
167

Toward Reliable Polygon Set Operations

Mark Friedell and Sandeep Kochhar

Aiken Computation Laboratory
Harvard University

Cambridge, Massachusetts 02138

Abstract
Polygon intersection (clipping) and difference are among

the most fundamental operations in computer graphics. To
the uninitiated, these problems appear trivial; in fact, they are
extremely difficult to perform reliably by computer.
Although the graphics literature already provides algorithms
for polygon set operations, they have two significant
weaknesses: (1) they may fail because they are specified
ambiguously for some configurations of subject polygons,
and (2) small arithmetic errors, an unavoidable artifact of
floating-point calculations, can cause significant aberrations
in the result.

This paper presents and provides the rationale for a new
polygon-intersection algorithm whose input polygons may
have holes and, recursively, fillers within holes, holes within
fillers within holes, etc. The logical underpinnings of the
algorithm enable it to tolerate arithmetic errors due to finite­
precision floating-point arithmetic. Polygon set difference is
shown to be a small modification of the intersection algo­
rithm.

Researchers in computational geometry consider these
and similar problems with the intention of formulating algo­
rithms whose correctness can be assured through formal
proofs. The goal of this paper, however, is practical gui­
dance for implementation based on accessible, intuitive argu­
ments.

1. Introduction

This paper revisits the problem of polygon intersection,
one of the most fundamental operations in computer graph­
ics. The intersection of polygons A and B is the polygonal
boundary of the region(s) common to both A and B.
Polygon difference, A -B , is the polygonal boundary of the
region(s) of A not also contained in B. To the uninitiated,

these problems appear trivial; in fact, they are very difficult
to solve reliably by computer. When tested carefully, most
polygon intersection routines based on the right-turn rule fail
almost immediately.

Researchers in computational geometry are worting to
develop algorithms for these set operations whose correct­
ness is assured through formal proofs, e.g ., [HOFFMAN &
HOPCROFf], [HOPCROFT & KAHN] , [MILENKOVIC
A], [MILENKOVIC B], [SEGAL & SEQUIN]. The goal of
this paper, however, is practical guidance for implementing
reliable polygon set operations based on accessible, intuitive
arguments.

In practice, polygon intersection is usually computed
with some variant of the "right-turn" rule (e.g., [WEILER &
A THERTON]). In essence, this rule states that the intersec­
tion of two polygons is computed by tracing the contours of
the polygons in clockwise fashion, switching from one
polygon to the other where the contours intersect. This pro­
cess begins by tracing one contour starting at an intersection
where the contour crosses into the interior of the other
polygon, as shown in Figure 1.1.

start! finish here polygon A

~ . --...
polygon B •

intersection

... .,

/
make 'right turn' at contour intersection

Figure 1.1 Intersection via the Right Turn Rule

There are two problems with the right-turn rule. First,

Graphics Interface '90

the rule is frequently ambiguous when a vertex of one
polygon lies on the contDur of the other, as shown in Figure
1.2. Although an intersectDr may be patched tD process these
configurations as special cases, confidence in the underlying
rationale for the intersection procedure - turn right at an
intersection - diminishes as each new problem configuration
is discovered and another patch is added tD the algorithm

~ _ polyvon. A and B overlap

~ exactly

DJ
B

Figure 1.2 Difficult Configurations for the Right-Turn Rule

The second and more insidious problem with the right­
turn rule is that it depends on perfectly correct detection of
contDur intersections, which cannot be guaranteed with
floating-point arithmetic. The difficulty is that some contDur
intersections may not be detected, while some false intersec­
tions may be "found." The fallibility of contDur-intersection
calculations is analogous tD the fallibility of the human
visual system; as relationships between contDurs become
more difficult tD see, the risk of error increases. For exam­
ple, the intersection of two nearly perpendicular contDur
edges near their midpoints, shown in Figure 1.3, is more
likely tD be detected correctly that the intersection (or lack of
intersection) between the two edges in Figure 1.4. To over­
come this ·problem, some implementations attempt tD iden­
tify geometric configurations that may lead tD computational
inaccuracies and distDrt the subject polygons as needed to
avoid the difficulties. Unfortunately, a distDrtion intended to
avoid one inaccuracy may lead tD the potential for another,
requiring yet further distDrtion. Ultimately, the effects of the
distortions may become visually perceptible.

168

intersection easy
to detect

Figure 1.3 An Obvious Intersection

~~---- Is this an intersection?

Figure 1.4 A Difficult Intersection tD Detect

Section 2 of this paper describes a new polygon­
intersection algorithm which accommodates directly the
inaccuracies inherent in finite-precision floating-point arith­
metic. The presentation is informal, in an effort to be readily
accessible, but it is sufficiently detailed tD allow implementa­
tion directly from this paper.

Making the algorithm immune tD floating-point errors is
the most difficult challenge. The approach here is to reason
directly about the possible effects of floating-point errors,
accept that no algorithm can be perfect in the presence of
such errors, and develop an algorithm whose output error
will be bounded in a satisfactory way. Specifically the error
will be sufficiently small that its effects on a rendered image
will be visually imperceptible.

Section 3 presents a small modification of the polygon­
intersection algorithm which yields an algorithm for polygon
difference.

Graphics Interface '90

2. Reliable Polygon Intersection

Polygon intersection is conSll'Ucied from three basic
geometric procedures: Inside, Intersect, and Surround .
These procedures are unusual in that fioating-point error
affects their output in a predictable way. In the descriptions
below, A 8Dd B are polygons, El 8Dd E 2 are polygon
edges, e 8Dd eSlurotutd are error quantities, P is a point, and 't
is a tolerance. Inside (P ,A ,'t) is a predicate that determines
if P lies within A. More exactly, if Inside (P ,A .'t) returns
true, then P lies within A and is more than distance 't from
the border of A; if the procedure returns raise, P lies more
than distance 't outside of A. Inside (P ,A ,'t) may also
return close, which implies that P is less than distance HE
from the contour of A. Note that Inside is allowed to return
either true or close for any point inside A that is more than
distance 't but less than distance 't+E from the contour of A .
The procedure is allowed to return either raise or close for
any point more than distance 't but less than distance 't+E
beyond A . The behavior of Inside (P ,A ,'t) is illustrated in
Figure 2.1.

I se or close " -fal ••

close I-- --cl os.

I o~e

rue

polygon

Figure 2.1 TheInside Predicate

Intersect (E 1'£ 2) determines the point of intersection
of two polygon edges. (Edge E extends from vertex E' to
vertex E'.) The procedure returns either raise or a parame­
ter a in the range 0 to 1. If Intersect (E I,E 2) ret\lIlls false,
then Eland E 2 do not intersect. If the procedure returns a
value for ex. then E 2 comes within distance E of the point
(l-a)Ei +aE~. Note that in some circumstances, the
returned values of raise or a parameter value are both
correct. Figure 2.2 illustrates the behavior of Intersect.

Surround(A,B ,'t) determines whether polygon A sur­
rounds polygon B . If Surround (A ,B , 't) returns true, then
all points in B are less than distance 't+Es..n-..d beyond the
boundary of A. If the predicate returns raise, then some
point of B lies more than distance 't beyond A. The
behavior of Surround (A,B ,'t) is illustrated in Figure 2.3 .
As this figure shows, both true and raise maybe returned
correctly by Surround for certain arguments. Appendix A

169

outlines how to implement Surround in terms of Inside
and IlIIersect .

lntersect(EJ,E2 1-f~. or Cl , such that Cl -QEls + ClE ::
is within , of E <

__ ~ __ -r-____ E;t

[,'] I'
E::

,~ ~(EJ,E21 -faa.

Figure 2.2 The Intersect Predicate

In the intersection algorithms presented below, E and
EsllT70wuI are very small actual distances that cannot be per­
ceived in a rendered image. A value for E is determined by
assuming that all data to be processed are transformed into
some normalized coordinate system, say (-1,-1) to (+1,+1),
and then taking E to be the smallest value which can be
assured by the implementations of Intersect and Inside .
Ideally, an exhaustive analysis of the implementations of
Intersect, Inside and Surround would be performed to
calculate the correct value for E. In most circumstances,
however, this is not practicable. The pragmatic approach is
to perform a conservative, approximate analysis and then
increase the estimate of E by a decimal order of magnitude.
Happily, this approach yields values for the error bounds -
typically 0.001 in a normalized coordinate system ranging
from (-1,-1) to (+1,+1) - that are comfortably under the
threshold of perceptibility for high-resolution graphics. Note
that EslU'l'Ow is a similar error bound for Surround, and it
depends on E as described in Appendix A.

Graphics Interface '90

1-.

~ lA. BI - tr1»
ar fu..

Figure 2.3 The Surround Predicate

2.1 Polygon-Edge Intersection

As a preliminary step to polygon intersection, consider
the problem of finding the intersection of a polygon and an
edge. In the general case of a polygon with concave vertices,
the intersection will comprise 0 or more segments of the
edge, as illustrated in Figure 2.4. Each endpoint of these
segments is either an endpoint of the edge or a point of inler­
section between the edge and the contour of the polygon.

The first step toward computing the required intersecting
segments is to compile a superset of their endpoints. The
Inside procedure, with 't=O, is used to test the edge end­
points for inclusion in the polygon. If Inside reports true or
close for either edge endpoint, it is included in the superset
Next, Intersect is used to compare the subject edge with
each contour edge of the polygon and any intersection points
are added to the superset The problem now is to identify, in
the superset, pairs of endpoints that describe the intersecting
segments.

To find the intersecting segments, the superset of end­
points is sorted along the original subject edge. This is done
by using the parameter returned by Intersect as a sort key.
(As a result of imperfect arithmetic, the sorted list may not

170

be in strictly correct order; however, any errors will be
imperceptible and will DOt affect the behavior of any algo­
rithms developed below.) Next, beginning at one end of the
sorted list, each sequential pair of endpoints is examined (see
Figure 2.5). To determine if a segment lies within the
polygon, hence is part of the polygon-edge intersection,
Inside is used, with 't=2£+J,1. to examine the midpoint
between the end points. (Here t=2£+J,1. because the loca­
tions of the endpoints are known only to within E, the pro-
cess of computing the midpoint may introduce further error,
taken to be very much less than £, and evaluating the expres­
sion for t may introduce a very small error, bounded by J.1.)
If Inside returns true, the segment is part of the intersec­
tion. If Inside returns 'abe, then the segment is not part of
the intersection.

Figure 2.4 Intersection of Polygon and an Edge

c::!![J/1 '\ -~ 7
Cl - 0.0

Cl- 1.0

Figure 2.5 Contiguous Segments Along an Edge

Of course, Inside might return close, and the status of
the span would be undecided. If this happens, one or more
additional locations between the endpoints must be tested
until Inside provides an unambiguous result or it is deter­
mined that the segment is everywhere very close to the con­
tour of the polygon. The latter happens when Inside returns
close for all locations sampled at intervals of length
5poly'oll d,. between the endpoints. In case the segment is
everywhere very close to the polygon contour, it is included
as part of the intersection. The rationale for this conclusion
is that by making 5poly,oll--'l. sufficiently small. no part of
the segment will be perceptibly beyond the contour of the
polygon.

Graphics Interface '90

This algorithm for polygon-edge intersection is part of
the polygon-intersection algorithm presented below, in Sec­
tion 2.2. In that algorithm, polygon-edge intersection may
be performed less exactly: only a superset of the intersecting
segments is required. Therefore, any candidate segment
whose midpoint is either inside or close to the subject
polygon is treated as part of the intersecting-segment super­
set - there is no need to test multiple points along any candi­
date. While there is a performance penalty associated with
extraneous intersecting segments in the superset, the cost of
eliminating them by testing multiple sample points may be
prohibitively high.

2.2 Ordinary Polygon Intersection

Consider the intersection of two ordinary polygons, i.e.,
polygons without holes. The conlOur(s) of the intersection
region(s) can be composed from components of the contours
of the two polygons, as shown in Figure 2.6. For any two
polygons, A and B , the required components of the contours
can be constructed from the segments of the edges of A that
intersect B and the segments of the edges of B that intersect
A. The polygon-edge intersection technique from Section
2.1 can be used 10 find a superset of these segments.

To construct the contour(s) of the intersection of A and
B, the superset of intersecting edge segments is treated as
the edges of a specialized geometric multigraph, referred to
as an edge-segmenJ graph (see Figure 2.7). Unlike an ordi­
nary geometric graph, two edges in an edge-segment graph,
X and Y, are connected if one endpoint of X is within dis­
tance 2f+J.l of an endpoint of Y . This aggressive connection
rule is needed because, as a result of Hoating-point error, the
calculations of the endpoints of the intersecting edge seg­
ments are guaranteed only to be within E of their true loca­
tion, and the process of measuring the distance between end­
points may be in error by less than J.l. Note that in an edge­
segment graph, edges X and Z might not be connected, even
if X is connected to edge Y and Y is connected to Z, as
shown in Figure 2.8.

By interpreting each non-crossing edge cycle of length
greater than 2 in the edge-segment graph as a polygonal con­
tour, a superset of the contours required to describe the inter­
section of polygons A and B is found . This superset may
contain, in addition to the required contours, some incorrect
contours that do not lie within the intersection of A and B as
well as some contours that are redundant (see Figure 2.7).
Any incorrect and redundant contours must be identified and
eliminated.

To filter out incorrect contours, each constructed contour
is compared to both A and B , using the Su"ound predicate
with t~. Here t~, since the vertices of the constructed
contours are known only to within E of their correct posi­
tions. Only those constructed contours that are surrounded
by both subject polygons are in the intersection.

171

Redundancies are eliminated by comparing each pair of
intersection contours with 't=2f+J.I.. Any contour that is sur­
rounded by another con lOur may be eliminated. When elim­
inating redundancies, 't=2f+J.l since corresponding vertices
of "identical" regions may deviate by £ in opposite directions
from their true location.

2.2.1 Rationale

The logical basis for this intersection algorithm can be
established by working backwards from the desired result
Assume a process that generates a superset of the contours of
the intersection of polygons A and B. To identify only the
contours that lie within the intersection, compare each gen­
erated contour to both A and B. If a generated contour lies
within both polygons, it lies within their intersection, but
some of these contours might be redundant, i.e., they might
lie within other generated contours that also lie within the
intersection. To remove the redundant contours, compare
pairs of intersection contours and remove any contour that
lies within another contour.

The required superset of intersection contours can be
generated from a collection of edges containing at least each
segment of each edge of polygon A that intersects polygon
B and each segment of each edge of polygon B that inter­
sects polygon A . If all elements of this collection are com­
bined in all possible ways to create polygonal contours, the
contours of the intersection of A and B certainly will be
generated. In addition, some contours that do not lie in the
intersection, and some some that are in the intersection but
are redundant, may be generated as well.

The set of edges required to create the intersection con­
tours can be generated with the polygon-edge intersection
algorithm described in Section 2.1 to find a superset of the
intersections of all edges of polygon A with polygon B and
the intersections of all edges of polygon B with polygon A .

2.3 Polygon-Polygon Intersection with Holes

Consider now the more complicated case in which two
polygons, A and B, have holes. A polygon's outer contour
will be referred to as a + contour and a hole will be referred
to as a - contour.

The intersection technique for polygons with holes is
similar to that for ordinary polygons. One difference is how
the edges in the edge-segment graph are generated. For
polygons with holes, the intersection of every hole edge, as
well as every outer-contour edge, of polygon A with
polygon B , and vice versa, is needed.

The polygon-edge intersection procedure with holes is
also slightly different from that presented in Section 2.1.
When . computing the superset of edge-segment endpoints,
Intersect is used to find the intersection of the subject edge

Graphics Interface '90

8

8

Figure 2.6 Intersection of two Ordinary Polygons

with every hole edge, as well as with every outer-contour
edge, of the subject polygon. The Inside procedure, which
is used to determine whether an edge endpoint or segment
lies within a subject polygon, is applied in the ordinary way,
i.e., it considers only the outer contour of the subject
polygon. Figure 2.9 shows the intersection of two polygons
with holes, complete with intersecting edge segments and
edge-segment endpoints.

As in the simpler case for ordinary polygons described in
Section 2.2, the contour-construction technique applied to
the edge-segment graph will certainly produce all the con­
tours, both + and -, required to describe the intersection
region(s), but it may also produce some incorrect or redun­
dant contours. As before, the correctness of constructed con­
tours needs to be verified and any redundant contours need to
be removed. In addition, the sign (+ or -) of a constructed
contour must be determined.

172

Only constructed contours that lie within the outer con­
tours of both subject polygons are correct and considered
further. If a correct contour is surrounded by any hole of
either subject polygon, it is a - contour; otherwise, it is a +
contour. Among the correct contours, any + contour that lies
within another + contour or any - contour that lies within

2 cycles defining
correct, rut redmdant
cx:ntrurs

..

8 cycles defining
incorrect ccntours

ed:Je segrent fron pol ygon A

ed:Je segrent fron polygon B

Figure 2.7 Edge-Segment Graph for Figure 2.6

another - contour is redundant and should be removed.

2.3.1 Rationale

The logical basis for this algorithm, beyond that
presented in Section 2.2.1., relies on semantics of + and - as
used to characterize contours. For polygon X, each point
within its + contour is within polygon X unless the point
also lies within a - contour of X, while each point within a -
contour of X is unequivocally not within polygon X. The­
contour is the more definitive characterization.

Any contour, + or -, used to describe the intersection of
A and B must necessarily be surrounded by the + contours
of A and B. Hence, the algorithm discards as incorrect any
generated contours that do not meet this requirement.

Each correct contour is characterized as + or - with
respect to both subject polygons. To characterize a contour,
C, with respect to a subject polygon, X, the relationship of
C to every contour of X is examined. If C is surrounded by
a - contour, it is a - contour with respect to X, otherwise, it
is a + contour with respect to X. Recall the semantics of +
and - and consider what + or - with respect to X means. If
C is + with respect to X , each point in C is within polygon
X unless it also lies within some - contour of X. If C is­
with respect to X , each point in C is absolutely not within X.

Graphics Interface '90

z

y

x
Figure 2.8 Connection of Edges in Edge-Segment Graph

;:;:;:;:;:;:t...-- edge-.egoent end po i nt

$;;jj~~- i nter. ect i ng edge .egoent .- • in te r ~ection of
A and B

Figure 2.9 Intersection of two Polygons with Holes

If C is - with respect to either subject polygon then C is
- with respect to the intersection of the subject polygons,
i.e., each point in C is not within at least one of the subject
polygons, hence not within their intersection. If C is + with

173

respect
to both subject polygons, it is + with respect to their intersec­
tion, i.e., every point in C is within the intersection of the
subject polygons unless it also lies within some - contour of
the intersection.

Now consider more carefully a + contour, Cl+> of an
intersection. If P is a point within CI + that also lies within
some - contour, CX-t of a subject polygon, X, then the
intersection of the subject polygons is required to also have a
- contour containing P . What guarantee is there that this -
contour will be present in the intersection? Since Plies
within both subject polygons and P is contained in Cx the
contour-generation process will generate a fragment of Cx
Cl that contains P . Since Cx- surrounds C/-t CI _ will be
classified - with respect to X, and hence - with respect to
the intersection.

2.4 Intersection with Holes and FiUers

The final treatment of polygon-polygon intersection con­
cerns polygons that may have holes and, recursively, fillers
within holes, holes within fillers, etc. Such polygons can be
described with a tree, the root of which is the polygon's
outer contour. The contours of the holes and fillers are
arranged at alternating levels in the tree, as shown in Figure
2.10.

AJ
A2

Figure 2.10 Polygons with Holes and Fillers

The intersection procedure is an extension of that
described in Section 2.3 for polygons with holes only. Once
again, the contours generated from the edge-segment graph
may include, in addition to the needed contours, some con­
tours that 'are incorrect or redundant. Further, the sign of
each contour must be decided.

Graphics Interface '90

For a constructed contour to be correct, it must lie within
the outer contours of both subject polygons. The sign of a
constructed contour is decided by finding the smallest con­
tours (outer, hole, or filler) of both subject polygons in which
the constructed contour lies. If both surrounding contours
are +, the constructed contour is a + contour; otherwise (at
least one surrounding contour is a - contour), the con­
structed contour is a - contour.

13

12

Figure 2.11 The Intersection of the Polygons in Figure 2.1 0

Redundant contours are eliminated as part of assembling
them into a tree-structured description of the intersection, as
in Figure 2.11. A directed graph is constructed in which
nodes represent generated contours, and an edge goes from
X· to Y if and only if X surrounds Y, X il:Y, and there is no
contour Z such that X surrounds Z and Z surrounds Y.
Next, for each outer contour (a node in the digraph to which
no edge leads), the contours that it immediately surrounds
(nodes accessible via a path of length 1) are identified. If
any of these surrounded contours has the same sign (+ or-)
as the surrounding contour, then the surrounded contour is
redundant and should be eliminated. This process is applied
recursively to eliminate all redundant contours. The final
result is one or more trees in which the root is the outer con­
tour of a region of intersection. Every path from an outer
contour alternately visits - contours (holes) and + contours
(fillers). This graph is the required description of the inter­
section of A and B. The logical basis for this algorithm is
essentially the same as that for the algorithm in Section 2.3.

174

3. Polygon Set Difference

Polygon set difference can be computed by a simple
variant of the procedure in Section 2.4 for finding the inter­
section of two polygons with holes and fillers. To find the
area of polygon A not also contained in polygon B, first
construct a new polygon, BiAvm., from the rectangle and B .
This rectangle is the outer contour of Bilruru and the outer
contour of B and the fillers of B become the holes of
BillY.,.., while the holes of B become the fillers of Bj""me,
i.e., the signs of the contours of B are changed. The inter­
section of A and BillY.,.,., found using the procedure
described in Section 2.4, is the set difference of A and B .

4. Conclusions

Reliable geometric procedures can be developed only if
the inherent limitations of finite-precision floating-point
arithmetic are accommodated. This paper addresses direcUy
these limitations in presenting accessibly new algorithms for
polygon intersection (clipping) and difference which operate
on input containing holes, and recursively, fillers within
holes, holes within fillers, etc.

s. References

[HOFFMAN &. HOPCROFf)
Hoffman, C. and Hopcroft, 1. "Towards Implementing Robust
Geometric Computations." Proceedings of tlu Symposium 0"
COmpwJatioMi GeorMtry, ACM, 1988.

[MlLENKOVIC AJ
Milenkovic V. "Verifiable Implementations of Geometric
Algorithms Using Finite-Precision Arithmetic." ""ificial/~I/­
/ige1lCe, 37:3n-401, 1988.

[MILENKOVIC BJ
Milenkovic V. "Double Precision Geometry: A General TedI­
nique for Calculating Une and Segment Intersections Using
Rounded Arithmetic." Procttdi"gs of tlte 30th AMuaJ Sympo­
sium oftlte Fowt.datjoru o/Complller SCie1lCt, IEEE, 1989.

[SEGAL &. SEQUIN]
Segal, M. and Sequin, C. H. "Consistent Calculations for
Solids Modeling." Proceedi"gs oftlu Symposill11l 0" Compllla­
tioMl GIOrMtry, ACM,198S.

[WElLER &. ATHERTON]
Weiler, K. and Atherton, P. "Hidden Surface Removal Using
Polygon Area sorting." Compllltr Graphics, 11,3.

Graphics Interface '90

