
93

Automatic Termination Criteria for Ray Tracing Hierarchies

K. R. Subramanian Donald S. Fussell

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract
A common problem in space subdivision hierarchies

used in ray tracing is determining the proper termination
criteria to stop subdivision. We propose a cost model
based on scene characteristics that can be used to predict
the correct termination point to optimize performance.
The characteristics are determined as the hierarchy is be­
ing built. The model is applied to a variety of space subdi­
vision schemes to test its accuracy. Experimental results
indicate the power and usefulness of this model when ap­
plied to some standard ray tracing benchmarks.

Key Words: Ray tracing, bounding volume, extent, par­
titioning plane, search structure, traversal.

1 Introduction

Ray tracing has become established as an important
and popular rendering technique for synthesizing photo­
realistic images. However, ray tracing, if not carefully
done, can be a computationally expensive technique.
Consequently a great deal of research has focused on dis­
covering efficient ways to perform ray tracing.

The principal expense in ray tracing lies in determining
a ray's closest intersection to its origin with an object in a
scene. This may be done several times per pixel, the exact
number of times depending on the effects being generated
and the scene being rendered. Research on efficient algo­
rithms has quite properly focused on minimizing the cost
of these intersection calculations. Many of the resulting
techniques have employed data structures for speeding up
the search for a closest intersection on a ray. Data struc­
tures that support efficient geometric search allow us to
look at only a small percentage of the scene to determine
the closest intersection. Octrees [7], BSP trees [11][14],
and nested bounding volumes [8] are examples of explic­
itly hierarchical search structures of this type, while the
uniform subdivision method [5][3] is a non-hierarchical
search structure. Hybrid schemes have been explored in
[15][10].

While all these methods are being used with great suc­
cess, except in the case of nested bounding volumes, ter­
mination criteria for hierarchy construction algorithms
have been totally ad hoc, leaving open the question of
whether methods employing hierarchical search structures

have really been exploited to their full potential. In this
paper, we address this problem and propose methods to
terminate subdivision at the most advantageous depth. A
cost model is developed to relate the computational costs
of various techniques to appropriate parameters for de­
termining that a search structure of sufficient depth has
been constructed. This model is built using statistical
characteristics of the input scene. It is evaluated as the
hierarchical structure is being built and stops subdivision
when the cost reaches a minimum. We have applied this
model to some commonly used ray tracing hierarchies, as
well as to the uniform subdivision method. Experimental
results illustrate the accuracy and usefulness of our model
for optimizing the performance of these search structures.

2 The Problem

We will be concerned with several of the common hier­
archical structures being used in ray tracing, including
BSP trees, octrees, and bounding volume hierarchies. We
also consider uniform subdivision and a space subdivision
technique that uses k-d trees [6][13]. We begin with a
brief description of each of these methods.

A BSP tree is any binary tree structure used to re­
cursively partition space. In Kaplan's implementation of
the BSP tree [11], axis-aligned planes are used to parti­
tion space. At each step of the subdivision, three slicing
planes are used to divide space into eight equal sized oc­
tants. The recursive subdivision continues until the voxels
contain either a small number of primitives or their size
becomes smaller than a set threshold. In order to opti­
mize performance, this threshold must be set correctly. If
the threshold is too high, then large numbers of primitives
end up in each voxelj if it is too low, getting to the leaf
nodes from the root of the tree is more expensive. Note
that the subdivision is adaptive, in that only voxels that
contain primitives are subdivided. Thus, the structure
adapts itself to the input scene.

The octree hierarchy used by Glassner [7] performs a
subdivision identical to Kaplan's BSP tree. Each level
of the octree corresponds to three levels of the BSP tree.
The difference lies in the way Glassner stores the octree.
While Kaplan builds a binary tree, Glassner uses a hash
table, which results in considerable savings in pointer

Graphics Interface '91

94

space. The termination problem in the octree is thus the
same as in the BSP tree.

We have performed an extensive study of some of the
important properties of search structures used to accel­
erate ray tracing [13]. This has led to the develop­
ment of a highly adaptive search structure based on the
k-d tree, a special case of BSP trees introduced by Bentley
[1][2]. Our k-d tree structure uses axis-aligned partition­
ing planes like many other space subdivision methods.
Our study has shown that the SA (Surface Area) heuris­
tic for deciding the locations of the partitioning planes
used in [14] combined with the judicious use of bounding
volumes at some nodes of the hierarchy to prune excessive
void space provides the good performance.

The SA heuristic minimizes the following function in
trying to locate a space partitioning plane:

f(b) = SAI(b) .nl + SAr(b) .nr (1)

where b is a partitioning plane, nI, nr are counts of objects
on both sides of b, and SAI(b), SAr(b) are surface areas
on both sides of b. In our implementation, SAl (b) and
SAr(b) are measured by the surface areas of the bound­
ing volumes that enclose the objects on either side of the
partition. Once a partitioning plane is determined, the
sets of objects on each side of the plane are recursively
partitioned so long as there is at least one primitive on
each side of the partitioning plane and at least one of
them is completely on one side of the plane. Insertion of
a plane creates a pair of nodes, the union of whose extents
equals the parent's extents. In cases where a new node's
extents are much larger than the bounding box of the oh­
jects included in the node, this bounding box is stored in
the node.

The uniform subdivision method subdivides space into
a 3-d grid of equal-sized voxels. To determine the closest
intersection of a ray with an object in the scene, a mod­
ified form of Bresenham's line algorithm in three dimen­
sions is used traverse the voxels efficiently along the ray.
The non-adaptive nature of this structure can result in
large regions of empty voxels, which are expensive to tra­
verse. However, restricting the subdivision can also put
large numbers of primitives in some of the voxels. Thus,
it is difficult to know the correct amount of subdivision
without any knowledge of the scene characteristics.

The major problem in bounding volume hierarchies is
finding suitable clusters of primitives to build the hierar­
chy from the point of view of performance. Goldsmith's
[8] automatic bounding volume hierarchy (ABV) takes an
important step in this direction. The bounding volume
surface area is shown to be intimately related to the cost
of the hierarchy. To construct the hierarchy of volumes,
each object is considered a prospective child of each node
to be searched. When the search reaches the leaf nodes,
the new node and the leaf node are proposed as siblings
of a new non-leaf node, replacing the old leaf node. Af­
ter the search, the object is inserted into the tree where
it causes the least increase in the total bounding volume

surface area.

3 The Cost Model

Ray tracing hierarchies are built for the sole purpose of
speeding up the intersection search. All of these struc­
tures help in drastically reducing the search space of each
ray. This is accomplished in two different ways:

1. The search is ordered along the path of the ray,
starting from its origin. This helps in terminating
the search once an intersection is found.

2. The search examines only parts of the scene that
are close to the ray. Even if no intersection is
found, only a fraction of the scene would have been
examined.

However, using a search structure introduces a new ex­
pense: the cost of traversing it. So long as the cost in
traversing the structure is overwhelmed by the gains in
reducing the ray-search space, we are improving perfor­
mance. The question is, what is the cutoff point?

3.1 Search Structure Costs

We can identify two major costs involved in using a search
structure:

1. The cost in exammmg the scene, C.c(h, s)(h is
the height and s is a search structure). This is
the cost of performing ray-object intersections and
ray-bounding volume intersection tests (when ob­
ject primitives are enclosed by bounding volumes) .

2. The cost in traversing the search structure,
Ctr(h, s). This is the cost of going down the hi­
erarchy to the leaf nodes. Depending on the ac­
tual search structure, this could involve partition­
ing plane intersections, bounding volume tests in
the internal nodes of the hierarchy, or just com­
pares between ray coordinates and the partition­
ing planes. It also accounts for the cost involved
in determining the next region along the path of
the ray to be searched.

Other costs in ray tracing such as building the search
structure and lighting calculations are not significant
when compared to the total run time. As we start suh­
dividing the scene, C.c(h, s) decreases and Ctr(h, s) in­
creases. The rates of increase/decrease of these two costs
will determine the performance of the search structure.
We are interested in terminating the search structure at
the height that minimizes C.c(h, s) + Ctr(h, s).

3.2 Determining C8C(h , s)

Our next step is to determine estimates for C.c(h, s) and
Ctr(h, s) . To be of any practical use, the expressions that
we obtain must be dependent on characteristics of the
scene being rendered that can be determined easily.

Graphics Interface '91

95

Let us look at C. e (h, s), the cost involved in examining
the scene. What we want to know is, at any particular
level of subdivision, what portion of the scene is examined
by each ray. One way we can determine this is to try to
compute the number of primitives examined by a rayon
the average. So

n-l Ri(h ,.)

C.e(h, s) = C; L L npr(i, r, h, s)
t=O r=O

where
Cpr = cost of examining a primitive for intersection.
npr(i, r, h, s) = number of primitives examined by ray i
in region r.
n = total number of rays spawned.
Ri(h , s) = number of regions examined by ray i.
h = height of search structure.
s = search structure.

Determining npr(i, r, h , s) before ray tracing is not easy.
However, the dependency of n pr (i, r, h, s) on region r can
be removed by approximating it by an average region
primitive count. The dependency of Ri(h, s) on i also
makes it a quantity difficult to compute before ray tracing.
Approximating Ri(h, s) by R(h, s), the expected number
of regions visited by any ray before it terminates, the
scene cost becomes

Cpr (nR(h, s))npr(h, s)
n

CprR(h, s)npr(h, s)

where npr(h, s) = average number of primitives in each
region of the search structure s of height h.

npr(h, s) can be determined by summing up the object
counts at the leaf nodes of the hierarchy (for the uniform
subdivision method, the object counts in each voxel) . A
weighted average of these counts is calculated, the weights
being a measure of the size of the regions. For instance,
the bounding volume surface area can be used to weight
the object counts. This is necessary since larger sized
regions have a higher probability of being visited more
often (as we will show next). Cpr can be taken as the
average cost of a bounding volume intersection test. In
our implementation, all object primitives are enclosed by
bounding volumes. The only other unknown quantity,
R(h, s), the expected number of regions examined by each
ray, will be estimated as follows.

In determining R(h, s), we must bear in mind that the
intersection search is ordered along the path of the ray.
Once an intersection is found, processing stops for that
particular ray. How quickly this might happen depends
on the scene complexity, in terms of how dense or space
filling the primitives in the scene are.

Let pj represent the probability that the ray has an
intersection with a primitive in region j. Then (1 - Pj)
will be the probability that the ray will not intersect any
primitive in region j. Also, let us assume that the ray is
within the scene of interest, so that at least one region

must be examined for intersection. The expected number
of regions visited by a ray under these conditions is given
by the following relation,

k i-I

R(h,s) M AX(l, L iPi II(1- Pj))
i=1 j=1

Again, we can use an average region probability instead
of the PjS. Let this probability be P, a weighted average
of the probabilities accounting for the different sizes of
the regions. The above expression becomes

k i-I

R(h,s) = M AX(l, L ip II (1 - p))
i=1 j=1

k

M AX(l, L ip(l _ p)i-l)
i=O

~ lip for large k.

3.3 DeterIllining Region Probability p

The average region probability P is the (average) proba­
bility with which an incoming ray penetrates any object
primitive in a region Determining this accurately is very
expensive and might be impossible since it depends on
the geometry of the region, the primitives in it and the
ray distribution. Thus we need to find a reasonable ap­
proximation.

An approximation to this has already been used by
Goldsmith [8]. If the ray directions are assumed to be
uniform, then the conditional probability that a ray will
penetrate a convex region B given that it penetrates en­
closing convex region A is equal to the ratio of the average
projected area of B to that of A. It can be shown that
the average projected area of a convex region is equal to
one quarter of its surface area [4][13], so

P(BIA) = AreaB
AreaA

P(CIA) = Areac
AreaA

The region probability can be estimated by enclosing
the collection of primitives by a convex bounding volume.
Since most space subdivision methods produce convex
partitions, the regions are already convex. The ratio of
primitives' bounding volume surface area to that of the
region gives an estimate of the conditional probability. A
more accurate value of P can be obtained by enclosing in­
dividual primitives with bounding volumes, thus account­
ing for the void space between primitives. However , if two
bounding volumes overlap, then the overlap area has to
be subtracted out since it cannot be counted twice. In our
implementation, we use the ratio of bounding volume sur­
face areas to estimate the conditional probability. Each of
the region probabilities must be weighted by the region
size (again, the region surface area can be used) when
we compute the average probability. For instance, if Ai

Graphics Interface '91

96

Figure 1: A Bounding Volume Hierarchy

represents the bounding volume surface area and Ei, the
surface area of the extent of the same region (Ai ~ Ei),
then the region probability is given by

p

",n E A
L."i=l i * E:"

",n E
L.....i=l •

n

LAi/Ei
,=1

3.4 D etermining Ctr(h, s)

The traversal cost Ctr(h, s), in general, is bounded by the
following form.

C'r(h, s) = R(h, s) * Cr(h, s)

where
R(h, s) = expected number of regions examined.
Cr(h, s) = average traversal cost expended per region.

Cr(h, s), in general, involves the cost of determining
the region containing the origin of the ray and the cost of
identifying the next region visited by the ray if the inter­
section search is unsuccessful in the current region. For
hierarchical structures, the cost of reaching the leaf nodes
from the root has to be calculated. This is found by mul­
tiplying the work done per node by the average height of
the hierarchy. The average height of the hierarchy is also
a weighted quantity, since paths leading to nodes which
are larger in size will be visited more often by rays when
compared to paths leading to smaller sized regions. For
the uniform su bdi vision method, C r (h, s) is determined
by the work done in moving from the current voxel to the
next voxel visited by the ray.

3.5 Modification for Bounding Volume Hier­
archies

In bounding volume hierarchies, the traversal of the hier­
archy is usually not along the path of the ray. The ex­
pected number of regions examined by each ray, R(h, s),
is calculated in a different way. The method is outlined in
detail in [8]. Consider the simple bounding volume hierar­
chy in Fig. 1. Square nodes are internal nodes containing
the bounding volume of the subtree of the scene. Circle
nodes representing primitive objects are the leaf nodes.

Ray counts are in thousands

Scene Tetra DNA Arches Balls Geo58
Objects 1024 410 4818 7382 306
Obj. Type P S P PS P
Lights 1 1 2 3 3
Total rays 299 445 437 1819 847
Visual rays 262 323 317 722 392
Shadow rays 37 122 120 1097 455
Hit rays 44 75 73 873 278

Table 1: Statistics of Test Scenes.

Assume only rays intersecting the root bounding vol­
ume are of interest. The expected number of regions ex­
amined is given by (refer to [8] for details)

R(h, s) = 1 + 4P(AIA) + 2P(BIA) + 3P(CIA) +
2P(DIA) + 2P(EIA) + 3P(FIA) + 2P(GIA).

where P(II J) represents the conditional probability that
node I is intersected given that J has already been inter­
sected. The conditional probabilities are determined by
using the approximation given in the previous section. So
the total cost is

C = CprR(h, s)npr(h , s)

where Cpr is the cost of a bounding volume test and
npr(h, s), the average number of primitives at each leaf
node. In Goldsmith's method, npr(h, s) = 1. The above
equation represents the total cost.

4 Implementation and Experimental
Results

We have implemented the uniform subdivision method,
BSP tree, octree, automatic bounding volume hierarchy
and the k-d tree methods to test the cost model. All ex­
periments were conducted on a Sun 4/280 workstation
running SunOS UNIX1 4.0.3. Five different data-sets
were used as test cases. Details of these datasets are given
in Table 1, where P stands for polygons and S for spheres.
Images of these models are shown in Plates 1 through 5.
Several of these are standard benchmarks [9] available in
the public domain. The termination parameter used in
all these methods (except for uniform subdivision, where
it is the grid resolution n_grid) is the maximum height.

In our implementation, each primitive is surrounded
by a bounding volume which is an axis-aligned paral­
lelepiped. Bounding volumes around collections of prim­
itives are also axis-aligned parallelepipeds. Cpr , the cost
of testing a primi ti ve is taken to be the cost of a bounding
volume test. In our implementation C pr = 15.5 floating
point operations. In all the methods except the ABV hier­
archy, the search stops as soon as an intersection is found.
Also, duplicate object intersection tests are avoided by

1 UNIX is a trademark of AT&T Bell Laboratories.

Graphics Interface '91

97

Total Cost

1.00

0 .90

0.80

0 .70

0.60

0.50

0 .40

0 .30

0 .20

0.10

\

~\ .• o_ •.•.• ""O;.::.:.:............. :~==
...: - - -- -_ .. -_ .. -_ .. ------ --- ------ -_ .. - ---.

0 .00 0~.-::0-:-0--------::5:-::0J...0:C0::--------:-'-:-00-::'-::.00~---'

(a)

Time

1 .00

0 .90

0 .80 ~'.
\\ r. __

i~ '.

0 .70

0 .60

(':\~~- ------- ------ --
. . --------
"~ .. -.. ~ \ --------_ ...

'--=:-,:----------

0 .50

0 .40

0 .30

0 .20

0 . 10
..... - --- - - - -- -- - -- - -- ---

0 .00 50 .00 100.00

(b)

~
~
:Arenas
l::falfS"--
~os«

"_grid

~
"O;;s·- ·_-
-Ai-Cnas
13.lr.- _ ..
~os«

" _ grid

Figure 2: U nif. Subd. Perf. Characteristics (a) pre­
dicted (b) Actual

maintaining ray signatures in all object records. An ob­
ject is tested for intersection with a ray only if it has not
been examined by the current ray.

As we start building the hierarchy, C.c(h, s) and
Ctr (h, s) are computed for each value of the maximum
height. Initially, the decrease in C.c(h, s) will overwhelm
the increase in Ctr(h, s). What we are looking for is the
point where the total cost reaches a minimum. It is possi­
ble that there might be several local minima (for example,
the BSP and octree structures exhibit this characteristic).
If these are all close to each other, we could pick anyone
of the minima with little difference on performance.

For each method, we plot both the predicted and actual
performance characteristics as a function of the termina­
tion parameter. For the predicted characteristic, the total
cost = C.c + Ctr . This is plotted against the maximum
height (the grid resolution, for the uniform subdivision
method). The actual characteristic is a plot of the run­
ning time (which is a measure of the total cost) versus
th e t ermination parameter. The total cost has been nor­
malized from 0.0 to 1.0 so as to fit all the test cases in the
same graph plot.

Total Cost

1 .00
0 .95
0 .90
0 .85
0 .80
0 .75
0.70
0 .65
0 .60
0 .55
0 .50
0 .45
0 .40
0.35
0 . 30
0 .25

T ime

1 .00

0 .95

0 .90

0 .86

O .BO

0.75

0 .70

0 .65

0 .60

0.55

0 .50

0 .<45

0.40

0.35

r-----.-------r--------.~

1:>ri8-­
-Arenas
138If5"-­
""OeoGt'J

L-______ -L _______ ~ _____ ~ Max.ht
10.00 20.00

(a)

,-------.--------.-------,~

.
: --.

,

"tlna.-·-···
"'Arenas
1381f8" -­
baoGt'J

~---~-------~----------~ Mox . ht
10 .00 20.00

(b)

Figure 3: Kaplan-BSP Perf. Characteristics (a) Pre­
dicted (b) Actual

4.1 Uniform Subdivision Method

Our implementation of uniform subdivision method fol­
lows very closely the algorithms outlined in [3]. In this
structure, all voxels are of uniform size. Traversing a ray
involves identifying the voxels along the path of the ray
in the three-dimensional grid. In our implementation, it
takes about 6.5 floating point operations to move from
one voxel to the next, on average. Thus C r = 6.5. Cpr

is the cost of a bounding volume test , as before. The re­
gion probabilities and the average leaf object counts are
computed as explained previously.

Fig. 2 shows the performance characteristics and re­
sults for the uniform subdivision method. Here n..grid is
the resolution of the grid in each of the three dimensions.
For testing the cost model, the resolution is doubled in all
three dimensions each time we subdivide. In our imple­
mentation, we used polyhedral bounding boxes [1 2] to en­
close the primitives when clipping to voxels. The clipped
points were used in computing an axis-aligned bounding
box within the voxel. The surface area of this box was
used in computing the region probability. More accurate
methods of determining the surface area of the primitive
within the voxel will improve the predictions.

Graphics Interface '91

98

4.2 BSP Tree

Our implementation of the BSP tree hierarchy is very sim­
ilar to that of Kaplan's [11]. One difference is that each
subdivision step does not necessarily produce eight oc­
tants. If for example, a plane has subdivided the original
space into two equal sized voxels and one of them does not
contain any primitives, then it is not subdivided by the
remaining two planes. This results in a smaller number of
empty regions, thus making the structure more adaptive
to the scene.

The traversal method used in our implementation is de­
scribed in [6]. In this method, the ray is intersected with
the separating plane stored at each node of the hierarchy '
to decide the order in which the regions are traversed.
On the average, our implementation requires 4.5 floating
point operations (Cr = 4.5) to make this decision. This
has to be multiplied by the average height of the hierar­
chy, to account for the work done to reach the leaf nodes.

Fig. 3 shows the performance characteristics and re­
sults for the BSP tree structure for several scenes. Over­
all, the predicted heights are very close to the optimal
heights obtained by the experiments. In general, for the
BSP tree structure, there is a small range of heights at
which the performance stays relatively constant. It is in­
teresting to note that in some of these cases, optimal per­
formance occurs well beyond the logarithm of the number
of objects.

4.3 Octree

To implement the octree, we modified our BSP tree im­
plementation so that at each step of the subdivision, eight
equal sized voxels were created. The data was then col­
lected as in the BSP tree case. The traversal method used
is the same as in the BSP tree method. Fig. 4 shows the
performance characteristics and results of using the cost
model. As expected, the performance is slightly worse
(Balls and Ge058 scenes) than the BSP tree case because
of the additional empty voxels that need to be processed
in the octree. Note that each level of the octree corre­
sponds to three levels of the BSP tree.

4.4 Automatic Bounding Volume Hierarchy

Goldsmith's automatic bounding volume hierarchy also
stops building the hierarchy beyond a certain height since
a heuristic search determines an insertion point in the hi­
erarchy for each object primitive. Fig. 5 illustrates the
performance characteristics of the automatic bounding
volume hierarchy and results of using the cost model. In
the DN A model , there is a height at which the cost reaches
a minimum (which illustrates that even the ABV hierar­
chy is not immune to the termination problem), while
in all the other cases, the cost remains flat after a cer­
tain height. Since all the scenes except Tetra have large
numbers of secondary rays, the cost of going down the
hierarchy has to be added to the predicted cost.

Total Cost

rT--------.--------.--------.-----,~

1 .00 , ""';8- '-'"
0 .95 \ -Ai-cFiea
0 .90 \\ 13EilfS- - -
0 .05 ~ostJ
0 .80 \ ,

~:~~ \ \ ,,/
0 .65 \

~.~ <~~_/
0 .<40 ~
0 .36 ~" ..
0 .30 ~" ..
0 .25 _-_ --.----------
0 .20 t::2-'::.ooc::------... -=.-=0-=0------a=-.-=0-=0------0=-.-=oo-=----....::::J Max . ht

(a)

Time
1 . 1 0 r:-r--------.--------.--------.------::::J~

1:>';&- '- '"
1 .00

0 .90

0 .00

0 .70

0 .60

0 .50

0 .40

0 .30

0 .20

.. \~-':-~----~-;!
'. ".

"'"--- -- - -- --.------

-Arches
BaITs -­
bQoS~

0 . 10 ~---------'---------'----------'-------' M.x, hl
2 .00 4 .00 6 .00 8 .00

(b)

Figure 4: Octree Perf. Characteristics (a) Predicted
(b) Actual

4.5 K-d Tree

Fig. 6 illustrates the actual characteristics of the k-d tree.
Notice that the greater flexibility in locating partitioning
planes makes the cost go down smoothly as the subdi­
vision level increases (in contrast to the ripples in the
Kaplan-BSP characteristics). The characteristics flatten
out when the construction algorithm automatically termi­
nates subdivision. In each case, optimal performance is
reached only at the height at which the original structure
would not have subdivided any further. One difference
from the octree and BSP hierarchies is the presence of
bounding volumes in the internal nodes of the hierarchy.
To include this in the predicted cost, we need to determine
the average number of bounding volumes along any path
of the k-d tree. This value is multiplied by the cost of a
bounding volume test (Cpr) and then added to traversal
cost.

5 Conclusions

Overall, the termination predictions are quite accurate.
In the cases where the prediction is off the experimen­
tally obtained optimal point for subdivision termination,
the difference in performance is usually quite small. One
thing to notice in the performance characteristics is that

Graphics Interface '91

99

Total Cost

r--------.------------T----------.~
, .00 --- __ __________ __ __ __ __ __ . __ • __ __ • trria---
0.95 ~, '"Ai-cf;ea

0 .90 ., ___ _______ _____ ~~~-
O .BS

O .BO

0 .75

0 .70

0 .65

0 .60

0.55

0 .50

0.045 L ______ -=::::===~ __ _L __________ J
5.00 10.00

(a)

T'

M.x.ht

r-------.----------.----------.--.~
1 .00 --- - . ~,;a.-

0 .95 \\ "'Ai-cfl-as
l:raira- -

0 .90 ~O!;a-
0 . B5 T-----....
O .BO \

0 .75 \

0 .70 - ______ \\ .. _ _ .. _ _ _

0 .65
~- - -0 .60 ----- - - - .------- -

0 . 55

0 . 50

0 .45

0 .40
.. ----- ---

0 .35 '-------5=-.-':-0.,..0 --------'-0-'-.00.,...,---------'-5-'-.0,..,0-'-' M.x. ht

(b)

Figure 5: ABV Hierarchy Perf. Characteristics (a)
Predicted (b) Actual

the absolute values of the cost do not agree well with the
experimentally obtained values. This is not of too much
concern since the relative changes in the characteristics
from point to point are more important than their ab­
solute values. Addition of our technique to the uniform
subdivision method, BSP trees and octrees, and ABV hi­
erarchies provides an effective means of building near opti­
mal automatic termination criteria into these subdivision
techniques, and we have validated the criterion used in
the k-d m ethod. Thus a major unknown factor affecting
the performance of such techniques has been eliminated,
allowing them to tune themselves for optimal performance
wi th high confidence.

References

[1] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Communications
of the A CM, 18(9) , September 1975.

[2] Jon Louis Bentley. Data structures for range search­
ing. Computing Surveys , 11(4), December 1979.

[3] John G. Cleary and G eoff Wyvill. Analysis of an
algorithm for fast ray tracing using uniform space
subdivision. Visual Computer, 4(2):65- 83 , July 1988.

T'"",
r----------r-----------r---------.~

'.00 ~ 1:)';8-'· '"

~:~ t \ . ~~:;;e_~
O.BS ~.... \. ___ ------.--- "toeo5tJ
O .BO ..

0 .75 \\ \

~:~ ~,\

~:E .. \\\ ...
~:~~ .-<~\::~~-=-""";""-="".:::"~-::".:".:".:"=.: ".::
0 . 25

0 .20 '--______ ---:-=-'"==-____ -_-_--_--:--::-"':--:-:-_-_-_--_-_-_" __ -' Msx . ht
10.00 15.00

Figure 6: K-d Tree Perf. Characterstics - Actua l

[4] H.C. Van de Hulst. Light Scattering by Small Par­
ticles, page 60. Dover Publications, Inc. , New York,
1981.

[5] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata.
Arts: Accelerated ray-tracing system. IEEE Com­
puter Graphics and Applications, 6(4) :16- 26 , April
1986.

[6] Donald Fussell and K .R .Subramanian. Fast ray trac­
ing using k-d trees. Technical Report TR-88-07, De­
partment of Computer Sciences, The University of
Texas at Austin, March 1988.

[7] Andrew S. Glassner. Space subdivision for fast ray
tracing. IEEE Computer Graphics and Applications,
4(10) :15- 22, October 1984.

[8] Jeff Goldsmith and John Salmon. Automatic cre­
ation of object hierarchies for ray tracing. IEEE
Computer Graphics and Applications, pages 14- 20,
May 1987.

[9] Eric A. Haines. A proposal for standard graphics
environments. IEEE Computer Graphics and Appli­
cations, pages 3- 5, November 1987.

[10] David Jevans and Brian Wyvill. Adaptive voxel sub­
division for ray tracing. Graphics Interface, May
1989.

[11] Michael R. Kaplan . The uses of spatial coherence
in ray tracing. ACM SIGGRAPH Course Not es 11,
July 1985.

[12] Timothy L. Kay and James T. Kajiya. Ray tracing
complex scenes. Computer Graphics, 20(4) :269- 278 ,
August 1986.

[13) K.R.Subramanian. Adapting Search Structures to
Scene Characteristics for Ray Tracing. PhD thesis,
Dept. of Computer Sciences, The University of Texas
at Austin, December 1990.

[14] J . David Macdonald and Kellog S. Booth. Heuris­
tics for ray tracing using space subdivision. Visual
Computer, 6(3), June 1990.

[15) John M . Snyder and Alan H. Barr. Ray tracing com­
plex models containing surface tesselations. Com­
puter Graphics, 21(4) :119- 128, July 1987.

Graphics Interface '91

100

Plate 1. Tetra. Plate 4. Balls.

Plate 2 DNA.

Plate 5. Geo58.

Plate 3. Arches.

Graphics Interface '91

