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Abstract 
A common problem in space subdivision hierarchies 

used in ray tracing is determining the proper termination 
criteria to stop subdivision. We propose a cost model 
based on scene characteristics that can be used to predict 
the correct termination point to optimize performance. 
The characteristics are determined as the hierarchy is be­
ing built. The model is applied to a variety of space subdi­
vision schemes to test its accuracy. Experimental results 
indicate the power and usefulness of this model when ap­
plied to some standard ray tracing benchmarks. 
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1 Introduction 

Ray tracing has become established as an important 
and popular rendering technique for synthesizing photo­
realistic images. However, ray tracing, if not carefully 
done, can be a computationally expensive technique. 
Consequently a great deal of research has focused on dis­
covering efficient ways to perform ray tracing. 

The principal expense in ray tracing lies in determining 
a ray's closest intersection to its origin with an object in a 
scene. This may be done several times per pixel, the exact 
number of times depending on the effects being generated 
and the scene being rendered. Research on efficient algo­
rithms has quite properly focused on minimizing the cost 
of these intersection calculations. Many of the resulting 
techniques have employed data structures for speeding up 
the search for a closest intersection on a ray. Data struc­
tures that support efficient geometric search allow us to 
look at only a small percentage of the scene to determine 
the closest intersection. Octrees [7], BSP trees [11][14], 
and nested bounding volumes [8] are examples of explic­
itly hierarchical search structures of this type, while the 
uniform subdivision method [5][3] is a non-hierarchical 
search structure. Hybrid schemes have been explored in 
[15][10]. 

While all these methods are being used with great suc­
cess, except in the case of nested bounding volumes, ter­
mination criteria for hierarchy construction algorithms 
have been totally ad hoc, leaving open the question of 
whether methods employing hierarchical search structures 

have really been exploited to their full potential. In this 
paper, we address this problem and propose methods to 
terminate subdivision at the most advantageous depth. A 
cost model is developed to relate the computational costs 
of various techniques to appropriate parameters for de­
termining that a search structure of sufficient depth has 
been constructed. This model is built using statistical 
characteristics of the input scene. It is evaluated as the 
hierarchical structure is being built and stops subdivision 
when the cost reaches a minimum. We have applied this 
model to some commonly used ray tracing hierarchies, as 
well as to the uniform subdivision method. Experimental 
results illustrate the accuracy and usefulness of our model 
for optimizing the performance of these search structures. 

2 The Problem 

We will be concerned with several of the common hier­
archical structures being used in ray tracing, including 
BSP trees, octrees, and bounding volume hierarchies. We 
also consider uniform subdivision and a space subdivision 
technique that uses k-d trees [6][13]. We begin with a 
brief description of each of these methods. 

A BSP tree is any binary tree structure used to re­
cursively partition space. In Kaplan's implementation of 
the BSP tree [11], axis-aligned planes are used to parti­
tion space. At each step of the subdivision, three slicing 
planes are used to divide space into eight equal sized oc­
tants. The recursive subdivision continues until the voxels 
contain either a small number of primitives or their size 
becomes smaller than a set threshold. In order to opti­
mize performance, this threshold must be set correctly. If 
the threshold is too high, then large numbers of primitives 
end up in each voxelj if it is too low, getting to the leaf 
nodes from the root of the tree is more expensive. Note 
that the subdivision is adaptive, in that only voxels that 
contain primitives are subdivided. Thus, the structure 
adapts itself to the input scene. 

The octree hierarchy used by Glassner [7] performs a 
subdivision identical to Kaplan's BSP tree. Each level 
of the octree corresponds to three levels of the BSP tree. 
The difference lies in the way Glassner stores the octree. 
While Kaplan builds a binary tree, Glassner uses a hash 
table, which results in considerable savings in pointer 
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space. The termination problem in the octree is thus the 
same as in the BSP tree. 

We have performed an extensive study of some of the 
important properties of search structures used to accel­
erate ray tracing [13]. This has led to the develop­
ment of a highly adaptive search structure based on the 
k-d tree, a special case of BSP trees introduced by Bentley 
[1][2]. Our k-d tree structure uses axis-aligned partition­
ing planes like many other space subdivision methods. 
Our study has shown that the SA (Surface Area) heuris­
tic for deciding the locations of the partitioning planes 
used in [14] combined with the judicious use of bounding 
volumes at some nodes of the hierarchy to prune excessive 
void space provides the good performance. 

The SA heuristic minimizes the following function in 
trying to locate a space partitioning plane: 

f(b) = SAI(b) .nl + SAr(b) .nr (1) 

where b is a partitioning plane, nI, nr are counts of objects 
on both sides of b, and SAI(b), SAr(b) are surface areas 
on both sides of b. In our implementation, SAl (b) and 
SAr(b) are measured by the surface areas of the bound­
ing volumes that enclose the objects on either side of the 
partition. Once a partitioning plane is determined, the 
sets of objects on each side of the plane are recursively 
partitioned so long as there is at least one primitive on 
each side of the partitioning plane and at least one of 
them is completely on one side of the plane. Insertion of 
a plane creates a pair of nodes, the union of whose extents 
equals the parent's extents. In cases where a new node's 
extents are much larger than the bounding box of the oh­
jects included in the node, this bounding box is stored in 
the node. 

The uniform subdivision method subdivides space into 
a 3-d grid of equal-sized voxels. To determine the closest 
intersection of a ray with an object in the scene, a mod­
ified form of Bresenham's line algorithm in three dimen­
sions is used traverse the voxels efficiently along the ray. 
The non-adaptive nature of this structure can result in 
large regions of empty voxels, which are expensive to tra­
verse. However, restricting the subdivision can also put 
large numbers of primitives in some of the voxels. Thus, 
it is difficult to know the correct amount of subdivision 
without any knowledge of the scene characteristics. 

The major problem in bounding volume hierarchies is 
finding suitable clusters of primitives to build the hierar­
chy from the point of view of performance. Goldsmith's 
[8] automatic bounding volume hierarchy (ABV) takes an 
important step in this direction. The bounding volume 
surface area is shown to be intimately related to the cost 
of the hierarchy. To construct the hierarchy of volumes, 
each object is considered a prospective child of each node 
to be searched. When the search reaches the leaf nodes, 
the new node and the leaf node are proposed as siblings 
of a new non-leaf node, replacing the old leaf node. Af­
ter the search, the object is inserted into the tree where 
it causes the least increase in the total bounding volume 

surface area. 

3 The Cost Model 

Ray tracing hierarchies are built for the sole purpose of 
speeding up the intersection search. All of these struc­
tures help in drastically reducing the search space of each 
ray. This is accomplished in two different ways: 

1. The search is ordered along the path of the ray, 
starting from its origin. This helps in terminating 
the search once an intersection is found. 

2. The search examines only parts of the scene that 
are close to the ray. Even if no intersection is 
found, only a fraction of the scene would have been 
examined. 

However, using a search structure introduces a new ex­
pense: the cost of traversing it. So long as the cost in 
traversing the structure is overwhelmed by the gains in 
reducing the ray-search space, we are improving perfor­
mance. The question is, what is the cutoff point? 

3.1 Search Structure Costs 

We can identify two major costs involved in using a search 
structure: 

1. The cost in exammmg the scene, C.c(h, s)(h is 
the height and s is a search structure). This is 
the cost of performing ray-object intersections and 
ray-bounding volume intersection tests (when ob­
ject primitives are enclosed by bounding volumes) . 

2. The cost in traversing the search structure, 
Ctr(h, s). This is the cost of going down the hi­
erarchy to the leaf nodes. Depending on the ac­
tual search structure, this could involve partition­
ing plane intersections, bounding volume tests in 
the internal nodes of the hierarchy, or just com­
pares between ray coordinates and the partition­
ing planes. It also accounts for the cost involved 
in determining the next region along the path of 
the ray to be searched. 

Other costs in ray tracing such as building the search 
structure and lighting calculations are not significant 
when compared to the total run time. As we start suh­
dividing the scene, C.c(h, s) decreases and Ctr(h, s) in­
creases. The rates of increase/decrease of these two costs 
will determine the performance of the search structure. 
We are interested in terminating the search structure at 
the height that minimizes C.c(h, s) + Ctr(h, s). 

3.2 Determining C8C(h , s) 

Our next step is to determine estimates for C.c(h, s) and 
Ctr(h, s) . To be of any practical use, the expressions that 
we obtain must be dependent on characteristics of the 
scene being rendered that can be determined easily. 
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Let us look at C. e ( h, s), the cost involved in examining 
the scene. What we want to know is, at any particular 
level of subdivision, what portion of the scene is examined 
by each ray. One way we can determine this is to try to 
compute the number of primitives examined by a rayon 
the average. So 

n-l Ri(h ,.) 

C.e(h, s) = C; L L npr(i, r, h, s) 
t=O r=O 

where 
Cpr = cost of examining a primitive for intersection. 
npr(i, r, h, s) = number of primitives examined by ray i 
in region r. 
n = total number of rays spawned. 
Ri(h , s) = number of regions examined by ray i. 
h = height of search structure. 
s = search structure. 

Determining npr(i, r, h , s) before ray tracing is not easy. 
However, the dependency of n pr ( i, r, h, s) on region r can 
be removed by approximating it by an average region 
primitive count. The dependency of Ri(h, s) on i also 
makes it a quantity difficult to compute before ray tracing. 
Approximating Ri(h, s) by R(h, s), the expected number 
of regions visited by any ray before it terminates, the 
scene cost becomes 

Cpr (nR(h, s))npr(h, s) 
n 

CprR(h, s)npr(h, s) 

where npr(h, s) = average number of primitives in each 
region of the search structure s of height h. 

npr(h, s) can be determined by summing up the object 
counts at the leaf nodes of the hierarchy (for the uniform 
subdivision method, the object counts in each voxel) . A 
weighted average of these counts is calculated, the weights 
being a measure of the size of the regions. For instance, 
the bounding volume surface area can be used to weight 
the object counts. This is necessary since larger sized 
regions have a higher probability of being visited more 
often (as we will show next). Cpr can be taken as the 
average cost of a bounding volume intersection test. In 
our implementation, all object primitives are enclosed by 
bounding volumes. The only other unknown quantity, 
R( h, s), the expected number of regions examined by each 
ray, will be estimated as follows. 

In determining R(h, s), we must bear in mind that the 
intersection search is ordered along the path of the ray. 
Once an intersection is found, processing stops for that 
particular ray. How quickly this might happen depends 
on the scene complexity, in terms of how dense or space 
filling the primitives in the scene are. 

Let pj represent the probability that the ray has an 
intersection with a primitive in region j. Then (1 - Pj) 
will be the probability that the ray will not intersect any 
primitive in region j. Also, let us assume that the ray is 
within the scene of interest, so that at least one region 

must be examined for intersection. The expected number 
of regions visited by a ray under these conditions is given 
by the following relation, 

k i-I 

R(h,s) M AX(l, L iPi II(1- Pj)) 
i=1 j=1 

Again, we can use an average region probability instead 
of the PjS. Let this probability be P, a weighted average 
of the probabilities accounting for the different sizes of 
the regions. The above expression becomes 

k i-I 

R(h,s) = M AX(l, L ip II (1 - p)) 
i=1 j=1 

k 

M AX(l, L ip(l _ p)i-l) 
i=O 

~ lip for large k. 

3.3 DeterIllining Region Probability p 

The average region probability P is the (average) proba­
bility with which an incoming ray penetrates any object 
primitive in a region Determining this accurately is very 
expensive and might be impossible since it depends on 
the geometry of the region, the primitives in it and the 
ray distribution. Thus we need to find a reasonable ap­
proximation. 

An approximation to this has already been used by 
Goldsmith [8]. If the ray directions are assumed to be 
uniform, then the conditional probability that a ray will 
penetrate a convex region B given that it penetrates en­
closing convex region A is equal to the ratio of the average 
projected area of B to that of A. It can be shown that 
the average projected area of a convex region is equal to 
one quarter of its surface area [4][13], so 

P(BIA) = AreaB 
AreaA 

P(CIA) = Areac 
AreaA 

The region probability can be estimated by enclosing 
the collection of primitives by a convex bounding volume. 
Since most space subdivision methods produce convex 
partitions, the regions are already convex. The ratio of 
primitives' bounding volume surface area to that of the 
region gives an estimate of the conditional probability. A 
more accurate value of P can be obtained by enclosing in­
dividual primitives with bounding volumes, thus account­
ing for the void space between primitives. However , if two 
bounding volumes overlap, then the overlap area has to 
be subtracted out since it cannot be counted twice. In our 
implementation, we use the ratio of bounding volume sur­
face areas to estimate the conditional probability. Each of 
the region probabilities must be weighted by the region 
size (again, the region surface area can be used) when 
we compute the average probability. For instance, if Ai 
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Figure 1: A Bounding Volume Hierarchy 

represents the bounding volume surface area and Ei, the 
surface area of the extent of the same region (Ai ~ Ei), 
then the region probability is given by 

p 

",n E A 
L."i=l i * E:" 

",n E 
L.....i=l • 

n 

LAi/Ei 
,=1 

3.4 D etermining Ctr(h, s) 

The traversal cost Ctr(h, s), in general, is bounded by the 
following form. 

C'r(h, s) = R(h, s) * Cr(h, s) 

where 
R(h, s) = expected number of regions examined. 
Cr(h, s) = average traversal cost expended per region. 

Cr(h, s), in general, involves the cost of determining 
the region containing the origin of the ray and the cost of 
identifying the next region visited by the ray if the inter­
section search is unsuccessful in the current region. For 
hierarchical structures, the cost of reaching the leaf nodes 
from the root has to be calculated. This is found by mul­
tiplying the work done per node by the average height of 
the hierarchy. The average height of the hierarchy is also 
a weighted quantity, since paths leading to nodes which 
are larger in size will be visited more often by rays when 
compared to paths leading to smaller sized regions. For 
the uniform su bdi vision method, C r (h, s) is determined 
by the work done in moving from the current voxel to the 
next voxel visited by the ray. 

3.5 Modification for Bounding Volume Hier­
archies 

In bounding volume hierarchies, the traversal of the hier­
archy is usually not along the path of the ray. The ex­
pected number of regions examined by each ray, R(h, s), 
is calculated in a different way. The method is outlined in 
detail in [8]. Consider the simple bounding volume hierar­
chy in Fig. 1. Square nodes are internal nodes containing 
the bounding volume of the subtree of the scene. Circle 
nodes representing primitive objects are the leaf nodes. 

Ray counts are in thousands 

Scene Tetra DNA Arches Balls Geo58 
Objects 1024 410 4818 7382 306 
Obj. Type P S P PS P 
Lights 1 1 2 3 3 
Total rays 299 445 437 1819 847 
Visual rays 262 323 317 722 392 
Shadow rays 37 122 120 1097 455 
Hit rays 44 75 73 873 278 

Table 1: Statistics of Test Scenes. 

Assume only rays intersecting the root bounding vol­
ume are of interest. The expected number of regions ex­
amined is given by (refer to [8] for details) 

R(h, s) = 1 + 4P(AIA) + 2P(BIA) + 3P(CIA) + 
2P(DIA) + 2P(EIA) + 3P(FIA) + 2P(GIA). 

where P(II J) represents the conditional probability that 
node I is intersected given that J has already been inter­
sected. The conditional probabilities are determined by 
using the approximation given in the previous section. So 
the total cost is 

C = CprR(h, s)npr(h , s) 

where Cpr is the cost of a bounding volume test and 
npr(h, s), the average number of primitives at each leaf 
node. In Goldsmith's method, npr(h, s) = 1. The above 
equation represents the total cost. 

4 Implementation and Experimental 
Results 

We have implemented the uniform subdivision method, 
BSP tree, octree, automatic bounding volume hierarchy 
and the k-d tree methods to test the cost model. All ex­
periments were conducted on a Sun 4/280 workstation 
running SunOS UNIX1 4.0.3. Five different data-sets 
were used as test cases. Details of these datasets are given 
in Table 1, where P stands for polygons and S for spheres. 
Images of these models are shown in Plates 1 through 5. 
Several of these are standard benchmarks [9] available in 
the public domain. The termination parameter used in 
all these methods (except for uniform subdivision, where 
it is the grid resolution n_grid) is the maximum height. 

In our implementation, each primitive is surrounded 
by a bounding volume which is an axis-aligned paral­
lelepiped. Bounding volumes around collections of prim­
itives are also axis-aligned parallelepipeds. Cpr , the cost 
of testing a primi ti ve is taken to be the cost of a bounding 
volume test. In our implementation C pr = 15.5 floating 
point operations. In all the methods except the ABV hier­
archy, the search stops as soon as an intersection is found. 
Also, duplicate object intersection tests are avoided by 

1 UNIX is a trademark of AT&T Bell Laboratories. 
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Figure 2: U nif. Subd. Perf. Characteristics (a) pre­
dicted (b) Actual 

maintaining ray signatures in all object records. An ob­
ject is tested for intersection with a ray only if it has not 
been examined by the current ray. 

As we start building the hierarchy, C.c(h, s) and 
Ctr (h, s) are computed for each value of the maximum 
height. Initially, the decrease in C.c(h, s) will overwhelm 
the increase in Ctr(h, s). What we are looking for is the 
point where the total cost reaches a minimum. It is possi­
ble that there might be several local minima (for example, 
the BSP and octree structures exhibit this characteristic). 
If these are all close to each other, we could pick anyone 
of the minima with little difference on performance. 

For each method, we plot both the predicted and actual 
performance characteristics as a function of the termina­
tion parameter. For the predicted characteristic, the total 
cost = C.c + Ctr . This is plotted against the maximum 
height (the grid resolution, for the uniform subdivision 
method). The actual characteristic is a plot of the run­
ning time (which is a measure of the total cost) versus 
th e t ermination parameter. The total cost has been nor­
malized from 0.0 to 1.0 so as to fit all the test cases in the 
same graph plot. 
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Figure 3: Kaplan-BSP Perf. Characteristics (a) Pre­
dicted (b) Actual 

4.1 Uniform Subdivision Method 

Our implementation of uniform subdivision method fol­
lows very closely the algorithms outlined in [3]. In this 
structure, all voxels are of uniform size. Traversing a ray 
involves identifying the voxels along the path of the ray 
in the three-dimensional grid. In our implementation, it 
takes about 6.5 floating point operations to move from 
one voxel to the next, on average. Thus C r = 6.5. Cpr 

is the cost of a bounding volume test , as before. The re­
gion probabilities and the average leaf object counts are 
computed as explained previously. 

Fig. 2 shows the performance characteristics and re­
sults for the uniform subdivision method. Here n..grid is 
the resolution of the grid in each of the three dimensions. 
For testing the cost model, the resolution is doubled in all 
three dimensions each time we subdivide. In our imple­
mentation, we used polyhedral bounding boxes [1 2] to en­
close the primitives when clipping to voxels. The clipped 
points were used in computing an axis-aligned bounding 
box within the voxel. The surface area of this box was 
used in computing the region probability. More accurate 
methods of determining the surface area of the primitive 
within the voxel will improve the predictions. 
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4.2 BSP Tree 

Our implementation of the BSP tree hierarchy is very sim­
ilar to that of Kaplan's [11]. One difference is that each 
subdivision step does not necessarily produce eight oc­
tants. If for example, a plane has subdivided the original 
space into two equal sized voxels and one of them does not 
contain any primitives, then it is not subdivided by the 
remaining two planes. This results in a smaller number of 
empty regions, thus making the structure more adaptive 
to the scene. 

The traversal method used in our implementation is de­
scribed in [6]. In this method, the ray is intersected with 
the separating plane stored at each node of the hierarchy ' 
to decide the order in which the regions are traversed. 
On the average, our implementation requires 4.5 floating 
point operations (Cr = 4.5) to make this decision. This 
has to be multiplied by the average height of the hierar­
chy, to account for the work done to reach the leaf nodes. 

Fig. 3 shows the performance characteristics and re­
sults for the BSP tree structure for several scenes. Over­
all, the predicted heights are very close to the optimal 
heights obtained by the experiments. In general, for the 
BSP tree structure, there is a small range of heights at 
which the performance stays relatively constant. It is in­
teresting to note that in some of these cases, optimal per­
formance occurs well beyond the logarithm of the number 
of objects. 

4.3 Octree 

To implement the octree, we modified our BSP tree im­
plementation so that at each step of the subdivision, eight 
equal sized voxels were created. The data was then col­
lected as in the BSP tree case. The traversal method used 
is the same as in the BSP tree method. Fig. 4 shows the 
performance characteristics and results of using the cost 
model. As expected, the performance is slightly worse 
(Balls and Ge058 scenes) than the BSP tree case because 
of the additional empty voxels that need to be processed 
in the octree. Note that each level of the octree corre­
sponds to three levels of the BSP tree. 

4.4 Automatic Bounding Volume Hierarchy 

Goldsmith's automatic bounding volume hierarchy also 
stops building the hierarchy beyond a certain height since 
a heuristic search determines an insertion point in the hi­
erarchy for each object primitive. Fig. 5 illustrates the 
performance characteristics of the automatic bounding 
volume hierarchy and results of using the cost model. In 
the DN A model , there is a height at which the cost reaches 
a minimum (which illustrates that even the ABV hierar­
chy is not immune to the termination problem), while 
in all the other cases, the cost remains flat after a cer­
tain height. Since all the scenes except Tetra have large 
numbers of secondary rays, the cost of going down the 
hierarchy has to be added to the predicted cost. 
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Figure 4: Octree Perf. Characteristics (a) Predicted 
(b) Actual 

4.5 K-d Tree 

Fig. 6 illustrates the actual characteristics of the k-d tree. 
Notice that the greater flexibility in locating partitioning 
planes makes the cost go down smoothly as the subdi­
vision level increases (in contrast to the ripples in the 
Kaplan-BSP characteristics). The characteristics flatten 
out when the construction algorithm automatically termi­
nates subdivision. In each case, optimal performance is 
reached only at the height at which the original structure 
would not have subdivided any further. One difference 
from the octree and BSP hierarchies is the presence of 
bounding volumes in the internal nodes of the hierarchy. 
To include this in the predicted cost, we need to determine 
the average number of bounding volumes along any path 
of the k-d tree. This value is multiplied by the cost of a 
bounding volume test (Cpr ) and then added to traversal 
cost. 

5 Conclusions 

Overall, the termination predictions are quite accurate. 
In the cases where the prediction is off the experimen­
tally obtained optimal point for subdivision termination, 
the difference in performance is usually quite small. One 
thing to notice in the performance characteristics is that 
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Figure 5: ABV Hierarchy Perf. Characteristics (a) 
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the absolute values of the cost do not agree well with the 
experimentally obtained values. This is not of too much 
concern since the relative changes in the characteristics 
from point to point are more important than their ab­
solute values. Addition of our technique to the uniform 
subdivision method, BSP trees and octrees, and ABV hi­
erarchies provides an effective means of building near opti­
mal automatic termination criteria into these subdivision 
techniques, and we have validated the criterion used in 
the k-d m ethod. Thus a major unknown factor affecting 
the performance of such techniques has been eliminated, 
allowing them to tune themselves for optimal performance 
wi th high confidence. 
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Plate 1. Tetra. Plate 4. Balls. 

Plate 2 DNA. 

Plate 5. Geo58. 

Plate 3. Arches. 
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