
Selecting and Sliding Hidden Objects in 3D Desktop Environments

Junwei Sun* Wolfgang Stuerzlinger†
School of Interactive Arts & Technology School of Interactive Arts & Technology

Simon Fraser University, Vancouver, Canada Simon Fraser University, Vancouver, Canada

Figure 1: (a) A cup with standard opaque rendering. (b) The first layer rendered semi-transparent, revealing the red cube inside the cup. (c)
The first two layers (the entire cup) rendered semi-transparent, revealing a second red cube behind the cup. (d) Top view corresponding to
object positions in (a), (b), and (c). (e) The cube inside the cup moved to the surface behind the cup, highlighted in green. (f) Top view
corresponding to object positions in (e).

ABSTRACT
Selecting and positioning objects in 3D space are fundamental
tasks in 3D user interfaces. We present two new techniques to
improve 3D selection and positioning. We first augment 3D user
interfaces with a new technique that enables users to select objects
that are hidden from the current viewpoint. This layer-based
technique for selecting hidden objects works for arbitrary objects
and scenes. We then also extend a mouse-based sliding technique
to work even if the manipulated object is hidden behind other
objects, by making the manipulated object always fully visible
through a transparency mask during drag-and-drop positioning.
Our user study shows that with the new techniques, users can
easily select hidden objects and that sliding with transparency
performs faster than the common 3D widgets technique.

Keywords: 3D positioning; selection; 3D interaction;
transparency.

Index Terms: H.5.2. Information interfaces and presentation
(e.g., HCI): User Interfaces - Graphical user interfaces (GUI)

1 INTRODUCTION
Selecting and posing a 3D rigid object, i.e., manipulating the
position and orientation of an object, is a basic task in 3D user

interfaces. Such tasks can be time-consuming, because 3D
selection can require control of 3 degrees of freedom (DOFs), and
full manipulation can involve 6 DOFs: Three DOFs for translation
along three axes and another three for rotation around three axes.

In a virtual environment, the direct selection of 3D objects
limits the user to the objects that are within their reach. Unless
wireframe visualization is used, selection techniques typically
limit selection to all visible objects [2], which requires only 2D
input. In such systems, the only option to select hidden objects is
to move the camera so that the desired object becomes visible.
Another option, which is frequently used in computer-aided
design systems, is to use multiple views, but (with hidden
surfaces) even then there are situations where an object might not
be visible in any of the views, e.g., if the object is contained in
another one. Here, we present a new layer-based technique that
enables users to select any occluded object, even if it is placed
within non-convex parts of a scene.

Many manipulation techniques rely on 3 or 6 DOF input
devices, based on a one-to-one mapping of input and object
movement. Research has shown that 3DOF input devices
outperform 2D devices in some contexts. Yet, people are more
familiar with the form and function of a mouse [5].

For 3D manipulation of objects with 2D devices, it is
challenging to provide efficient mappings between the 2D input
and the 3D object movement. However, there is evidence that 2D
input devices can outperform 3D devices for certain 3D
manipulation tasks, through a smart mapping of user input to
intuitive 3D object movement [3]. One such approach is
constraint-based positioning, where the position of the
manipulated object is constrained by the attributes of other objects
of the scene.

* junweis@sfu.ca
† w.s@sfu.ca

Sliding is a prime example of a constraint-based 3D positioning
technique [22]. Here, the object follows the mouse cursor and
slides on the surfaces behind it. The object movement is then
defined by the surface the object is in contact with. More
advanced sliding methods perform better than the commonly used
3D widgets [24], even for objects that are not in contact with other
surfaces. Yet, sliding assumes that the manipulated object is
always (at least partially) visible. If an object becomes hidden, it
is brought to the front, so that the users can see it. Here we
address this limitation of the original sliding method through
semi-transparency, by making the manipulated object always
visible, even if the object is behind other ones.

We performed a user study to evaluate our new selection and
sliding techniques. For this we used a task that requires the user to
select a 3D object (initially) hidden in the main perspective view
and position it into an (initially) hidden target position. We
hypothesized that both our new layer-based selection and
transparent sliding technique would perform better than 3D
widgets.

Below, we first review relevant object selection and
manipulation methods. Then we discuss original sliding, our new
extension and describe our user study. Finally, we discuss the
results and mention potential future work.

1.1 Contributions
The main contributions we present here are:

(1) A new layer-based technique to select hidden objects in
non-convex scenes. This technique reveals the scene layer
by layer, which enables the user to select an object on any
desired scene layer.

(2) A new technique to show the manipulated object during
sliding, regardless if it is directly visible or behind other
parts of the scene.

2 RELATED WORK
There has been substantial research in the field of 3D
manipulation. Overall, the choice of the “best” input device
depends on the task and the hardware platform. Some 3/6DOF
devices perform better than the mouse on specific tasks, e.g., the
Control Action Table [16], the GlobeFish, and GlobeMouse [14].
However, the mouse is generally more efficient than 3/6DOF
devices for accurate placement, despite the lack of a third DOF
[3][26].

Mouse-based 3D selection and manipulation is not without its
limitations. First, one can only select visible objects with a mouse.
Second, simultaneous translations along all three directions are
not possible, due to the 2D nature of the device. One way to
compensate is through smart mappings that use constraints, either
explicitly specified by the user in their interaction, or implicitly
specified through the content of the scene. Third, 3D rotations are
not efficiently supported. Most 2D based interaction techniques
limit the rotations to one axis (or at most two axes) at a given
time.

Transparency has been widely used in 2D and 3D user
interfaces. Zhai et al. [28] surveyed the use of semi-transparency
in 3D interaction. Their study showed that semi-transparency
acted as an effective depth cue for 3D target acquisition. Bier et
al. [4] introduced a 2D transparent lens. Harrison et al. [17]
proposed to use semi-transparent user interface objects in 2D
interfaces. Harrison et al. [18] studied how to minimize
interference between transparent layers. Gutwin et al. [15] studied
the effects of dynamic transparency on targeting performance.
Ishak et al. [19] introduced a content-aware transparency
mechanism that dynamically adapts opacity depending on the
importance of various parts of a window.

There has been substantial research on employing transparency
in the visualization of 3D scenes, often to support navigation.
Chittaro et al. [7] studied if semi-transparency is useful for 3D
navigation in virtual environments. They found some positive
effects on user navigation performance. Diepstraten et al. [10]
introduced a view-dependent transparency model. Coffin et al. [8]
presented cut-away techniques that permit a user to look
“through” occluding objects, by interactively cutting holes into
the occluding geometry. Elmqvist et al. [11] proposed an image-
space algorithm to achieve dynamic transparency for managing
occlusion of important target objects in 3D. Their techniques
yielded significantly more efficient performance in 3D navigation
tasks.

Various techniques have been proposed to improve the
visualization of overlapping objects. LayerFish [27], supported
layering and manipulating overlapping content in a 2D design
space on desktop surfaces. To reduce demands on effort and
attention, it used the fisheye technique to render an in-place scene
index. Ramos et al. [23] presented two techniques for 2D layering
operations. The first provided a graphical representation of a
cascaded stack of layers above the selected elements. The second
used a ‘splatter’ effect to radially distribute overlapping elements.
Davidson et al. [9] proposed a depth sorting technique that
extended standard 2D manipulation techniques and combined the
layering operation with a page-folding metaphor for more fluid
interaction in applications requiring 2D sorting and layout.
Luboschik et al. [21] proposed a weaving technique, which
offered a new and effective alternative for picking any object from
a set of overlapping objects, without using transparency. Javed et
al. [20] presented a novel approach to manage occlusion between
physical items resting on tabletop displays and virtual objects
projected on the display.

Agustina et al. proposed XPointer [1], an X-ray telepointer
technique for collaborative 3D selection, which enables users to
select initially hidden objects. Their selection technique is object-
based, as users can specify which of the objects intersected by
ray-casting should be selected. The 3D editing operations for
XPointer are standard widget-based editing techniques, inherited
from Autodesk Maya. Their X-ray manipulator [1] is a technique
for adjusting the XPointer’s penetration depth, but this method
only works correctly in scenes with convex objects. When the
selection ray hits a concave object, that entire object is made
semi-transparent by XPointer. Thus, all objects within or occluded
by the concave object are then visible simultaneously. Relative to
revealing the scene layer by layer, this decreases the number of
depth cues available for object selection (and later manipulation).
The existence of fewer depth cues also introduces an ambiguity in
the selection process, which can even affect the subsequent
positioning phase, as the user may not be able to perceive
correctly where the manipulated object is in space.

Oh et al. [22] presented a sliding algorithm, where the object
follows the cursor position directly and slides on any surface
behind it, i.e., the moving object always stays attached to other
objects. Sun et al. [25] improved Oh et al.’s work through Shift-
Sliding and Depth-Pop, two techniques that significantly speed up
common 3D positioning tasks, including tasks that require the
object to float in mid-air. However, all such sliding algorithms
build on a visibility assumption in two ways. First, users can only
select objects that are at least partially visible, and second the
object that the user manipulates must always be at least partially
visible to the user. If an object becomes hidden, these sliding
techniques (have to) bring the object to the front, so that users can
see it. Similarly, Depth-Pop enables the user to place the object
along any position along the mouse ray, as long as it is at least
partially visible.

3 SELECTING AND SLIDING HIDDEN OBJECTS
Here, we first present our new method to select hidden objects.
Then we detail our new technique to facilitate the sliding of
objects even if they are hidden.

3.1 Control-Depth Selection
Selection from a specific layer of the scene is necessary in many
situations. Figure 2 left shows a scene where the red and blue
cubes are positioned behind different layers in the scene. Layer-
based selection is useful when there is a need to select an object
behind a specific layer.

Figure 2: (a) A concave object with other objects in the cavities. (b)
and (c) Seen from the side, the red and blue cubes are behind
different layers of the object. Here, layer-based selection can reveal
the desired object by making all content in front of it semi-
transparent. (d) Object-based transparency makes the whole object
transparent, which makes it harder to understand where the cubes
are.

With all 2D input-based interaction methods that rely on a
single view, users can only select visible objects. Hidden objects
cannot be selected without moving the camera or transitioning to
other view types, such as wireframe. In Figure 4 and with such
techniques, if there is an object at position C, D or E in the scene,
the object cannot be selected without camera navigation. To
enable the user to select such a hidden object, we introduce our
new “Control-Depth” selection technique, which involves the
Ctrl-key and mouse wheel actions. We use the Ctrl-key to activate
the depth selection mode. While users are holding the Ctrl-key
pressed down (without having clicked any mouse buttons), they
can push the mouse wheel forward to reveal the first, previously
hidden, perspective depth layer of the scene, making the initially
visible surfaces in front of them semi-transparent. Every
additional mouse wheel push reveals the next layer behind the
previous one. If the user pulls the mouse wheel backwards, i.e.,
towards them, we transition the next closest semi-transparent
layer back to opaque. An occluded object will then become visible
after all layers in front of it are made semi-transparent. This
permits the user to simply “scroll” among all visible layers. The
users can then simply select the desired object by clicking
“through” the transparent layers of the scene. In comparison to
XPointer [1], our new technique enables us to better deal with
scenarios with concave scene objects. We use depth peeling [13]
to identify the visible layers for Control-Depth selection.

Figure 3 and 4 show the same 3D scene with a concave object,
with Figure 4 showing a side view. The position of the red cube in
Figure 3 corresponds to position D in Figure 4. XPointer would
make the whole base object semi-transparent, as illustrated in
Figure 3(d), which makes it difficult to judge the position of the
red cube, unless the user has the strong prior knowledge of the
scene. Figure 1 shows an example where XPointer’s design
decision to make whole objects transparent introduces some
ambiguity as to where objects are located. The first red cube is
inside the cup and the other one is behind the cup. Their sizes are
similar in the perspective view. If the whole cup is made semi-
transparent, it is hard for the average user to distinguish which of
the two red cubes is inside the cup.

The idea of using the mouse wheel to select objects that are
behind other objects has previously been presented in COMSOL

Multiphysics1, which relies on a rendering mode that shows all
objects simultaneously as semi-transparent. Yet, research into
volume rendering methods, which are all based on semi-
transparency, has shown that even the best volume rendering
methods result in 25% error in terms of depth perception [12].
Standard volume rendering, which renders everything semi-
transparent from back to front, performs even worse. Based on
this result, we decided to pursue an approach that renders
everything in front of the layer that the user is currently focusing
on semi-transparent, and everything behind that opaque, as this
makes it easier to understand the geometric context. Moreover, we
enable the user to directly control which layer is shown, which
makes it easier to understand the geometric relationships inside
the scene.

Figure 3: (a) A scene with standard opaque rendering. (b) The first
layer rendered semi-transparent. (c) The first two layers rendered
semi-transparent, revealing the red cube. (d) The entire object
rendered semi-transparent, which corresponds to the visualization
used by XPointer. It is hard to see if the cube is in front of the small
ledge or behind it. In reality, the cube is in front of the ledge at
position D, see Figure 4.

Figure 3 illustrates the process of Control-Depth selection.
Figure 3(a) shows the original view of the scene. In Figure 3(b),
the first layer of the scene was made semi-transparent by moving
the mouse wheel forward once, while holding the Ctrl-key down.
In Figure 3(c), the second layer was made semi-transparent,
revealing the red cube. The user can then simply select that cube
by moving the mouse cursor over it and selecting it through a
click. For selection, we select the first non-transparent object
below the cursor.

Figure 4: Illustration of Control-Depth selection and transparency
sliding. Objects C, D, and E are fully occluded, but can be revealed
with Control-Depth selection (and then selected). The first, second,
and third (front-facing) layer of the concave object is shown in
orange, green, and blue, respectively. All layers can be viewed by
transparency sliding, which makes surfaces before the object semi-
transparent, e.g., the two areas in light green when the object is
sliding at position D.

3.2 Transparency Sliding
We base our design for our new transparency sliding method on a
basic sliding algorithm [22]. By enhancing sliding through semi-

1 https://www.comsol.com/

transparency, we make it possible to keep objects visible during
sliding. In basic sliding, the manipulated object moves along the
surface behind it that it is in contact with. During such sliding, the
object is always (at least partially) visible to the user. Users can
then only select and manipulate visible objects, such as objects at
A or B in Figure 4. They could not move an object to position C,
D or E, as it would be fully occluded.

For our new transparency sliding method, we use transparency
to make the manipulated object always fully visible during
manipulation. When the user slides an object to a position where it
is partially (or fully) hidden, we make the parts of the scene in
front of the manipulated object semi-transparent. In Figure 4, the
object is fully occluded at position C, D, or E. To enable the user
to manipulate the object at these positions, we make the parts that
are occluding the object semi-transparent. Thus, the two areas in
light green are made semi-transparent so the users see and
manipulate the whole object when it is at position D. With Depth-
Pop [25], users can then place the object at positions B, C, D, or
E, while still being able to see it due to the transparency mask (for
C, D, and E).

Figure 5: Transparency masks around a manipulated object.

Figure 5 shows the transparency masks around a manipulated
object. With it, the object is always fully visible during sliding.
Figure 5 left shows a combination of Control-Depth transparency
and transparency mask. Through Control-Depth transparency, the
first layer of the scene is made semi-transparent. If users slide the
cube behind the second and third layer of the scene, the scene in
front of the object is made semi-transparent with the transparency
masks.

3.3 Implementation
We exploit the computing power of GPUs and use the frame
buffer for the computations. The alpha value of textures in the
scene depends on the depth values of the manipulated object. If
the manipulated object is farther away from the camera than an
object in the scene, each occluder is shown semi-transparent at
pixels on or around the manipulated object. The border size
around the object (in screen space) is predefined but can be easily
adapted to different scenarios. We set the border size to 3 pixels in
our experiments.

To implement our new transparency mask, we use an algorithm
that is an extension of the one used for Control-Depth selection.
We apply a surface shader on all objects in the scene. We pass the
current scene depth texture and the depth texture of the
manipulated object (if there is one) to the surface shader. With
Control-Depth selection, we update the current scene depth
texture with depth-peeling. Initially, the current scene depth
texture is defined from the first layer of the scene, which
represents the current visible layer. If the user pushes/pulls the
mouse wheel forward/backward, the scene depth texture is set to
the next, respectively previous layer. In the surface shader, when
the depth value of the pixel on the current object is less than the
current depth texture (i.e., closer to camera), that pixel’s alpha
value is set to a constant, currently 0.25. This is the core of the

technical implementation of Control-Depth selection. To
implemented the transparency mask, we set the alpha values of a
pixel that are closer to the camera than the manipulated object to
0.25 and also spread that transparency value to the 3x3
surrounding pixels.

To enable the transition between different visibility layers
during sliding, we use a generalized version of the Depth-Pop
algorithm [25], which does not check if the object remains visible.
As shown in Figure 5, the cube in the left image and the chair at
the right are both fully hidden yet made visible by transparency
masks. Users can use the generalized Depth-Pop technique to
transition between different layers.

3.4 Combined Selection and Sliding
During prototyping, we identified that it is useful to enable
Control-Depth even during sliding. Once users have selected an
object, if they hold the Ctrl-key and left mouse button down at the
same time, we perform both Control-Depth and Depth-Pop
operations simultaneously, which reveals depth layers while
positioning the object between them. However, note that even
with this combination, the manipulated object can become
partially hidden behind parts of the scene. In other words, even
with the layer-based method there are situations when the
transparency mask is needed to show the manipulated object and
the context around it correctly.

Finally, we point out that our new transparency sliding
technique is independent of the selection technique. In other
words, it is possible to use the new sliding technique even if
object selection is limited to visible objects or if object selection is
performed through some other method. In this case, the
manipulated object will then still always be visible. Conversely, it
is possible to use only the new transparency sliding technique
without enabling the selection of hidden objects.

4 USER STUDY
We performed a user study to evaluate the performance of
Control-Depth selection as well as transparency sliding. We
initially considered a comparison with the X-Ray manipulator in
XPointer. Yet, we chose to not to do this, as the XPointer
technique [1] cannot handle the positioning of objects in scenes
with concave parts appropriately, as discussed above. Also,
XPointer requires a side view visualization for the cursor, which
increases the time spent in the selection phase, as the user must
move the cursor over larger distances (between windows).
Moreover, Sun et al. [25] had already shown that sliding with
Depth-Pop is more efficient and accurate than 3D widgets, for
cases when the manipulated object is at least partially visible.
Still, Depth-Pop cannot handle cases when the object is hidden.

We also considered a comparison between basic sliding with
camera navigation and transparent sliding. When we performed a
pilot study with novices, camera navigation turned out to be a
major challenge, as they had no experience with 3D editing
systems. While they could move the camera to a position where
they could see the object, they then struggled to (slowly) find a
viewpoint that shows the target position in the same view, which
is the only option that enables users to perform the task with basic
sliding. As our interaction techniques are targeted at novices, we
decided to disable camera navigation in our experiment, as
navigation would dominate the timings and thus pose a confound.

Based on these arguments, we limited our investigation to the
performance of selection and precise positioning for hidden
objects. Given that the XPointer technique and most 3D packages
use 3D widgets for manipulation, we decided to compare our new
technique with 3D widget-based manipulation. As our new user
interface is designed to make the task of both selecting and

manipulating hidden objects faster, we hypothesized that we
would get similar results as Sun et al. [25], i.e., transparency
sliding would outperform 3D widget-based manipulation for
hidden objects.

4.1 Participants
We recruited 12 (7 female) unpaid undergrad students from the
local university population. We did not screen participants for 3D
experience. Our participants had varying game expertise, with
42% playing games regularly.

4.2 Apparatus
We built our system in the Unity game engine. We used a desktop
computer with 3.5 GHz i7 processor, 16 GB of memory, and two
NVIDIA GeForce GTX 560 SLI graphics cards. We used a mouse
and a keyboard as input devices.

4.3 Procedure
We designed a 3D object positioning experiment and asked
participants to move an object from a hidden start position to a
hidden target position in various scenes. We used two different
levels of depth complexity for the trials. All target positions were
in contact with other surfaces in the scene. In all conditions, the
scene was shown in a 4-view display, with one perspective view
and three orthogonal views. Figure 6 shows two sample tasks in
the sliding condition. The object and target position are both
hidden in the perspective view, yet the source and target object
locations are marked with a red and blue marker respectively. The
object is the red cube, whereas the target position is rendered as a
semi-transparent blue cube, a 3D copy of the object. The
horizontal distance on screen between object and target positions
are roughly one half of screen width in the perspective view. With
this and in the sliding condition, the users need to use Control-
Depth selection to select and to move the object through sliding in
the perspective view.

The geometry of the “building” in Figure 6 (b) consists of walls
and the floor as a single, large, non-convex object. In this task
scenario, the XPointer technique [1] makes the entire non-convex
object transparent, which then makes it challenging (or
impossible) to position an object at a location hidden by a wall
onto the floor (or even another wall) behind that first wall. Our
layer-based selection method works properly in this scene. In the
3D widgets condition, and since the object is hidden in
perspective, the users had to select it in one of the orthogonal
views. After the users click on the object, the 3D widgets appear
on the object, and the 3D widgets can be used in all four views for
manipulation. Having to use different views typically slows the
selection process down, yet the only other option to select a
hidden object would be to permit camera navigation, something
that we wanted to avoid due to the results of our pilot study
mentioned above.

There was a 2-minute training session before each condition,
which introduced participants to the techniques in a playground
environment but did not include any version of the experimental
tasks. We asked the participants to perform the tasks as quickly
and as accurately as possible. After the participants finished all
the tasks, we asked them to fill a questionnaire about the usability
of the two techniques. We also asked them about potential
improvements. In total, the study took about 30 minutes for each
participant.

4.4 Experimental Design
The experiment compared transparency sliding and 3D widget-
based positioning in a within-subjects design. Technique was the
only independent variable. When the user had positioned the

object at the target position, they needed to press the space bar for
confirmation, and then went on to the next trial. The users were
allowed to use their non-dominant hand to press the space bar.
Each participant performed 20 trials, ten trials for sliding and ten
for 3D widgets.

(a)

(b)

Figure 6: Two sample tasks in the sliding condition a) task scene
with simple geometry and b) a task scene with richer geometry. The
object and target positions are both hidden in the perspective view.
They are marked by red and blue markers respectively. The target
position is centered in the three orthogonal views. The object (red
cube) is visible in at least one orthogonal view.

4.5 Data Generation
We measured the combined “visual search & selection” time, the
completion time, and relative error distance from the ideal target
position. Time was measured in seconds. For the “visual search &
selection” time, the timing starts when the previous trial ends, and
ends when the correct object is selected. For the completion time,
the timing starts when a mouse button or a key is pressed, and the
timing includes both the selection and positioning stages. The
timer for completion time ends when the user releases the mouse
button for the last time. The error measure was calculated as the
absolute distance to the target (center to center) over the object
size (length of any side of the cube). We recorded all actions of
each user.

4.6 Results
We performed paired t-tests to compare the mean in “visual
search & selection” time, the completion time, and relative error
distance from the ideal target position for sliding and 3D widgets.

The average time for “visual search & selection” with the 3D
widget-based method was 3.07 seconds, while Control-Depth
selection took 4.65 s. Looking only at the time users took for the

selection (i.e., the time from pressing the Ctrl key until the correct
object was selected, which includes the mouse movement to select
the object) in the Control-Depth condition, it took users only 2.31
s.

We call the total of the selection and positioning time the
completion time. This timer starts when the user pressed the
mouse/keyboard for the first time. The results showed that sliding
(M = 12.84s, SD = 9.82) is overall significantly faster than 3D
widgets (M = 24.31s, SD = 12.74), t(119) = 8.3192, p < .0001 in
terms of completion time. For the sliding condition, the above-
mentioned average selection time of 2.31 seconds represents
approximately a fifth of the positioning time. The selection time
for the 3D widgets condition is zero, as timing started with the
first mouse click. See Figure 7.

Figure 7: Average completion times (in seconds) for two
techniques. Each error bar is constructed using a 95% confidence
interval of the mean. The green area in the sliding condition
represents the selection time of 2.31 seconds, whereas the
corresponding time with 3D widgets is 0.

In terms of error measure, there was no significant difference
between sliding (M = 0.130, SD = 0.291) and 3D widgets (M =
0.133, SD = 0.264), t(119) = 0.09, p = 0.93. See Figure 8.

Almost all, 11 out of 12, participants thought sliding was easy
to use, while 10 participants thought 3D widgets were easy to use.
Still, 10 out of 12 participants preferred sliding over 3D widgets.

Figure 8: Average error measures for two techniques. Each error
bar is constructed using a 95% confidence interval of the mean.

5 DISCUSSION
We first compared only the “visual search & selection” time. The
results showed that click-based selection used in the 3D widgets
condition is 34% faster than Control-Depth selection. This is not
surprising, as Control-Depth selection requires more actions from
the users. However, the difference in time is only 1.58 s.
According to Brown et al.’s results [6], an average mouse
movement takes about 0.8 s. Therefore, we can approximate the
visual search time as (3.07 - 0.8 =) 2.27 s for click-based
selection, and (4.65 - 2.31 =) 2.34 s for Control-Depth selection,
which are unlikely to be significantly different.

Although selection takes slightly more time with the Control-
Depth technique, the results in terms of the total completion time
support our hypothesis. Even though the timing for 3D widgets
did not include the mouse movement time before selection, sliding
was still faster than 3D widgets, even for hidden objects. Users’
prior knowledge of the task scenes might have an impact on the
performance, but none of the participants seemed to have been
familiar with the scenes. Naturally, if users know which layer the
object is on beforehand, they could perform better in the tasks. As
we targeted our interaction design at novices, we only recruited
novice users unfamiliar with 3D editing software. Obviously,
experienced users might be able to complete the investigated tasks
with a combination of basic sliding movements or 3D widget
manipulation together with camera navigation. Yet, we believe
that experienced users will still benefit from our new technique, as
their stronger mental model of the geometry of a scene will help
them know/remember where an object is located, even if it is not
visible. This knowledge, together with Control-Depth selection,
will permit them to avoid camera navigation altogether in many
instances, which will make their workflow more efficient.

In our experiment, users seem to have had little issues with
understanding the scene geometry in the sliding condition. They
showed no signs of confusion with the Control-Depth selection,
transparency masks, or their combination, even though they both
introduced transparency to the scene. The two techniques did not
conflict with each other in any of the task scenes, e.g., Figure 5
left. Additionally, the border of the transparency mask provided
cues for users to understand which layer the manipulated object is
at. It also helps that the Control-Depth selection is associated with
discrete actions in the selection stage, while the transparency
mask involves a continuous sliding action during the manipulation
stage. From our observations during the experiment, we can also
confirm that the techniques are easy to understand and learn and
all users were able to use them after a short training session.

Most participants preferred sliding over 3D widgets in our task
scenarios, which involved situations where the object is hidden at
both the source and target locations. Some participants identified
correctly that sliding required less mouse movement and thus
rated it more positively. Also, with sliding, the object was always
under the mouse cursor and fully visible, which led the
participants to feel they had a better control over the object’s
position. Some of them even asked for the semi-transparency
feature in the 3D widgets condition, as the object was usually
hidden in the perspective view during object movement in that
condition. We see this as motivation to include our semi-
transparent techniques in standard 3D software. This would help
3D designers improve their efficiency during 3D modelling.

We use mouse wheel operations together with the Control
modifier key (Ctrl). This is very similar to how 3D packages use
mouse operations together with modifier keys, e.g., to move
objects in three dimensions. After being exposed to our new
technique once, all participants had no difficulties using it during
the study. Depending on the application scenario, other activation

methods can be used, including through side buttons on a mouse
(or controller) instead of the Ctrl key, which then also obviates the
need for a keyboard. Mappings for touch screens, e.g., through the
use of two-finger gestures, are equally possible.

In the basic sliding technique, an object is automatically popped
to the front whenever occluded. Novice users might find this
behaviour unexpected. The new semi-transparent sliding
technique presented here does not share this automatic behaviour,
which gives the user better control during interaction. If the users
want to pop an object to a layer in front, they can explicitly use
Depth-Pop during sliding. Our participants also commented
positively on how the new interaction technique handles
occlusion.

Unlike object-based selection techniques, our layer-based
technique allows users to select an object from a specific layer.
This avoids any potential ambiguity in perception of object depth,
especially when there are concave objects in the scene. With our
techniques, users can perform object selection and manipulation
continuously within a single perspective view. Any object (visible
or not) within the view frustum can be selected and positioned to
any desired position that meets the sliding assumptions [25],
without having to change the camera view. This makes our new
techniques very general.

The transparency mask technique could trivially be combined
with Shift-Sliding [25]. When the user lifts an object up into a
floating state, i.e., without any contact to other surfaces, and then
starts sliding parallel to the original contact plane, we could use
transparency masks to make the manipulated object fully visible if
the object becomes partially hidden. This generalizes transparency
sliding to floating objects.

We used depth buffers to implement the Control-Depth
selection method. We reveal one scene layer at a time with a
mouse wheel action. Most computations are performed in the
graphics hardware and for the scenes used in the experiment, it
takes approximately at most an extra 4 ms to reveal each layer.
This temporarily caused the frame rate to drop from 69 fps (14.5
ms per frame) to 55 fps (18.2 ms per frame). During sliding with
transparency masks, the frame rate never dropped below 69 fps.
During Depth-Pop, the frame rate dropped to as low as 47 fps
(21.2 ms per frame), as it requires rendering more object/scene
layers. Users did not seem to be affected by the small latency
introduced by the techniques.

6 LIMITATIONS
Our technique is efficient, as users can quickly identify, select and
slide the desired object. However, we anticipate that on lower-end
graphics hardware the current implementation of Control-Depth
selection could slow down in scenes with high depth complexity,
as we focused on the interaction and did not realize all potential
optimizations in the code. This can be addressed with a redesign
of the computations.

One implementation problem we face is z-fighting, where two
polygons have similar values in the z-buffer at the same pixel. In
Control-Depth selection, we constantly compare the object depth
with the scene depth. Insufficient precision in the depth buffer
then introduces z-fighting, which makes it hard to identify layers.
One option to reduce this problem is to adjust the length of the
camera frustum for each specific scene.

For Control-Depth selection and transparency mask, we use a
fixed alpha value with the standard transparent rendering
approach to achieve a semi-transparent effect, where the
target/manipulated object is shown with a blended colour. This
effect generates different results for objects with different
textures. Moreover, image quality potentially degrades with an

increasing number of depth layers in the scene, which might make
it more difficult for users to judge the manipulated object’s
position. We also considered using cutaways. Yet, using such
visualization techniques would cause the object to slide on
“ghost” surfaces, i.e., would involve sliding on surfaces that are
then completely hidden, which likely would surprise novices.
Finally, our current work focused on the interaction aspects. Thus,
we consider optimized semi-transparency effects that maximize
the visibility of one or more objects to be out of scope for our
current work, but plan to revisit this in the future.

7 CONCLUSION AND FUTURE WORK
For applications where users are positioning objects with a mouse
in a 3D scene, we presented our new Control-Depth selection
method, which enables users to select hidden objects in arbitrary
scenes without resorting to (potentially time-consuming) camera
navigation, by iteratively “peeling away” layers in front of a target
object and then simply selecting it. We also proposed a new
extension to the sliding technique, which uses a transparency
mask to facilitate object sliding, so that the user can see the object
even if it slides behind other objects.

We performed a user study to compare the performance of our
new selection and transparency sliding techniques with common
3D manipulation widgets. Users had to select hidden objects and
move and precisely position them at hidden target positions. The
results showed that even though it took an extra step to complete
the task in the sliding condition (selection and positioning), the
combined time was still significantly faster than with common 3D
widgets. Users found our techniques easy to learn and use.

In the future, we plan to investigate methods to optimize our
implementation of Control-Depth selection and reduce the impact
of z-fighting. We may also investigate how to optimize rendering
of semi-transparency effects for different textures and geometries.
Additionally, we will check if more complex scene geometry
affects the users’ perception of the scene when using our
techniques.

In order to further evaluate the efficiency and simplicity of the
techniques, we would also like to perform another experiment
with both novices and participants that are familiar with desktop-
based 3D interaction. There we would evaluate how much
benefits our techniques have for experts.

REFERENCES
[1] Agustina and C. Sun, 2013, February. Xpointer: an X-ray telepointer

for relaxed-space-time Wysiwis and unconstrained collaborative 3D
design systems. In Proceedings of the 2013 Conference on Computer
Supported Cooperative Work (pp. 729-740). ACM.

[2] F. Argelaguet and C. Andujar, 2013. A survey of 3D object selection
techniques for virtual environments. Computers & Graphics, 37(3),
pp.121-136.

[3] F. Bérard, J. Ip, M. Benovoy, D. El-Shimy, J.R. Blum and J.R.
Cooperstock, 2009, August. Did “Minority Report” get it wrong?
Superiority of the mouse over 3D input devices in a 3D placement
task. In IFIP Conference on Human-Computer Interaction (pp. 400-
414). Springer, Berlin, Heidelberg.

[4] E.A. Bier, M.C. Stone, K. Pier, W. Buxton and T.D. DeRose, 1993,
September. Toolglasses and magic lenses: the see-through interface.
In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques (pp. 73-80). ACM.

[5] D. Bowman, E. Kruijff, J.J. LaViola Jr and I. Poupyrev, 2004. 3D
User Interfaces: Theory and Practice, CourseSmart eTextbook.
Addison-Wesley.

[6] M.A. Brown and W. Stuerzlinger, 2014, May. The performance of
un-instrumented in-air pointing. In Proceedings of Graphics
Interface 2014 (pp. 59-66). Canadian Information Processing Society.

[7] L. Chittaro and I. Scagnetto, 2001, November. Is semitransparency
useful for navigating virtual environments?. In Proceedings of the
ACM Symposium on Virtual Reality Software and Technology (pp.
159-166). ACM.

[8] C. Coffin and T. Hollerer, 2006, March. Interactive perspective cut-
away views for general 3D scenes. In 3D User Interfaces, 2006.
3DUI 2006. IEEE Symposium on (pp. 25-28). IEEE.

[9] P.L. Davidson and J.Y. Han, 2008, October. Extending 2D object
arrangement with pressure-sensitive layering cues. In Proceedings of
the 21st Annual ACM Symposium on User Interface Software and
Technology (pp. 87-90). ACM.

[10] J. Diepstraten, D. Weiskopf and T. Ertl, 2002, September.
Transparency in interactive technical illustrations. In Computer
Graphics Forum (Vol. 21, No. 3, pp. 317-325). Blackwell Publishing,
Inc.

[11] N. Elmqvist, U. Assarsson and P. Tsigas, 2007. Employing dynamic
transparency for 3D occlusion management: Design issues and
evaluation. Human-Computer Interaction–INTERACT 2007, pp.532-
545.

[12] R. Englund, and T. Ropinski, 2016. Evaluating the perception of
semi-transparent structures in direct volume rendering techniques. In
SIGGRAPH ASIA Symposium on Visualization (page 9). ACM.

[13] C. Everitt, 2001. Interactive order-independent transparency. White
paper, nVIDIA, 2(6), p.7.

[14] B. Froehlich, J. Hochstrate, V. Skuk and A. Huckauf, 2006, April.
The Globefish and the Globemouse: two new six degree of freedom
input devices for graphics applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp.
191-199). ACM.

[15] C. Gutwin, J. Dyck and C. Fedak, 2003. The effects of dynamic
transparency on targeting performance. In Graphics Interface (pp.
105-112).

[16] M. Hachet, P. Guitton and P. Reuter, 2003, October. The CAT for
efficient 2D and 3D interaction as an alternative to mouse
adaptations. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology (pp. 225-112). ACM.

[17] B.L. Harrison, H. Ishii, K.J. Vicente and W.A. Buxton, 1995, May.
Transparent layered user interfaces: An evaluation of a display
design to enhance focused and divided attention. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (pp. 317-324). ACM Press/Addison-Wesley Publishing.

[18] B.L. Harrison, G. Kurtenbach and K.J. Vicente, 1995, December. An
experimental evaluation of transparent user interface tools and
information content. In Proceedings of the 8th Annual ACM
Symposium on User Interface and Software Technology (pp. 81-90).
ACM.

[19] E.W. Ishak and S.K. Feiner, 2004, October. Interacting with hidden
content using content-aware free-space transparency. In Proceedings
of the 17th Annual ACM Symposium on User Interface Software and
Technology (pp. 189-192). ACM.

[20] W. Javed, K. Kim, S. Ghani and N. Elmqvist, 2011, September.
Evaluating physical/virtual occlusion management techniques for
horizontal displays. In IFIP Conference on Human-Computer
Interaction (pp. 391-408). Springer, Berlin, Heidelberg.

[21] M. Luboschik, A. Radloff and H. Schumann, 2010, May. A new
weaving technique for handling overlapping regions. In Proceedings
of the International Conference on Advanced Visual Interfaces (pp.
25-32). ACM.

[22] J.Y. Oh and W. Stuerzlinger, 2005, May. Moving objects with 2D
input devices in CAD systems and desktop virtual environments.
In Proceedings of Graphics Interface 2005 (pp. 195-202). Canadian
Human-Computer Communications Society.

[23] G. Ramos, G. Robertson, M. Czerwinski, D. Tan, P. Baudisch, K.
Hinckley and M. Agrawala, 2006, May. Tumble! Splat! helping
users access and manipulate occluded content in 2D drawings.
In Proceedings of the Working Conference on Advanced Visual
Interfaces (pp. 428-435). ACM.

[24] P.S. Strauss and R. Carey, 1992, July. An object-oriented 3D
graphics toolkit. In ACM SIGGRAPH Computer Graphics (Vol. 26,
No. 2, pp. 341-349). ACM.

[25] J. Sun, W. Stuerzlinger and D. Shuralyov, 2016, October. Shift-
sliding and Depth-pop for 3D positioning. In Proceedings of the
2016 Symposium on Spatial User Interaction (pp. 69-78). ACM.

[26] J. Sun, W. Stuerzlinger and B.E. Riecke, 2018, August. Comparing
input methods and cursors for 3D positioning with head-mounted
displays. In Proceedings of the 15th ACM Symposium on Applied
Perception (p. 8). ACM.

[27] A.M. Webb, A. Kerne, Z. Brown, J.H. Kim and E. Kellogg, 2016,
November. LayerFish: Bimanual Layering with a Fisheye In-Place.
In Proceedings of the 2016 ACM International Conference on
Interactive Surfaces and Spaces(pp. 189-198). ACM.

[28] S. Zhai, W. Buxton and P. Milgram, 1996. The partial-occlusion
effect: Utilizing semitransparency in 3D human-computer
interaction. ACM Transactions on Computer-Human Interaction
(TOCHI), 3(3), pp.254-284.

