the graph 
and watch the object change accordingly (in either shape 
or shading). We currently accomplish this functionality by 
rendering a sequence of images with various parameter set­
tings into a short movie, and viewing the sequence using 
bitbIt operations. 

The current rendering methods in the system include 
wireframe, zbuffer polygons, and antialiased polygons. Al­
though these are largely sufficient for our needs, ray trac­
ing the implicit shape representations [2, 15] would provide 
some new capabilities. Hierarchical bounding boxes, which 
exist in the current system, would aid the efficiency of a ray 
tracing implementation. A micropolygon rendering tech­
nique [5] fits into this scheme quite nicely since there is 
always a parametric definition for dicing the objects. 

Some objects have a computationally preferable 
method of being sampled, such as subdividable patches. 
This information should be taken into account by defining 
a protocol for describing sampling algorithms. A simple 
version of this protocol has been successfully implemented 
to avoid redundant sampling of polyhedral surfaces. 

In working with the system, a user often makes a 
change to one static parameter and then renders the model 
to examine the modification. Caching unchanged samples 
could speed up this process substantially. With depen­
dency information, it is possible to determine which parts 
of the model are affected by changing certain static param­
eters. Such an extension might enable us to dynamically 
vary a static parameter and render the modified model 
in near-real time, as suggested above. Another potential 
speed up is to perform graph optimization, compiling parts 
of the graph into faster representations where possible. For 
instance, a sequence of affine transformations can be com­
pressed into a single matrix multiply. In the extreme, the 
sequence of functions represented by a path in the graph 
could be collected and compiled as one huge function, sav­
ing the overhead associated with message or function call­
ing. 

VIII. Conclusion 
Versions of the modeling testbed described have been 
in use at Schlumberger Palo Alto Research and 
Schlumberger-Doll Research for over three years, and the 
goals of modularity with respect to rendering and between 
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modeling operations seem to have been achieved. The 
test bed has been used to model robots, geologic forma­
tions, mechanical linkages, and a variety of deformable ob­
jects. Use of the object-oriented programming methodol­
ogy has given the system enough flexibility and extensibil­
ity to change with our needs. 
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Glossary 
appearance parameters Any value that is used in a 

shading calculation (Cook[4]). 

appel Appearance element. This is a term which Nadas 
and Fournier[17] use to describe the data tokens in 
their networks. It is a compound structure, consist­
ing of several elements such as normal, color, trans­
parency, etc. We include it because of the similarity 
to our message choices of position, normal, visibility, 
color, etc. 

camera A special node which contains information about 
how to render the objects represented in the modeling 
graph below it. Its static parameters include viewing 
parameters, background color, sampling information, 
etc. (see Figures). 

closure A function which contains another function and 
a set of (local or global) variable bindings[26]. 

group A subgraph of modeling operations which has been 
collapsed into a single virtual node. 

inheritance This is an object oriented programming con­
cept which enables the easy creation of objects which 
are almost like other objects, with a few incremental 
changes [24]. 

message A form of indirect procedure call which invokes 
a procedure associated with a particular object's class, 
using the data contained in the object receiving the 
message [24]. 

method The code used to handle messages [24]. 

modeling graph A graph whose nodes are modeling op­
erations (e.g. translate) and primitives (e.g. sphere), 
and whose connections indicate the order of composi­
tion of those operations to describe a physical object. 

modeling operation A primitive or transformation. 

primitive (or modeling primitive) A leaf node in a 
modeling graph. A primitive describes the shape of 
some basic object (e.g. cylinder, superquadric) which 
has no component parts. 
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protocol A set of messages defining a uniform interface 
to objects that provide a certain facility [24J . 

prototype A class describing a physical object or trans­
formation (in this paper only). 

shader A transformation which affects the shading prop­
erties of an object . It may change both the shading 
algorithm used as well as the static parameters. 

static parameters High level parameters to a modeling 
operation, which do not change during the course of 
evaluating a model. This is a term from Nadas and 
Fournier [1 7J. 

transformation (or modeling transformation) 
An interior node in a modeling graph, describing a 
transformation to be performed on a primitive. 
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