
Topological Noise Removal

Igor Guskov Zoë J. Wood

Caltech

Abstract
Meshes obtained from laser scanner data often contain

topological noise due to inaccuracies in the scanning and
merging process. This topological noise complicates sub-
sequent operations such as remeshing, parameterization
and smoothing. We introduce an approach that removes
unnecessary nontrivial topology from meshes. Using a
local wave front traversal, we discover the local topolo-
gies of the mesh and identify features such as small tun-
nels. We then identify non-separating cuts along which
we cut and seal the mesh, reducing the genus and thus
the topological complexity of the mesh.

Key words: Meshes, irregular connectivity, topology.

1 Introduction

Acquisition of computer models with highly detailed
geometry is currently practical due to developments in
laser range finder technology. Raw irregular meshes
coming from model acquisition contain millions of tri-
angles, and require efficient processing tools. Such
data is typically converted (or remeshed) into a more
efficient and “regular” representation such as NURBS
or other spline/subdivision-based multiresolution surface
representations [22][18] [21][25][24]. Several remeshing
methods use simplification hierarchies of the initial irreg-
ular mesh in order to build efficient computational pro-
cedures. However, raw irregular meshes extracted from
noisy volumetric data often have small tunnels and han-
dles: artifacts of the acquisition process. We present an
algorithm to eliminate such topological “noise”, greatly
improving the construction of the simplification hierar-
chy and thus in turn, improving the final remeshed model.

Due to the large size of scanned geometry, the man-
ual removal of artifacts is a tedious and time-consuming
task; we would like to automate this process as much as
possible. However, models such as mechanical parts po-
tentially have important non-trivial topology (holes, han-
dles, tunnels, etc.). One therefore needs a clear criteria to
discern which tunnels can be safely removed algorithmi-
cally. The contribution of this paper is to introduce a sim-
ple criteria for identifying topological noise, and a fast al-
gorithm that finds small tunnels in the data, and removes
them one by one. The user can control criteria to help de-

termine which tunnels are noise and which are inherent
to the model. In addition, we show that the performance
of the naive implementation of our topology filtering al-
gorithm can be significantly improved by a preprocessing
step.

Figure 1: Scanned meshes from Stanford 3D model repos-
itory [26]. All three meshes are valid 2-manifolds:
the Buddha has genus 104, the dragon has genus 46,
and David’s head has genus 340. Most of these tun-
nels/handles are noise and can be safely removed.

To demonstrate our approach we apply our technique
to a variety of the Stanford laser range finder datasets.
For example, we consider the dataset of the David’s head
from Stanford’s Michelangelo project [26]. The original
irregular mesh has genus 340. Obviously, none of these
340 tiny tunnels are actually present in the original sculp-
ture, therefore all these tunnels (or handles) can be re-
moved to facilitate further processing tasks. An irregular
mesh of David’s head containing more than a million tri-

angles is processed by our algorithm in one hour, remov-
ing 313 (92%) of the tunnels automatically. Complete
filtering can also be made efficient using a combined fil-
tering and simplification approach (see section 3 for more
details).

1.1 Setting

The main application of our method is the processing
of meshes coming from 3D model acquisition such as
laser scanning. During acquisition, a complex model is
often built from several scans. A number of popular
mesh reconstruction methods [9][31] [19] combine sev-
eral range maps using an auxiliary volumetric represen-
tation: a signed distance volume constructed from a col-
lection of scans. An isosurface is then extracted using the
Marching Cubes algorithm [27]. The result is an irreg-
ular mesh that is a proper manifold with boundary. The
data coming from the scanner can be noisy and incom-
plete, hence the topological noise in the signed distance
volume.

While the manifold property of the extracted surface
can be guaranteed with small modifications to the orig-
inal Marching Cubes algorithm[23], we observe that for
noisy data it still produces topological artifacts such as
tiny handles. It is often important to remove these han-
dles so that they do not encumber later processing, such
as simplification [20], smoothing, denoising [10], and pa-
rameterization for texture mapping and remeshing. Fig-
ure 6 shows the result of applying a smoothing proce-
dure to a mesh with handles. While most of the surface
gets smoother, the areas containing handles have visible
artifacts. These handles will also complicate parameter-
ization and for example, require unnecessary seams for
texture mapping.

Topological artifacts
will also cause problems
for simplification algo-
rithms that assume that
the original mesh is a
proper manifold with a
boundary and preserve
the genus of the surface
for each simplification
step. The inset on the

left shows an example of such “poor” simplification.
Such simplification is often used as an integral part of
some larger multiresolution processing procedure that
may rely on the topological equivalence of meshes on
different levels of the hierarchy [25][8][17] [35][18].

1.2 Related work

A variety of researchers have relied on coding or match-
ing the topology of a given mesh to a new configura-

tion [29][3][4]. Most recently a lot of attention has been
directed towards general simplicial complexes. Specif-
ically, the problem of preserving the topology of sim-
plicial complexes while applying edge contractions was
considered by Dey et al. [34]. The recent paper by Edels-
brunner et al.[11] considers topological simplification in
the context of alpha complexes. It is worth noting that
topological simplification of simplicial complexes in R3

is a much harder and less intuitive problem than the one
we consider.

El-Sana and Varshney [12][13] address a similar prob-
lem of controlled topology simplification for polygonal
models. Their approach identifies removable tunnels by
rolling a sphere of small radius over the object and fill-
ing the tunnels that are not accessible. The method per-
forms well for mechanical CAD models. The interaction
between mesh and topology simplification is also consid-
ered. Our approach is different in that it identifies tunnels
by working within the surface, and thus can be applied to
self-intersecting meshes as long as they are topologically
2-manifolds. Also, the focus of our work is to identify
very small tunnels in noisy meshes.

Work has been done by Stander et al [33] on using crit-
ical points from Morse theory to guarantee the topology
of the polygonization of an implicit surface. It is diffi-
cult to generalize this work to the irregular mesh setting
without becoming computational intensive (see [6] for
a potential solution). We focus on discrete methods that
can rapidly discover the topology.

Recent work by Wood et al [37] presented an algorithm
to quickly identify and reconstruct the topology of a sur-
face implicitly represented in a volume. This work uses a
wave front traversal in order to identify the global topol-
ogy of the surface. The algorithm presented here has sim-
ilarities but is generalized to the mesh setting with opti-
mizations to discover small local topology and with op-
timizations to identify topological events. This work is
closely related to work done by Axen [7] which relates
a discrete wavefront traversal and critical points from
Morse theory. However, neither of these approaches are
used to filter the topology of the surface and thus do not
present techniques to discover separating cuts nor change
the genus of the surface.

It is worth noting that there is another way to poten-
tially “filter” or smooth the noisy topology of scanned
data by smoothing/down-sampling the initial volume
data. Although this approach may remove many of the
small tunnels present in the data, it will do so in an un-
controlled manner and will potentially wipe out other fea-
tures of the model (thin tubes and connected components
could be broken apart and the finer detailed geometry will
disappear). Recent work by Gerstner and Pajarola [16]

on topology preserving volume simplification is one po-
tential solution to try to control the effect of the down-
sampling, however, presently this work offers no method
to distinguish important topology inherent to the model
(such as a large handle) and small tunnels.

Finally, a great deal of work has been focused on sim-
plifying meshes in general. Work by both Popovic and
Hoppe [30] and Garland and Heckbert [15] could be ap-
plied to simplify “away” the small noisy tunnels present
in the scanned meshes. However, in our work we seek
more explicit topology changes that can be potentially
adapted in a multiresolution processing algorithms such
as MAPS [25].

1.3 Overview of the algorithm

(a)

(e)(d)

(c)(b)

(f)

Figure 2: (a-e) Overview of the algorithm: (a) a small
region is grown around a seed face; (b) the genus of the
grown region becomes non-zero; (c) a non-separating cut
is found; (d) the mesh is cut; (e) both new holes are
sealed. (f) The left handle is “fully inside” a ball of a
small radius; the right handle is not. Note that both han-
dles could be eliminated by short cuts. Our algorithm
will only remove the left handle. (Formally, the left high-
lighted region is of genus one, while the right highlighted
region is of genus zero.)

We follow an approach similar to the ones presented
in Wood et al. [37] and Axen et al.[7]. We grow an
open region by adding faces one by one, while explicitly
maintaining the active front edges. Every time a bound-
ary component of the growing region touches itself along
an edge, we split this boundary into two smaller bound-
ary fronts and continue propagation. This results in a
tree of active front components. Whenever boundaries of
two different components touch along an edge, we claim
to have found a handle. There are two stopping criteria
for our region growing procedure – we either exhaust all
the faces that are closer than some given radius from the
seed face, or we actually find a handle in which case the
growing stops and the mesh is cut along a non-separating
curve. This operation does not change the connectedness
of the surface but does reduce its genus introducing two
new holes (boundaries), which are later triangulated us-
ing methods described in [32][25], or commercial pack-
ages [1][2]. (Figure 2 illustrates the entire process.) In
this way, we remove the small handles one by one, filter-
ing the local topology of the mesh.

2 Algorithm

We consider a triangular mesh M = (K,x) where
K = V ∪ E ∪ F is an abstract simplicial complex rep-
resenting the connectivity of the mesh (V , E , and F are
sets of vertices, edges, and faces, correspondingly), and
x : V → R3 is the coordinate function that gives the
coordinates of every vertex of V . x can be extended to
the polytope |K| ofK using barycentric coordinates [28].
In this paper the focus is on meshes extracted as isosur-
faces of certain volumetric functions, and therefore, such
meshes are guaranteed to be orientable manifolds. Thus,
all meshes considered in this paper are presumed to be
orientable manifolds with boundary. Topology of such
surfaces is easily characterized by their genus.

2.1 m-Closures
Our interest lies in finding “small” tunnels in the mesh,
where the “smallness” will be defined later. Thus, we
need to characterize topological properties of local re-
gions of the mesh. For example, given a collection of
faces T = {t1, t2, . . . , tk}we would like to explore topo-
logical properties of the surface region defined by this
set of faces. One way to approach this characterization
would be to find the closure T̄ inK, and look at its proper-
ties. Note that the closure T̄ for arbitrary T may not have
the manifold property anymore, see Figure 3 for example.
It is in fact a subcomplex ofK and can be characterized as
a general 2-complex, see [36]. However, that characteri-
zation is far too general for our purposes here. We there-
fore introduce a different “closure” operation that for a
mesh region builds a corresponding mesh that is a man-
ifold with boundary, and as such can be easily described
by its genus. We call this operation manifold closure or
simply m-closure, defined as follows.

v

v
(1)

v
(3) v

(2)

Figure 3: Non-manifold closure (Nv = 3) is fixed by mak-
ing three copies of the vertex v.

First, note that Figure 3 represents the only way that T̄
can be non-manifold. Moreover, it can be fixed with the
following procedure (see Figure 3 for an illustration): for
every non-manifold vertex v ∈ T̄ its star neighborhood
in T̄ can be written as union of a number of semi-stars
H
(i)
v : StT̄ v =

⋃Nv
i=1H

(i)
v , where

⋂Nv
i=1H

(i)
v = {v},

and each semi-star is of the form: H
(i)
v =

{{v} , {v, u0} , {v, u0, u1} , . . . , {v, uk−1, uk} , {v, uk}}.
We define the m-closure of T inK as the mesh obtained

from T̄ by splitting every non-manifold vertex v withNv

adjacent semi-stars into Nv vertices v(1), . . . , v(Nv), and
replacing each occurrence of v in the simplices of StT̄ v
by the appropriate new vertex depending on which semi-
star they belong to. We denote the resulting mesh as m̄T .
Note that the interiors of m-closure and usual closure co-
incide: int T̄ = int m̄T .

2.2 Small tunnels
It is now necessary to define which tunnels need to be
removed. For that purpose, we consider the dual graph
(F , E ′) of the mesh M where a dual edge (t1, t2) be-
tween two faces of the mesh is in E ′ if t1 and t2 share a
(primal) edge in the triangulation. If some non-negative
weight functionw is defined on E ′, we can now define the
distance d(s, t) between any two faces s and t as the min-
imal sum of weights over all the paths in the dual graph.
One easy example is given by settingw(e′) = 1 for every
e′ ∈ E ′. It is also possible to make weights that would ap-
proximate geodesic distances on a manifold. In this paper
we use w ≡ 1.

Now we can give the general principle that we use to
remove small tunnels:

ε-simple meshes
MeshM is ε-simple if for every face t ∈ F the m-closure
of dual ε-ball m̄ {s : d(s, t) < ε} is of genus zero.

Our goal therefore becomes to convert a given mesh
into an ε-simple mesh. This can be done by finding
closed cuts that leave the mesh connected. Each such cut
will reduce the genus of the surface by one. In the fol-
lowing sections, we introduce an algorithm to find such
non-separating closed cuts (a cut is non-separating if it
leaves the surface connected [5].) These cuts will be
found inside the corresponding ε-balls; note however that
such short non-separating cuts can exist in meshes that
are ε-simple for small ε, such as the ones containing long
narrow handles, see Figure 2(f). However, it is not clear
that such long handles should be automatically removed.
In our approach, we will only find cuts corresponding to
handles that are completely contained in small regions of
the mesh.

The size for ε varies depending on the input data and
the relative size of tunnels to be filtered. For example, in
practice we found that values ranging from four to twelve
were appropriate for input models ranging from 184K to
4,000K faces.

2.3 Region growing
In this section we describe an algorithm that looks for
tunnels in the neighborhood of a seed face. Later, in Sec-
tion 2.6 we explain a global search for tunnels that will
use this local procedure as an elementary operation.

The local procedure starts with a seed face tseed ∈ F .
The faces from the ε-ball around tseed are considered one
by one in the order produced by using Dijkstra’s algo-
rithm on the dual graph. Thus, a sequence t1, t2, . . . , tk
is constructed. We define the i-th active region as
Ai(tseed) := m̄ {tseed, t1, . . . , ti} for i = 1, . . . , k. Al-
gorithmically, the active region is grown one face at a
time, while the explicit representation of active bound-
aries is maintained. Every time a new face is added, we
check the genus of the resulting active region. The pro-
cess starts with one triangle which is obviously of genus
zero. We then proceed either until all the faces of the
ε-ball are exhausted, or until we find that after the cur-
rent triangle is added, the genus of the active region has
grown. If the latter happens, the region growing stops and
a non-separating closed cut is found inside the active re-
gion. We then cut the mesh (possibly locally subdividing
it), seal the two resulting holes, and start with the current
seed face again. Thus, the small tunnels in the mesh are
extinguished one by one.

We now describe the particulars of maintaining the ac-
tive region and tracking its genus.

2.4 Evolution of the active region
Suppose the active region A is given and another face t
needs to be added to it. By construction, A ∩ t contains
an edge. The change of active region is performed using
the following three operations: add-triangle, close-crack,
and merge-edge1 . We describe these operations below in
more detail.

Add-triangle
We assume that the active region and the new incoming
triangle share at least one common edge. Then the add-
triangle operation adds the triangle to the active region by
merging across a common edge. The resulting mesh has
one more face, two more edges, and one more vertex than
the original one (see Figure 4(a)). The number of bound-
ary components does not change. Thus, the genus of the
corresponding mesh region does not change. Indeed,

χnew = Vnew −Enew + Fnew +Hnew
= (Vold + 1)− (Eold + 2) + (Fold + 1) +Hold
= χold.

Since the genus of the region is g = 1 − χ/2, and
χ is unchanged, the genus of the current mesh region is
preserved during the add-triangle operation.

In order to find the non-intersecting cut later, each face
stores a pointer to the face to which it was added. To set

1Note that there is no need for a merge-vertex operation (when a
single vertex is adjacent to more than two boundary edges) due to m-
closure.

up the notation, let t be the new face and t′ ∈ A be a face
from the active region that shared a common edge with t.
We call t′ the parent of t, or t′ = parent(t).

Close-crack
Once the new triangle is added to the mesh we need to re-
solve possible self-adjacencies along the boundary. One
local inconsistency is depicted in Figure 4(b). We fix
the boundary locally by eliminating two boundary edges.
The resulting mesh has one less edge, and one less vertex
than the original one. The number of faces and bound-
ary components does not change. Thus, the genus of the
corresponding mesh does not change. Again,

χnew = (Vold − 1)− (Eold − 1) + Fold +Hold
= χold.

(a) (b) (c)
Figure 4: (a) add-triangle operation; (b) close-crack op-
eration; (c) merge-edge operation. Current mesh region
shown in gray, with its boundary in blue.

Merge-edge
The last operation required to maintain a consistent active
region is not local, in that it requires adjacency tests be-
tween different parts of the boundaries, or even between
different boundary components. Indeed, the close-crack
operation cannot resolve situations such as the one shown
in Figure 4(c). Here two edges lying on two separate
pieces of the boundary of the current region correspond
to the same edge of the original mesh. We fix this in-
consistency by merging the current region(s) across this
edge. As a result the number of boundary components
will either increase by one (when the merged edges be-
long to the same boundary component), or decrease by
one (when two different boundary components become
one). Note that these two cases closely correspond to the
topological events described in [37], when a region of the
active edge front either splits into two when a handle in
the surface is encountered, or when it merges back into a
single front at the other side of the handle. The merge-
edge operation results in one less edge and two less ver-
tices for the active region, and the number of faces does
not change. Depending on the value of the change in the
number of boundary components we will encounter two
cases:

A boundary splits.

χnew = (Vold − 2)− (Eold − 1) + Fold + (Hold + 1)
= χold.

Boundaries merge.

χnew = (Vold − 2)− (Eold − 1) + Fold + (Hold − 1)
= χold − 2.

In this last case the genus of the active region increases
by one. When this final case is detected, we proceed by
performing a non-separating cut, thus reducing the genus
by one.

Figure 5: Running the algorithm locally: (a) the active
region is seeded with a single face; (b) propagation has
started; (c) the active region has two boundary compo-
nents; (d) two boundary components have merged and a
non-separating cut is found in a locally subdivided mesh.

2.5 Cutting the mesh

tseed

t(1)

t(2)
p(2)

p(1)

In this section, we
describe how a non-
separating cut is found
inside the active region
after a merge-edge op-
eration has merged two
boundary components.

Suppose that the two boundaries merged along the edge
eM = {v(1), v(2)} = t(1) ∩ t(2). We build two sequences
of faces, p(1) and p(2), defined as p(j) = (t(j)1 , . . . , t

(j)
Kj
),

where t(j)k+1 = parent(t
(j)
k), j = 1, 2. Note that both

of these face paths end at the original seed face which
has no parent. After excluding a common tail of these
two paths we have a closed path in the dual graph of the
active region. It is then possible to subdivide the faces
on this closed path so that there is a closed cut along the
edges of this locally subdivided mesh which does not
intersect itself, see figure below. Note that this path is
completely inside the interior of the current active mesh
region.

We can also prove that this cut is non-separating, that
is, it leaves the active mesh region (and hence the mesh
itself) connected. In order to prove that we simply no-
tice that the two vertices v(1) and v(2) lie on the different
sides of the cut locally but we can reach v(2) from v(1)

by following the boundary of the current active region
(we can do that because the cut is fully inside the active
region and thus does not touch the boundary). We also
further reduce the length of the cut, by using reductions
similar to the one shown in above figure. During these
reductions we do not allow faces t(1) and t(2) to disap-
pear, therefore the argument above still holds. We then
seal these two new gaps in the mesh, and thus remove the
handle. Figure 5 illustrates the process on a fragment of
a real mesh.

The subdivision performed during the cut computation
changes distances in the dual graph. We fix this problem
by assigning zero weights to the new edges introduced
during subdivision (of course, the dual edges correspond-
ing to the edges in the cut itself simply disappear from the
dual graph of the modified mesh.)

2.6 Global procedure and preprocessing

In the previous section we described a procedure that
grows a mesh region of some radius ε > 0 centered at
a seed face and removes all the tunnels that are discov-
ered inside this mesh region one by one. We can run
this procedure starting from all the faces in the original
mesh. This will produce a mesh that is ε-simple. How-
ever, as ε grows the running times of this naive algorithm
become unacceptable. We propose a preprocessing step
that excludes large portions of seed faces from the con-
sideration. We rely on the following fact which is true in
a metric space. Let BR(t0) be the closed ball of radius R
centered at t0 (note that we measure the distances on the
surface, so in our case, a ball is a surface region.) Then
for any t′ ∈ BR−ε(t0) the ball centered at t′ of radius ε
is contained in BR(t0), in fact, Bε(t′) ⊂ BR(t0). There-
fore, in the preprocessing step we will be growing balls
until their genus changes, without any restriction on their
radius. Suppose that we have grown a mesh regionA that
includes the ball BR(t0) for some R > ε, and the genus
ofA is zero. Then we can be assured that any subset ofA
will also be of genus zero, and since the balls of radius ε
centered inside the smaller region BR−ε(t0) are subsets
of A, we can exclude them from the potential seed set.
These large regions are seeded in the preprocessing step
at randomly chosen faces of the original mesh (in prac-
tice, taking one percent of the original number of faces
produces good results). This procedure greatly reduces
the potential seed set for a given ε. For example, without
preprocessing, the algorithm takes 1147 seconds to per-
form filtering with radius 3 on the David’s head model;

while the improved procedure takes only 136 seconds.
More performance numbers can be found in Table 1.

Dataset Radius Removed Time
handles

David’s head I 8 241 35m 34s
4000K faces 10 264 1h 24m 43s
genus 340 12 283 3h 13m 30s

David’s head II 8 291 12m 53s
1173K faces 10 301 27m 37s
genus 340 12 313 56m 52s

David’s head III 8 323 4m 27s
184K faces 10 326 9m 36s
genus 340 12 330 19m 6s

David (complete statue) 8 12 34m 4s
8254K faces 10 13 45m 11s

genus 20 12 14 57m 43s

Buddha 8 71 10m 23s
1087K faces 10 82 34m 24s
genus 104 12 85 2h 43m 9s

Dragon 8 21 6m 4s
870K faces 10 32 16m 59s
genus 46 12 35 53m 3s

St.Matthew 6 3 21m 19s
3382K faces, genus 5 12 4 29m 37s

Table 1: Timings given for Pentium III Xeon 550 MHz.
3 Results

We have implemented the algorithm described in the pre-
ceding sections and performed various experiments re-
ducing the topological noise for a number of meshes
from the Stanford Archive and the Digital Michelangelo
project [26]. We have found that most of the models re-
constructed using Curless and Levoy’s VRIP method [9]
have topological artifacts. We noticed that higher reso-
lution models and meshes that were more convoluted in
shape typically have more topological noise. We have
run our algorithm on models of different resolution with
different threshold radius settings and recorded the num-
ber of tunnels removed and the algorithm’s running time.
These results are illustrated in Table 1. Note that this au-
tomatic technique fails to generate a genus zero surface
when there are tunnels larger than the given ε. However,
it is unclear whether tunnels of a certain size should in-
deed be filtered. In the future it would be useful to include
a user interface to allow the user to inspect tunnels of a
larger radius and determine if they should be filtered or
retained.

We have applied various mesh processing techniques
to meshes that have been topologically filtered using
our algorithm with encouraging results. In particular,
we were able to apply the multiresolution remesher of
Guskov et al. [18] to the simplified genus zero mesh of
David’s head. The base mesh for this remesh contained

(a)

(b)

(c)

(d)
Figure 6: Smoothed version of David’s ear (a) and close
up view of the smoothed ear after topology filtering (b)
and a close up of the artifacts that occur without filtering
(flipped triangles) (c) and a detailed view of the tunnels
causing the artifacts (d).

262 triangles. It would be impossible to achieve such a
small number of patches without first applying a topology
filtering operation to the original data (remember that the
original mesh had 340 tunnels).

Similarly, parameterization
of mesh regions is a fundamen-
tal part of many remeshing, tex-
turing, and other mesh process-
ing algorithms. The inset on
the left shows the parameter-
ized mesh region of the David’s
ear. The texture coordinates
are assigned with the (u, v)-
coordinates computed with the
shape-preserving parameteriza-
tion of Floater [14]. The orig-
inal unfiltered region of this

mesh contained twelve tunnels. Our algorithm removes
all of these tunnels in fifteen seconds, and produces a
mesh that is homeomorphic to a square, allowing it to
be properly parameterized.

Additionally, acquired meshes often contain geometric
noise, and have to be filtered with various mesh smooth-
ing/noise removal techniques. In particular, we used the
method described in Desbrun et al. [10]. If the origi-
nal mesh contains unnecessary non-trivial topological ar-
tifact, the smoothing procedure typically results in a mesh
with artifacts that foil its appearance (such as flipped tri-
angles), as shown in Figure 6. This is due to the fact that
smoothing operators cannot modify the topology of the
mesh, and the presence of these small handles impairs

the smoothing process by limiting its effects. Attempts
to smooth the region around small tunnels can poten-
tially result in collapsing the tunnel, creating undesirable
degeneracies. Thus first removing the topological noise
greatly improves the performance of geometric noise re-
moval procedures, as illustrated by Figure 6.

1,088K faces
genus 104

178K faces
genus 15

16K faces
genus 7

Figure 7: Using both topology and geometry simplifica-
tion on the Buddha mesh (see Table 7.) Note that all the
meshes shown here are valid manifolds. The geometry
was simplified with Raindrop Geomagic Studio [1].

Finally, we have explored iterating between removing
topological noise and applying topology preserving mesh
simplification. Running these two processes alternatively
decreases the amount of time to discover all the small
tunnels on a given mesh. The results of such an iteration
sequence are presented in Table 2 and Figure 7. It is clear
that if the topology simplification is used as a part of a
multiresolution technique such as remeshing, this grad-
ual approach would be preferable for efficiency reasons.
However, this process of simplification followed by fil-
tering is not appropriate for all applications as some ge-
ometric details are lost during simplification. Thus, in
order to retain the finest level geometric details in the fil-
tered output, the more lengthy filtering algorithm with a
larger ε, should be used. We leave the complete explo-
ration of these ideas as future work.

4 Conclusions and future work

Topological noise is a serious problem for many scanned
models. This noise results in visible artifacts when these
meshes are smoothed, encumbers parameterization and
hinders the performance of many multiresolution tech-
niques. We have presented a simple criteria for identify-
ing such topological noise and a computational procedure
that removes these topological artifacts. The algorithm is
very robust and is able to process extremely large meshes.

In this paper we have focused on removing the topo-
logical noise from the original resolution of the model
and did not concern ourselves with larger scale genus
changing operations. In fact most of the tunnels removed
with our algorithm are in the very crooked parts of small
regions of the mesh, and their removal does not affect
the visual appearance of the model. It would be very
interesting to explore genus changing operations in the
multiresolution setting, perhaps directly within a mesh
simplification or remeshing framework. Such a system
would ideally include a user interface that allowed the
user to select whether to filter handles of an ambiguous
size. This would include work on visualizing the tunnels
and the potential non-separating cut placement. Another
exciting prospect for future work is the direct removal of
topological noise from the original volume data.

Size(faces) Genus before Genus after Time

1087K 104 33 623s
178K 33 15 94s
54K 15 11 64s
16K 11 7 32s

Table 2: Multiple resolutions processing of the Buddha
mesh. Mesh simplification was used to reduce the face
count of the models between the topology filtering steps
(see Figure 7.) Threshold radius was set to 8 for all runs.

5 Acknowledgments
We would like to thank Mathieu Desbrun, Peter Schröder, and
Andrei Khodakovsky for many useful discussions about this
work and we’d like to thank the Stanford Computer Graphics
Group for sharing their wonderful models with us.

6 References
[1] Geomagic studio 3.0, 2000. Raindrop Geomagic.

[2] Paraform 2.0, 2000. Paraform Inc.

[3] Ergun Akleman and Jianer Chen. Guaranteeing 2-manifold property for
meshes. In Proceedings of the International Conference on Shape Modeling
and Applications, 1998.

[4] Ergun Akleman, Jianer Chen, and Vinod Srinivasan. A new paradigm for
changing topology of 2-manifold polygonal meshes. In Pacific Graph-
ics’2000, 2000.

[5] P. Aleksandrov. Combinatorial Topology, volume 1. Graylock Press, 1956.

[6] U. Axen. Computing morse functions on triangulated manifolds. In Pro-
ceedings of the SIAM Symposium on Discrete Algorithms (SODA), 1999.

[7] U. Axen and H. Edelsbrunner. Auditory morse analysis of triangulated man-
ifolds. In H.-C. Hege and K. Polthier, editors, Mathematical Visualization,
pages 223–236. Springer-Verlag, Berlin, Germany, 1998.

[8] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
preserving simplification. In Computer Graphics (SIGGRAPH ’98 Proceed-
ings), pages 115–122, 1998.

[9] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. Proceedings of SIGGRAPH 96, pages 303–312.

[10] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. Implicit
fairing of irregular meshes using diffusion and curvature flow. Proceedings
of SIGGRAPH 99, pages 317–324, 1999.

[11] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological
persistence and simplification. In The 41st Annual Symposium on Founda-
tions of Computer Science, 2000.

[12] J. El-Sana and A. Varshney. Controlled simplification of genus for polygo-
nal models. Proceedings of the IEEE Visualization ’97, pages 403–412.

[13] J. El-Sana and A. Varshney. Topology simplification for polygonal virtual
environments. IEEE Transactions on Visualization and Computer Graphics,
4(2):133–144, June 1998.

[14] Michael S. Floater. Parameterization and smooth approximation of surface
triangulations. Computer Aided Geometric Design, 14:231–250, 1997.

[15] M. Garland and P. S. Heckbert. Surface simplification using quadric error
metrics. In Proceedings of SIGGRAPH 96, pages 209–216, 1996.

[16] Thomas Gerstner and Renato Pajarola. Topology preserving and controlled
topology simplifying multiresolution isosurface extraction. Visualization
’00 Proceedings , 2000.

[17] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal
processing for meshes. Proceedings of SIGGRAPH 99, pages 325–334,
1999.

[18] Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder. Normal
meshes. Proceedings of SIGGRAPH 2000, pages 95–102, 2000.

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Sur-
face reconstruction from unorganized points. In Computer Graphics (SIG-
GRAPH 1992 Proceedings), pages 71–78, 1992.

[20] Hugues Hoppe. Progressive meshes. Proceedings of SIGGRAPH 96, pages
99–108, 1996.

[21] L. Kobbelt, J. Vorsatz, U. Labsik, and H-P. Seidel. A shrink wrapping ap-
proach to remeshing polygonal surfaces. Computer Graphics Forum, 18:119
– 130, 1999.

[22] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense
polygon meshes. Proceedings of SIGGRAPH 96, pages 313–324, 1996.

[23] J.-O. Lachaud. Topologically Defined Iso-surfaces. Research Report 96-20,
Laboratoire de l’Informatique du Parallélisme, ENS Lyon, France, 1996.

[24] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. In
Computer Graphics (SIGGRAPH 2000 Proceedings), pages 85–94, 2000.

[25] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and
David Dobkin. Maps: Multiresolution adaptive parameterization of sur-
faces. Proceedings of SIGGRAPH 98, pages 95–104, 1998.

[26] Marc Levoy. The Digital Michelangelo project. In Proceedings of the 2nd
International Conference on 3D Digital Imaging and Modeling, Ottawa,
October 1999.

[27] W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface
reconstruction algorithm. In Computer Graphics (SIGGRAPH 1987 Pro-
ceedings), pages 163–169, 1987.

[28] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood
City, 1984.

[29] Tamal Dey Nina Amenta, Sunghee Choi and Naveen Leekha. A simple
algorithm for homeomorphic surface reconstruction. ACM Symposium on
Computational Geometry, pages 213–222, 2000.

[30] Jovan Popovic and Hugues Hoppe. Progressive simplicial complexes. Pro-
ceedings of SIGGRAPH 97, pages 217–224, 1997.

[31] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuet-
zle. Robust meshes from multiple range maps. In Proceedings of Interna-
tional Conference on Recent Advances in 3-D Digital Imaging and Model-
ing, pages 205–211, May 1997.

[32] J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and
delaunay triangulator. In Workshop on Applied Computational Geometry
(Philadelphia, Pennsylvania), pages 124–133. Association for Computing
Machinery, May 1996.

[33] Barton T. Stander and John C. Hart. Guaranteeing the topology of an im-
plicit surface polygonization for interactive modeling. In Computer Graph-
ics (SIGGRAPH ’97 Proceedings), pages 279–286, August 1997.

[34] S. Guha T. K. Dey, H. Edelsbrunner and D. V. Nekhayev. Topology preserv-
ing edge contraction. Publ. Inst. Math. (Beograd) (N.S.), 66:23–45, 1999.

[35] Gabriel Taubin, André Gueziec, William Horn, and Francis Lazarus. Pro-
gressive forest split compression. Proceedings of SIGGRAPH 98, pages
123–132, 1998.

[36] E. F. Whittlesey. Finite surfaces: a study of finite 2-complexes. Math. Mag.,
pages 11–22 and 67–80, 1960.

[37] Zoë Wood, Mathieu Desbrun, Peter Schröder, and David Breen. Semi-
regular mesh extraction from volumes. In Proceedings of Visualization
2000, 2000.

