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Adaptive design of clinical trials hold great promise for reducing the cost of clinical trials without affecting

their type I or type II error. In this paper, we propose a tractable Bayesian framework that allows the

derivation of optimal policies: the clinical trial designer can either choose among different experiments with

different information, or to terminate the trial; there are rewards associated with making the correct decision

and penalties from incorrect ones. We show that the log-likelihood ratio (LLR) converges to a diffusion

process via a limiting approximation in which the distributions under the null and the alternative converge

in symmetric Kullback–Leibler (KL) divergence. The resulting asymptotic stochastic control problem is then

solved analytically. We present numerical results based on a real-world clinical trial setting (the Phoenix

Champion Trial), in which we compare the asymptotically optimal policy derived with our framework to

simpler policies that either have been used in practice or are optimized using our framework. The result

shows that in a wide range of scenarios, the asymptotically optimal policy outperforms all the other policies

considered. In particular, across all scenarios considered, the percentage improvement of economic benefit

of the asymptotically optimal policy versus the adaptive policy used in practice ranges from 0.4% to 8.7%

(with a median of 4.7%). When comparing the asymptotically optimal policy versus optimized two-stage

or multi-period policies, the percentage is smaller but still significant (with a median of 3.2% and 1.0%

respectively). The results suggest that optimized multi-period adaptive clinical trial designs can significantly

improve the economic value generated by such trials.
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1. Introduction

Clinical trials have been central to the improvement of healthcare over the past decades. As part

of the R&D process required to gain regulatory approval, firms engage in clinical trials on human

subjects to evaluate the safety and efficacy of drugs or treatment for disease. The trials are costly:

it is estimated that the average total cost of the clinical trial needed to secure regulatory approval

reaches $1.46 billion and only about 11.8% of drugs entering clinical testing are eventually approved

(DiMasi et al. (2016)). Consequently, there has been immense pressure on pharmaceutical firms

and regulatory bodies alike to reduce costs associated with each trial while maintaining the same

level of accuracy.

A solution is adaptive clinical trial design, which holds great promise for reducing the cost of

clinical trials (Zang and Lee (2014), Kruizinga et al. (2019)). An adaptive trial involves multi

periods and the sample size or even the experimental design can be adjusted between periods based

on the strength of the evidence collected. The advantages of adaptive clinical trials are discussed

widely (Pallmann et al. (2018), Ryan et al. (2020)) and regulatory bodies such as the US FDA are

interested in the use of adaptive trials and encourage the development of methodologies to support

their design and adoption in practice.

In this paper, we propose a framework to guide the development of an optimal adaptive clinical

trial design and to assist trial designers on how they could use experiments to dynamically con-

duct the trials. The framework is a Bayesian decision-theoretical one that builds on the sequential

hypothesis testing paradigm: in each period, the trial designer can choose to either terminate the

trial or continue for one more period and can select among several alternative experiments to per-

form. There are three novel features in our framework: a) different experiments are allowed in each

period, b) the log-likelihood ratio is approximated by a diffusion process that represents an asymp-

totic environment in which the experiments are becoming increasingly uninformative (in the sense

that the distributions under the null and the alternative converge in symmetric Kullback–Leibler

(KL) divergence), and c) the optimal solution to the resulting stochastic control problem is derived
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analytically. The framework allows specified costs and rewards for erroneously and correctly mak-

ing decisions. The optimal policy, which identifies the optimal choice of experiment in each period

and the optimal boundaries for terminating the trial and either accepting or rejecting the null, is

derived. The resulting optimal type I and II errors can be derived from the optimal boundaries.

While previous papers have combined Bayesian decision analysis and adaptive design methods

(Cheng et al. (2003), Willan and Kowgier (2008), Ahuja and Birge (2016)), these had to rely on

simulations for more than two periods due to their models’ intractability. In contrast, this paper

generates tractable analytical results for multiple periods.

We also present numerical results based on a real-world clinical trial setting (the Phoenix Cham-

pion Trial), in which the asymptotically optimal policy derived from our framework is compared to

simpler policies that have either been used in practice or are optimized using our framework. The

result shows that in a wide range of scenarios, the asymptotically optimal policy outperforms all

the other policies considered. This happens when the prior lies in the intermediate range between

the boundaries set by the various alternatives, the difference between the null and the alternative

is moderate, and the population baseline adverse rate is not too small. The results also show that

there are some scenarios where the asymptotically optimal policy performs poorly because the

asymptotic approximation is not valid.

Our Contributions. Our paper makes the following contributions. First, we present an analyt-

ically tractable Bayesian formulation of the multi-period clinical trial design problem with multiple

types of experiments. Second, we demonstrate that the log-likelihood ratio of the multi-period

problem converges to a diffusion process, whose drift and variance depend on the underlying null

and alternative hypothesis; a similar asymptotic result was derived in Araman and Caldentey

(2021), but our results involve a strictly weaker assumption. Third, we show that under the diffu-

sion approximation, the problem of multi-period clinical trial design becomes a tractable stochastic

control problem, for which we analytically derive the optimal solution. This formulation generalizes

the reward function in the models of Harrison and Sunar (2015) and Kwon and Lippman (2011).



Zhengli Wang and Stefanos Zenios: Adaptive Design of Clinical Trials
4 Article submitted to Operations Research; manuscript no.

Adapting the solution approach from Harrison and Sunar (2015), we show that this generalization

leads to a broader class of optimal policies, which involve using more informative controls when we

are more certain, and using less informative controls when we are less certain. Fourth, we show how

our formulation can be adapted to accommodate constraints on the type I error, the type II error

and the expected termination time. Fifth, we validate our framework using a real-world clinical

trial setting, in which we compare the asymptotically optimal policy to simpler policies that either

have been used in practice or are optimized using our framework, and identify the wide range of

scenarios that the asymptotically optimal policy has superior performance.

The Organization of the Paper. §2 provides a review of the literature and highlights the

paper’s contribution. §3 formulates the multi-period clinical trial problem. §4 demonstrates that

the log-likelihood ratio converges to a diffusion process via a limiting approximation in which the

designer runs a series of increasingly less informative experiments. §5 shows that in the limiting

approximation, the continuous-time problem is tractable with an analytically derived optimal solu-

tion. §6 shows that our formulation can be adapted to accommodate constraints on the type I and

II errors as well as on the expected termination time. §7 performs a numerical study based on a

real-world clinical trial setting and §8 concludes.

2. Literature Review

Our paper builds on three streams of literature: sequential hypothesis testing and adaptive clinical

trial design, Bayesian decision analysis, and stochastic control in applied probability (or more

broadly, decision theory under uncertainty). It also contributes to the literature on learning in OM

(see Figure 1). In this section, we will review the most relevant papers in each literature stream,

and highlight several key papers that lie on the interface of these streams.

Sequential Hypothesis Testing and Adaptive Clinical Trial Design. The literature on

sequential hypothesis testing dates back to Wald (1945), who formulated the discrete-time version of

the sequential hypothesis testing framework (and Shiryaev (1967) and Siegmund (1985) developed

the continuous-time versions). Chernoff (1959) proposed an asymptotic policy where in each period
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the decision maker determines which state is more likely by maximum likelihood estimates, and

then select the control with the highest expected KL-information number based on that state. More

recently, there are papers that propose asymptotic policies to refine Chernoff (1959)’s. One such

paper is Naghshvar and Javidi (2013), in which the proposed policies have a similar structure and

consist of two phases: in the early phase select experiments that better discriminate all hypothesis

pairs, in the latter phase when the posterior belief of a hypothesis passes some threshold, select

experiments that favor that hypothesis. Relative to Chernoff (1959) and Naghshvar and Javidi

(2013), our paper is different in the following: 1). our model can incorporate discounting in the

objective whereas theirs cannot; 2) our experiment costs may be different for each experiment,

whereas in their settings all experiments have the same costs; 3) our model have both rewards and

penalties whereas theirs only have penalties (which they call “risks”); 4) our optimal policy can be

analytically characterized whereas their policies cannot.

The sequential hypothesis testing framework has been widely applied in clinical settings, which

evolved into the vast literature on adaptive design of clinical trials. The adaptive design methods

were developed to address the issue of fixed-sample size in the conventional approach, as they allow

greater flexibility and can be applied to multi-period clinical trial settings. The adaptation can be

based on a frequentist approach (Pocock (1982), O’Brien and Fleming (1979), Gordon Lan and

DeMets (1983), Pawitan and Hallstrom (1990)) or on a Bayesian one (Berry (1987), Spiegelhalter

et al. (1994)). The flexibility of these adaptive design methods can lead to many benefits such as

smaller expected sample sizes (Pocock (1982), O’Brien and Fleming (1979)), flexibility in adjust-

ment of each period’s sample sizes (Gordon Lan and DeMets (1983)), inference without knowing

the test statistics (Pawitan and Hallstrom (1990), and the ability to monitor trials Spiegelhalter

et al. (1994)). However, in most of these papers the type I and II errors need to be specified in

advance. This is contrary to our framework, in which these errors are endogenous variables in the

model.

Bayesian Decision Analysis. Another very relevant stream of literature is the one on Bayesian

decision analysis, which is a well-known quantitative framework advocated and recommended by
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Figure 1 The multiple streams of literature this paper builds on.

the U.S. Food and Drug Administration (Food and Administration (2010)). The Bayesian decision

analysis framework computes the optimal type I and type II errors using cost-minimization, utility-

maximization or other similar objectives, thus foregoing the need to specify arbitrary type I and

type II errors as in the conventional approach. Notable papers include Colton (1963), Willan and

Pinto (2005), Montazerhodjat et al. (2017) and Chaudhuri et al. (2018). However, these papers

focus on only one period of optimization and do not address clinical trials that are conducted in

multiple periods, which is often the case in adaptive trials. Moreover, most of these papers do not

present an analytical form for the optimal type I and type II errors. The framework in our paper

addresses multi-period clinical trials and presents analytical expressions for the optimal type I

and type II errors. While there are papers similar to ours that combine Bayesian decision analysis

and adaptive design methods (Cheng et al. (2003), Willan and Kowgier (2008), Ahuja and Birge

(2016)), most of these papers rely on simulations for more than two periods due to their models’

intractability, while our framework leads to analytical results for the multi-period case. In addition,

unlike these earlier models, our model also allows discounting.

Stochastic Control in Applied Probability and Decision Theory under Uncertainty.

Our paper also builds on the literature in applied probability involving stochastic control and

the literature on decision theory under uncertainty. We leverage the techniques used from this

stream of literature to solve complex stochastic control and optimal stopping problems. Classical

papers include [(Brekke and Øksendal (1994))], Davis and Zervos (1994), Karatzas and Sudderth
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(1999) and Duckworth and Zervos (2001). More recently, such techniques have been employed to

solve problems in Operations Research and Management Science. For instance, Lobel et al. (2016)

analyzes the problem where a firm optimizes the launch times and the price of their product

assuming the technological process follows a diffusion process, Matoglu et al. (2015) analyzes the

problem of managing capacity by modeling the inventory control problem as a Brownian drift

control problem, and Sunar et al. (2019) studies how to develop and price a product optimally by

controlling the product launching time. Most of these papers begin by assuming the underlying

process to be a geometric or standard Brownian motion, and derive their results based on this

assumption. A notable feature of our paper is that we provide a generating mechanism for the

underlying diffusion process (or observation process), besides deriving the results generated from

this process. This offers a more comprehensive and holistic approach to addressing the statistical

problem of interest.

Papers that Lie On the Interface. Kouvelis et al. (2017) combines adaptive clinical trial

design and Bayesian theoretical decision-making, and uses a diffusion process to approximate the

patient enrollment level. The authors analyze a clinical trial design problem for drug development,

where a firm needs to decide in each period the patient recruitment rate and how many sites to

open. Similar to the formulation in our framework, their objective is to maximize the total expected

economic benefit. Our modeling framework differs from theirs in three ways. First, the total patient

sample size is fixed in their case while in ours it is not. Second, their control at each period is the

patient enrollment rate, while ours can be very general and can represent more complex decisions

or experiments. Third, they do not continuously update their beliefs, and their optimal control at

the beginning of each period does not depend on trial outcomes in the previous periods, while this

is not the case in our model.

Anderer et al. (2022) suggests a novel Bayesian adaptive clinical trial design that combines

data from both surrogate and direct outcomes to improve decision making, aiming to address the

limitations of using direct outcomes alone in drug approval decisions, with potential significant
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cost reduction and maintaining similar error rates. Our modeling framework differs from theirs in

the following ways. First, the structure of the optimal policy in our framework can be explicitly

characterized. Second, our framework applies to clinical trials where the outcome types are binary

or continuous valued, but not time-to-event ones. Third, we consider discounting in the objective,

while their framework abstracts away from discounting.

Chick et al. (2017) uses Bayesian theoretical decision-making in an adaptive trial design setting.

Similar to our framework, they use a diffusion process to approximate state evolution, which

represents the relative benefit of new treatment compared to the conventional one. The optimal

stopping boundary can be obtained by solving the heat equation. Again the main difference is that

the control in their settings represents only sampling allocation while ours can be very general.

Moreover, our model allows for the control of type I and II errors as well as expected termination

time.

There are three papers which lie on the interface of sequential hypothesis testing and stochastic

control that are very relevant to ours. Kwon and Lippman (2011) explores when it is optimal for

a firm to abandon or invest in a Bayesian sequential decision setting. Relative to their model, we

allow multiple experiments in our framework. Araman and Caldentey (2021) analyzes a sequential

sampling problem with applications in assortment selection and new product introduction. They

develop a diffusion approximation regime similar to ours. Relative to their model, our approxi-

mation allows strictly weaker assumptions (see §Appendix EC.4) and we allow each experiment

to be associated with a cost, which results in a non-static optimal policy. Harrison and Sunar

(2015) studies a problem with multiple controls involving profit maximization of a firm, and our

model heavily utilizes and generalizes their framework. Our extensions relative to Harrison and

Sunar (2015) are that we show how the diffusion process they assumed is a result of an asymp-

totic approximation of the LLR test in a so-called heavy experimentation regime (see §4), and we

generalize their reward function, which leads to a completely new class of optimal policies that

require different proof techniques. More specifically, both the set of controls that may be used in
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the optimal policy and the nature of the optimal policy change. Interested readers may find the

relevant details in the Electronic Companion (§Appendix EC.5).

Learning in Operations Management (OM). Lastly, our paper is also connected to the

literature on learning theory in OM, where policies for adaptive design problems on bandits are

extensively analyzed. Lai et al. (1985) and Auer et al. (2002) represent two seminal studies. More

recent work includes Araman and Caldentey (2009), Keskin and Zeevi (2014), Russo and Van Roy

(2014), Bastani and Bayati (2020), Chick et al. (2022). Most of these papers propose and analyze

policies that guarantee good performance only when the time horizon is long, because in many

scenarios an exact optimal solution to the problem is nearly impossible to find. Unlike these papers,

the optimal policy characterized in our problem is an exact one that is independent of time horizon.

3. Problem Formulation

Let θ ∈ {0, a} represent the true state of the world. A decision maker is testing between two

hypotheses H0 : θ= 0 and Ha : θ= a. At each time period, the decision maker can either stop and

accept one of the hypotheses, or incur some cost to run an experiment and obtain signals that will

inform him or her about θ. There are N types of experiments, or controls, each associated with a

different cost. Control j costs c(j) (or abbreviated as cj) per unit time. Throughout the paper, we

will use the terms “experiment” and “control” interchangeably.

To be more precise, let e1, e2, ... be the sequence of controls chosen by the decision maker,

X1,X2, ... be the sequence of signals acquired, and S = {1,2,3, ...,N} denote the control set. Given a

control ei ∈ S, Xi ∼ p0(·|ei) or pa(·|ei) if the true state of the world is 0 or a respectively. We assume

the Xi’s are independent across time periods, and only attain values on a discrete set Ω (which we

will call the signal set). Without loss of generality we assume pθ(x|e)> 0 for all x ∈ Ω, e ∈ S and

θ ∈ {0, a}. Let T denote the non-anticipating stopping time (we will also call it the stopping rule or

termination time), r ∈ (0,1) the discount rate and π0 = P (θ= a) the decision maker’s prior belief.

Depending on whether the final decision is correctly or incorrectly made, there are pre-determined
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rewards or penalties. Assume the decision maker makes a terminal decision θ̂ ∈ {0, a} (and recall

the true state of the world is θ ∈ {0, a}). The terminal payoff is given by H(θ, θ̂), where

H(θ, θ̂) =


R0 , if θ̂= θ= 0,

Ra , if θ̂= θ= a,

−κ0 , if θ̂= 0, θ= a,

−κa , if θ̂= a, θ= 0.

The decision maker maximizes the total expected economic benefit

E

«˜

T∑
i=1

− c(ei)

(1+ r)i−1

¸

+
H(θ, θ̂)

(1+ r)T

ff

, (1)

where the first term represents the cumulative experimental costs and the second represents the

terminal reward.

Remark 1. In a clinical trial setting, different experiments can correspond to different patient

sample sizes (Chaudhuri et al. (2018)). Given a particular sample size (i.e. an experiment), half of

the patients are allocated to the treatment group and the other half to the control group but this

can be generalized to uneven allocations. The signal from the experiment will be the difference of

outcomes between the two groups.

In certain scenarios, the decision maker may also wish to control for the type I and II errors and

the expected termination time. For the convenience of presenting the result, we will first focus on

maximizing (1) without considering these complications, and then show how our formulation can

be adapted to accommodate these constraints.

Given the decision maker’s policy {ei} and the resulting signals {Xi}, we denote the log-likelihood

ratio (LLR)

L(k) =
k∑

i=1

ln
pa(Xi|ei)
p0(Xi|ei)

, (2)

and denote Lj(k) to be the corresponding quantity when ei = j for all 1≤ i≤ k, i.e.

Lj(k) =
k∑

i=1

ln
pa(Xi|j)
p0(Xi|j)

. (3)
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We also introduce the following notations associated with the LLR.

µ0(j) =E

„

ln
pa(X|j)
p0(X|j)

ˇ

ˇ

ˇ

ˇ

H0

ȷ

, µa(j) =E

„

ln
pa(X|j)
p0(X|j)

ˇ

ˇ

ˇ

ˇ

Ha

ȷ

, (4)

σ0(j) = SD

„

ln
pa(X|j)
p0(X|j)

ˇ

ˇ

ˇ

ˇ

H0

ȷ

, σa(j) = SD

„

ln
pa(X|j)
p0(X|j)

ˇ

ˇ

ˇ

ˇ

Ha

ȷ

, (5)

and note that µa(j)> 0>µ0(j) due to Gibbs’ inequality.

Remark 2. In many clinical trial settings, the decision maker keeps track of a different test statis-

tics such as the difference in outcomes between patients in the treatment group and control group.

This is equivalent to keeping track of the log-likelihood ratio (see §Appendix EC.7 for more details).

4. Asymptotic Approximation: the Limiting Control Problem

As the discrete nature of the formulation renders our problem intractable, we will adopt a

continuous-time approximation of the LLR process. We will first present a high-level intuition of

the idea and then design a sequence of systems to show rigorously how the LLR process weakly

converges to a diffusion process.

High-level Intuition. The key idea is to approximate L(k), Lj(k) with diffusion processes L(t),

Lj(t) with matched 1st and 2nd moments under H0 and Ha. That is, informally for any experiment

j,

under H0, Lj(t)≈B(t;µ0(j), σ
2
0(j)), (6)

under Ha, Lj(t)≈B(t;µa(j), σ
2
a(j)), (7)

where B(t;µ,σ2) represents a Brownian motion with drift µ and variance σ2.

In fact, it turns out that we can prove a stronger result in which the drift and variance of the

diffusion process under the null and alternative are related to each other. Specifically, if we let for

each control j, ηj = µa(j)− µ0(j) (which we will call the information quality), then we will show

that Lj(t) can be approximated by B(t;−ηj
2
, ηj) and B(t;

ηj
2
, ηj) under H0 and Ha respectively.

Formal Presentation. To present the approximation more formally, we consider a heavy exper-

imentation regime in which there is a sequence of closely related systems indexed byK. In theK-th
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system, in each period instead of performing 1 experiment, the decision maker sequentially runs

K less informative ones, and as K→∞, the LLR converges to the approximating diffusion model.

In other words, in the K-th system, each original experiment is replaced with K independent

and identically distributed ones. In each of these new experiments, the corresponding probabil-

ity distributions that generate the signals are denoted by p
(K)
0 (· | j) and p(K)

a (· | j) respectively,

and we define µ
(K)
0 , µ(K)

a , σ
(K)
0 , σ(K)

a accordingly as in (4) and (5), and L(K)(k), L
(K)
j (k) as in (2)

and (3). With a slight abuse of notation, we also define the continuous-time log-likelihood ratio

processes L(K)(t) = L(K)(⌊Kt⌋), L(K)
j (t) = L

(K)
j (⌊Kt⌋) and their associated limiting counterparts

L(t) = limK→∞L(K)(t), Lj(t) = limK→∞L
(K)
j (t) (where the limit represents weak convergence, and

the existence will be shown in Theorem 1). We will assume that for each j ∈ S, as K→∞ the two

distributions converge to each other in the following manner

lim
K→∞

K
”

µ(K)
a (j)−µ

(K)
0 (j)

ı

= ηj, (8)

p(K)
a (x|j)
p
(K)
0 (x|j)

→ 1, for all x∈Ω. (9)

(8) essentially says that the K experiments which replace the original one in the K-th system

generate the same information in terms of the difference in total expected log-likelihood ratios

under the alternative and the null, and (9) says that the LLR converges to 1 (i.e. the signals become

increasingly uninformative). We note that (8) and (9) are conditions that are strictly weaker than

Assumption 1 of Araman and Caldentey (2021) (a rigorous statement can be seen at §Appendix

EC.4). Under (8), (9) we can show their first two moments satisfy the following asymptotic behavior

(c.f. lemma EC.1):

lim
K→∞

Kµ
(K)
0 (j) =−ηj

2
, lim

K→∞

?
Kσ

(K)
0 (j) =

?
ηj, (10)

lim
K→∞

Kµ(K)
a (j) =

ηj
2
, lim

K→∞

?
Kσ(K)

a (j) =
?
ηj. (11)

Define an admissible strategy as a non-anticipating right-continuous process M = {Mt, t ≥ 0}

taking values in S, then we have the following:
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Theorem 1. Suppose for all experiments j ∈ S for each experiment j, we construct a sequence of

experiments {p(K)
0 (· | j), p(K)

a (· | j)}∞K=1 such that (8) and (9) hold. Then for any j ∈ S,

under H0, L
(K)
j (t)⇒B(t;−ηj

2
, ηj) as K→∞, (12)

under Ha, L
(K)
j (t)⇒B(t;

ηj
2
, ηj) as K→∞, (13)

where B(t;µ,σ2) represents a Brownian motion with drift µ and variance σ2. Moreover, given any

admissible strategy M = {Mt, t≥ 0}, the log-likelihood ratio process L(t) is determined by

L(0) = 0, L(t) =

∫ t

0

µθ(Ms)ds+σ(Ms)dBs, (14)

where µa(j) =
ηj
2
, µ0(j) =−ηj

2
and σ(j) =

?
ηj.

The result of Theorem 1 provides the underlying mechanism for the initial assumptions introduced

in a diverse stream of literature, including Shiryaev (1967), Siegmund (1985), Peskir and Shiryaev

(2006), Kwon and Lippman (2011), Harrison and Sunar (2015) (henceforth referred to as “HS”),

Dyrssen and Ekström (2018) and Henry and Ottaviani (2019). It essentially says that when experi-

ment j is used, L(t) will evolve as a diffusion process approximately with variance ηj and drift −ηj
2

or
ηj
2

under the null or the alternative. A detailed proof of Theorem 1, which employs the tool of

Functional Central Limit Theorem (FCLT), is presented in the Electronic Companion (§Appendix

EC.1).

In the remainder, we will refer to ηj as the information quality of experiment j, and we will

say that an experiment with a higher information quality is more informative. Moreover, unless

otherwise specified, we will use the terms L(t) or Lt interchangeably.

5. Formulation in Continuous Time

Recall that the decision maker’s prior belief is π0 = P (θ = a) ∈ (0,1). Denote FL
t as the filtration

generated by L, and define the posterior belief πt = P (θ= a|FL
t ). We have the following (equivalent

to Proposition 2 in Araman and Caldentey (2021)).
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Lemma 1. The posterior belief satisfies the stochastic differential equation

dπt =
a

η(Mt)πt(1−πt)dBt, (15)

where B = {Bt, t≥ 0} is a standard Brownian motion with respect to {FL
t , t≥ 0}. An admissible

policy is defined as a pair of (M,T ) where M is an admissible strategy and T is a finite stopping

time with respect to FL
t . Because the posterior belief captures all the information that is needed for

the decision maker, we restrict the set of admissible policies under consideration to be Markovian

(i.e. Mt is a function of πt), in the forms of a natural class of policies called interval policies.

Definition 1. A set Π= {M,m(·), {ik}Dk=0, {ζk}D+1
k=0 , l, u} is an interval policy (see Figure 2) if

M = {Mt, t≥ 0} is an admissible strategy s.t. Mt =m(πt), (16)

0< l= ζ0 < ζ1 < ... < ζD < ζD+1 = u< 1, (17)

m(y) =


ik, if y ∈ [ζk, ζk+1), ik ∈ S, k= 0, ...,D,

STOP , if y ∈ (0, l)∪ [u,1),

(18)

ik ̸= ik+1, k= 0, ...,D, (19)

where we call ζk’s the switching beliefs, ik’s the intermediate controls, l and u the lower and upper

critical belief, and m(·) the control function, respectively. An interval policy is associated with the

natural stopping rule

T = inf{t≥ 0 | πt ∈ (0, l)∪ [u,1)}. (20)

In other words, an interval policy is a policy where the decision maker divides the interval [l, u) into

D+1 sub-intervals for some D by {ζk}D+1
k=0 such that the same control ik is employed whenever πt ∈

[ζk, ζk+1), k = 0,1, ...,D (see Figure 2). The decision maker stops and accepts H0 or Ha whenever

πt reaches below l or above u, respectively.

Figure 2 Illustration of an interval policy.

0
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i0 = 2
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Given an interval policy Π with the associated stopping rule T , the decision maker’s economic

benefits (the continuous-time version of (1)) are defined by

E

„

e−λTG(πT )−
∫ T

0

e−λtc(Mt)dt

ˇ

ˇ

ˇ

ˇ

π0

ȷ

, (21)

where λ=−ln( 1
1+r

) is the corresponding continuous-time discount rate and

G(y) =max{−κ0y+R0(1− y),Ray−κa(1− y)} (22)

represents the conditional expected net reward when the decision maker stops. Intuitively, G(·) can

be interpreted as follows. Suppose the decision maker stops at time T (with a posterior belief πT ),

the expected terminal payoff from accepting H0 or Ha is −κ0πT +R0(1−πT ) or RaπT −κa(1−πT )

respectively, and he or she will choose the maximum of the two. The optimization problem resembles

that of HS, with the important difference that the boundary condition G(·) is different due to the

presence of R0 and −κ0.

The decision maker wants to maximize the objective (21). We define the decision maker’s optimal

profit function (or value function) over (0,1) as

V (y) =max
Π

E

„

e−λTG(πT )−
∫ T

0

e−λtc(Mt)dt

ˇ

ˇ

ˇ

ˇ

π0 = y

ȷ

. (23)

5.1. The Ordering of Controls

We are now in a position to present the optimal policy. At this point, the first question that the

reader may wonder is, out of the N possible controls available to the decision maker (and N can be

very large), how we are going to determine which controls will potentially be used. It turns out that

only a subset of the N controls will be used in the optimal policy. This subset constitutes what we

will call the efficient frontier, the notion of which was first introduced in HS. In the remainder of

the section, we will first demonstrate how we can find the efficient frontier in our framework, and

then illustrate how we can characterize an optimal interval policy from it. The efficient frontier

in our model is different from that of HS, and we compare and contrast them in detail in the

Electronic Companion (§Appendix EC.5).
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Recall that each control i ∈ S has a corresponding cost rate ci and information quality ηi, and

we can represent the set of controls by {(ηi, ci)}Ni=1. It is obvious that there exists an index Ñ ≤N

and a numbering of the controls such that (see Figure 3)

0< η1 < ... < ηÑ , (24)

c2 − c1
η2 − η1

<
c3 − c2
η3 − η2

< ... <
cÑ − cÑ−1

ηÑ − ηÑ−1

, (25)

ci = ϕ(ηi), for i= 1,2, ..., Ñ , (26)

ci ≥ ϕ(ηi), for i= Ñ +1, ...,N , (27)

where ϕ(·) is the strictly increasing, piece-wise linear and convex function that connects (η1, c1),

..., (ηÑ , cÑ). In other words, ϕ(·) is the efficient frontier and an example of it is shown in Figure 3

(in which Ñ = 6 and N = 9). Controls 1,2, ..., Ñ are either the left endpoint, the right endpoint, or

a point on the efficient frontier at which the slope changes.

Figure 3 An example of N = 9 controls plotted on the (η, c)-plane with control i represented by (ηi, ci).

Information quality η

Cost rate c

(η1, c1)
(η2, c2)

(η3, c3) (η4, c4)

(η5, c5)

(η6, c6)

(η7, c7)

(η8, c8)

(η9, c9)

Note. In this example, Ñ = 6 and the solid line represents the efficient frontier, i.e. the piecewise linear function ϕ(·) that
satisfies (26) and (27).

Intuitively, the efficient frontier consists of controls that are in a sense “un-dominated”. For

controls that are not on the efficient frontier, each of them is essentially “dominated” by a control,

or a pair of controls, on the efficient frontier. To illustrate using the example in Figure 3, control

8 is “dominated” by control 3: they both have the same information quality, but control 8 has a
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larger cost. Suppose an interval policy uses control 8, then we can replace it by control 3 to achieve

a better objective value. Similarly, control 9 is “dominated” by a combination of control 4 and 5.

We can show that in the continuous-time formulations, if a policy uses control 9, then similarly we

can replace it by a combination of control 4 and 5 to achieve a better objective value.

5.2. The Optimal Interval Policy (OIP)

We are now in a position to characterize the optimal interval policy in terms of a sequence of

controls on the efficient frontier and the optimal lower boundary l∗ and upper boundary u∗.

Theorem 2. Let the set of controls {(ηi, ci)}Ni=1 be labelled by (24), (25), (26) and (27). Then for

(23), there exists an optimal interval policy (M∗,m∗(·),{i∗k}Dk=0,{ζ∗k}D+1
k=0 , l

∗, u∗) with {i∗k} satisfying

i) i∗k ∈ {1,2, ..., Ñ},

ii) |i∗k − i∗k−1|= 1 for all k= 1, ...,D, if D≥ 1,

iii) ∃k′ ∈ {0, ...,D} such that i∗k > i
∗
k+1 when 0≤ k≤ k′ − 1 and i∗k < i

∗
k+1 when k′ ≤ k≤D− 1,

and whose value function V (·) is twice continuously differentiable over (l∗, u∗) and satisfies

− ci + ηiy
2(1− y)2V ′′(y)/2≤ λV (y), for all y ∈ (l∗, u∗) and all i∈ {1,2, ...,N}, (28)

− cm∗(y) + ηm∗(y)y
2(1− y)2V ′′(y)/2 = λV (y), for all y ∈ (l∗, u∗). (29)

Moreover under this policy, the optimal action is to reject Ha when πt ∈ [0, l∗], to reject H0 when

πt ∈ [u∗,1], and to continue experimenting when πt ∈ (l∗, u∗).

The key statement of Theorem 2 is that there exists an optimal interval policy (OIP) that uses

unimodally consecutive controls on the efficient frontier and which is characterized by the two

sets {i∗k}Dk=0 and {ζ∗k}D+1
k=0 . In particular, ζ∗1 , ζ

∗
2 , ..., ζ

∗
D divide the interval [l∗, u∗) into D+1 disjoint

sub-intervals and when the belief πt is within the sub-interval [ζ∗k , ζ
∗
k+1), the decision maker uses

the same control i∗k. The decision maker stops whenever πt < l∗ or πt ≥ u∗: in the former case

accepts H0 and in the latter case accepts Ha. The set of intermediate controls {i∗k}Dk=0 satisfies the
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properties i), ii) and iii) as listed in Theorem 2. i) states that when the decision maker has not

yet stopped (i.e. πt ∈ [l∗, u∗)), the optimal control to be employed comes from the efficient frontier.

ii) asserts that between adjacent disjoint intervals specified by {ζ∗k}D+1
k=0 , the controls correspond

to two adjacent points on the efficient frontier at which its slope changes. iii) specifies that the

sequence form what we will call a unimodally consecutive sequence. Essentially there are four cases.

Case 1 : The OIP policy is monotonically increasing (D ≥ 1, k′ = 0). This happens when R0, κ0

are relatively small and Ra, κa are relatively large, which is essentially the scenario analyzed in

HS’s formulation. Case 2 : The OIP policy is monotonically decreasing (D≥ 1, k′ =D). This is the

reverse of case 1, which happens when R0, κ0 are relatively large and Ra, κa are relatively small.

Case 3 : The OIP policy is a singleton (D = 0). This happens when all of R0, κ0, Ra and κa are

relatively small and of similar magnitude. Case 4 : The OIP policy is strictly unimodal (D ≥ 2,

1≤ k′ ≤D− 1). This is the new case revealed by the analysis of this paper, and it occurs when all

of R0, κ0, Ra and κa are relatively large and of similar magnitude.

The intuition behind the structure of the OIP in Case 4 is as follows. At any point in time, the

decision maker can terminate and achieve a potential payoff with the current belief (higher when

the belief is more extreme), or delay the final decision later to get the payoff with an updated belief

via experimentation, but pays both a price to experiment and a price of discounting the payoff. It is

intuitively obvious that the stopping region is located at the extreme ends of the belief space while

the experimentation region is at the middle (see Panel (a) of Figure 4). Within the experimentation

region, the decision maker typically employs relatively higher-cost more informative controls when

the belief is more extreme (i.e. when πt ∈ [l∗, u∗) and close to either l∗ or u∗), and relatively lower-

cost less informative controls when the belief is less extreme (i.e. when πt ∈ [l∗, u∗) is close to neither

l∗ nor u∗). This is because in the former case, the potential payoff is relatively high, and thus

the decision maker feels impatient and wants to employ a relatively higher-cost more informative

experiment so that he or she can reach the nearer critical boundary faster to obtain the payoff

without it being discounted too much. In the latter case, the potential payoff is relatively moderate
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or low, the decision maker becomes relatively more patient, and will employ a moderately expensive

or a relatively less expensive experiment so as not to incur too much present cost (see Panel (b) of

Figure 4). In essence the decision maker faces a trade-off between speed and cost, favors speed by

making a faster decision when he or she is more certain, and favors cost by choosing a less costly

control when he or she is less certain. It is precisely the balance of this trade-off that leads to the

strictly unimodal control sequence in the OIP.

Figure 4 The intuition of why the control sequence of an OIP is unimodally consecutive.

No
Patience

Has
Patience

No
Patience

Stop
Accept H0

l Continue u Stop
Accept Ha

πt

(a) The decision maker has no patience to exper-
iment in the stopping region, and has patience to
experiment in the continuation region.

Low
Patience

High
Patience

Low
Patience

l $$$/$$$$
Control

$/$$
Control

$$$/$$$$
Control

u
πt

(b) Within the continuation region, the decision
maker has low patience near the critical boundaries,
and has more patience to experiment in the middle.

We note that we can easily identify the controls on the efficient frontier (i.e. the controls that

will potentially be used in the OIP), which are indexed 1,2, ..., Ñ . To find the actual controls used

in the OIP, or the set of switching beliefs {ζ∗k}D+1
k=0 , we refer the reader to the numerical procedure

in the Electronic Companion (§Appendix EC.3).

6. Adaptation of Optimal Policy

We note that in a given trial, there may be other important quantities of interest and concern: the

type I and II errors α, β and the expected termination time E(T ). The corresponding α,β and

E(T ) associated with the OIP may be large. In reality, the decision maker may also wish to control

either the former or the latter, or both. In the remainder of the section, we present adaptations of

our formulation to accommodate such a requirement.

6.1. Control of Type I and II Errors

In certain cases the designers of a clinical trial require a pre-specified type I and type II error.

This can be achieved in our formulation by fixing the lower and upper critical beliefs, which are



Zhengli Wang and Stefanos Zenios: Adaptive Design of Clinical Trials
20 Article submitted to Operations Research; manuscript no.

functions of the tolerated errors. The resulting stochastic control problem can then be solved with

these beliefs fixed.

To be more specific, let the decision maker’s maximum tolerated level of α,β be α0, β0. Given

any interval policy Π, the resulting type I error α(Π) and type II error β(Π) are defined as

α(Π) = Pr(Accept Ha | Π,H0),

β(Π) = Pr(Accept H0 | Π,Ha).

In our continuous-time formulation, the type I and II errors are uniquely determined by the policy’s

lower and upper critical beliefs.

Lemma 2. Let π0 be fixed. Given any interval policy Π, the following relationship between its lower

and upper critical beliefs l, u and the type I and II errors α,β holds

α=

1
1−π0

− 1
1−l

1
1−u

− 1
1−l

, β =

1
π0

− 1
u

1
l
− 1

u

. (30)

In other words, for a given interval policy and a prior belief π0, the type I and type II errors

depend only on l, u and do not depend on the switching beliefs and intermediate controls (l and u

here are analogous to the O’Brien-Fleming boundary in the classical hypothesis testing literature).

This consequence arises from Theorem 1, where under either hypothesis, the diffusion process Lt

always has a variance proportional to its drift. Subsequently, it can be shown that starting at π0

the probability of hitting either l or u is the same no matter which control is being used.

Denote E = (α0, β0) and let lE , uE be the corresponding lower and upper critical beliefs given by

(computed by inverting (30))

lE =
β0π0

β0π0 +(1−α0)(1−π0)
, uE =

(1−β0)π0

(1−β0)π0 +(1−π0)α0

. (31)

The idea is that we will fix the continuation region to be (lE , uE) and solve for the optimal interval

policy of the following stochastic control problem

VE(y) = max
Π|l(Π)=lE ,u(Π)=uE

E

„

e−λTG(πT )−
∫ T

0

e−λtc(Mt)dt

ˇ

ˇ

ˇ

ˇ

π0 = y

ȷ

, (32)

where l(Π) and u(Π) denote the lower and upper critical beliefs of the interval policy Π. Then we

can obtain the following result that is analagous to Theorem 2.
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Theorem 3. Let the set of controls {(ηi, ci)}Ni=1 be labelled by (24), (25), (26) and (27). Then for

(32), there exists an optimal interval policy (M̃∗, m̃∗(·), {̃i∗k}Dk=0,{ζ̃∗k}D+1
k=0 , l

E , uE) with {̃i∗k} satisfying

i) ĩ∗k ∈ {1,2, ..., Ñ},

ii) |̃i∗k − ĩ∗k−1|= 1 for all k= 1, ...,D, if D≥ 1,

iii) ∃k′ ∈ {0, ...,D} such that ĩ∗k > ĩ
∗
k+1 when 0≤ k≤ k′ − 1 and ĩ∗k < ĩ

∗
k+1 when k′ ≤ k≤D− 1,

and whose value function VE(·) is twice continuously differentiable over (lE , uE) and satisfies

− ci + ηiy
2(1− y)2V ′′

E (y)/2≤ λVE(y), for all y ∈ (lE , uE) and all j ∈ {1,2, ...,N}, (33)

− cm̃∗(y) + ηm̃∗(y)y
2(1− y)2V ′′

E (y)/2 = λVE(y), for all y ∈ (lE , uE). (34)

Moreover under this policy, the optimal action is to reject Ha when πt ∈ [0, lE ], to reject H0 when

πt ∈ [uE ,1], and to continue experimenting when πt ∈ (lE , uE).

Theorem 3 is analogous to Theorem 2 in the sense that in both cases the resulting optimal

policies are unimodally consecutive and use controls from the same efficient frontier. The difference

is that the optimal lower and upper critical beliefs are determined exogenously in the former and

endogenously in the latter.

6.2. Control of Expected Termination Time

The resulting OIP from the continuous-time formulation (21) does not control for the expected

termination time E(T ): it is possible that within a certain belief range, the OIP uses relatively

uninformative (“slow”) controls that result in πt taking a long time to reach the critical belief

thresholds. Suppose the decision maker wishes to place a constraint E(T ) ≤ t̄. We propose two

heuristics below.

The first approach involves successively re-optimizing the model by removing elements of S one

by one (from controls that are less informative to those that are more informative). The second,

faster, approach does not need to re-optimize the model many times. Instead it first eliminate all
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controls that, if used alone, produce an expected termination time greater than t̂. More specifically,

denote Eπ0,l,u(T ; j) to be the expected termination time associated with the interval policy that

always uses control j and has critical beliefs l, u (and prior π0). The following lemma provides a

closed-form expression for Eπ0,l,u(T ; j).

Lemma 3.

Eπ0,l,u(T ; j) =
2

ηj(u− l)
r(u−π0)ψl(π0)To+(π0 − l)ψu(π0)s , (35)

where ψz(y) =−(2y− 1) ln
´

y
1−y

¯

+(2z− 1) ln
´

z
1−z

¯

.

To control the OIP’s expected termination time, we first use (l∗, u∗) from the original OIP as a

reference, and eliminate the set of relatively uninformative controls U = {j ∈ S | Eπ0,l∗,u∗(T ; j)> t̄}.

Suppose S\U = ∅, then t̄ is probably too small and we may want to increase it and make the

constraint on E(T ) less restrictive. Suppose S\U ≠ ∅, then we find the new OIP with controls in

S\U . The following lemma shows that the new OIP’s expected termination time is controlled as

desired.

Lemma 4. Let Π∗, Π̂∗ denote the OIP associated with control set S and S\U respectively, then

l(Π∗)≤ l(Π̂∗), u(Π∗)≥ u(Π̂∗), (36)

E(T ; Π̃∗)≤ t̄. (37)

Lemma 4 essentially says that the new OIP’s continuation region (l(Π̂∗), u(Π̂∗)) is narrower

compared to the old one’s. This implies that Eπ0,l(Π̂∗),u(Π̂∗)(T ; j)≤ t̄ for all j ∈ S\U , and hence the

new OIP (which comprises these controls) also has an expected termination time not exceeding t̄.

7. Numerical Study

In this section, we compare the dynamic adaptive policy OIP developed in this paper to other

simpler adaptive policies that are used in practice. We do this in the context of a real world adaptive

clinical trial design: the Phoenix Champion Trial NCT01156571 (Bhatt et al. (2013)), a phase-III
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trial for the small molecule drug cangrelor that helps reduce the rate of ischemic complications

during percutaneous coronary interventions (PCI).

The primary efficacy endpoint was the composite rate of death from causes such as myocardial

infarction, ischemia-driven revascularization or stent thrombosis in the 48 hours after undergoing

PCI. The Phoenix Trial used a two-stage adaptive design with a maximum patient sample size

of 10,000, with 70% of the patients recruited in the first stage. Based on the result of the first

stage, it would then be decided whether the additional 30% of the patients would be recruited.

The recruited patients were separated into either the control group that used clopidogrel or the

treatment group that used cangrelor.

Below, §7.1 provides an overview of the relevant policies to be analyzed and §7.2 describes the

relevant controls used in the trial. §7.3 present the parameter estimates and §7.4 presents the result.

All simulations and numerical analyses are done in MATLAB.

7.1. Overview of Relevant Policies

We analyze the following policies: OIP (our dynamic policy), 2PA70-30 (2-period adaptive, with

the 1st and 2nd period using 70% and 30% of total patient size replicating the actual trial design),

2PABest (2-period adaptive, with percentage of the total patient size used in the 1st and 2nd

period optimized), Multi (multi-period adaptive, derived from 2PABest) and 1NA (1-period non-

adaptive).

OIP. To derive the OIP policy, we compute the information quality of each control, compute the

efficient frontier and after that compute the OIP policy using the numerical procedure specified

in the Electronic Companion §Appendix EC.3.

2PA70-30 & 2PABest. 2PA70-30 is the policy used in the Phoenix Champion Trial, where

given a total patient sample size, the decision maker uses 70% of it in the first period. Once

the results are obtained, the prior is updated and if it drops below a lower threshold the null is

accepted. If it increased above an upper threshold, the null is rejected. Otherwise. the remaining

30% is recruited in the second period, after which the decision makers accepts H0 if the posterior
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is below a threshold and rejects it otherwise. The two thresholds in the first period and the single

threshold in the second period, along with the sample size optimized to maximize total economic

benefit. 2PABest represents the best two-stage dynamic adaptive policy which is similar to 2PA70-

30, with the difference that the percentages of sample size used in the first and second period are

also optimized.

Multi.Multi represents a multi-period adaptive heuristic that uses same sample size as 2PABest,

and for each period also uses the lower and upper belief thresholds from 2PABest’s second period.

In each period, if the updated posterior belief drops below the lower threshold the null is accepted.

If it increased above an upper threshold, the null is rejected. Otherwise. continue experimenting

with the same sample size in the next period.

1NA. The 1NA policy is the 1-period non-adaptive policy where the total patient sample size

is given. After the first period the trial ends, and the decision maker reviews the result and decide

whether to acceptH0 orHa. The total patient sample size is optimized. This represents a traditional

clinical trial design.

7.2. Description of Controls

The Phoenix Trial had two stages. For each stage, the decision maker selected different patient

sample sizes (no. of patients to recruit). Moreover, the decision maker decided on how many clinical

sites to open to accommodate the patients recruited and whether to add more sites over time.

In the numerical study, we assume each stage lasts for a year. This is because the Phoenix Trial

had two stages and took about two years to complete (from Sep. 2010 to Oct. 2012). We assume

each site has a capacity of 100 patients. This is because the Phoenix Trial initially planned about

10,000 patients for about 100 sites. Thus, for the numerical study, a control in a particular stage

can be represented by (nP , nS), where nP and nS refer to the number of patients recruited and the

number of sites opened up for that stage. If a control (nP , nS) is chosen by the decision maker,

three types of costs are incurred: a per patient recruitment cost cP multiplied by nP , a per site

retaining cost cS (includes cost of keeping the site open, such as cost of maintenance and employee
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training) multiplied by nS, and a miscellaneous cost cO (includes overhead cost, data management

cost, coordination cost, IRB approval and amendment costs, etc) that is independent of nP and

nS. For computational tractability, we assume nP is a multiple of 500, and the decision maker can

set up at most 100 sites in each stage (i.e. nP ≤ 100nS, nS ≤ 100, nP ∈ {500,1000, ...,10000}). The

average recruiting cost per patient varies across sites, reflecting the situation in which different sites

have different advertising, recruiting, lab and hospital costs. Let µn
P denote the average recruiting

cost per patient, when the firm enrolls a total of n patients to take part in the trial for one stage.

The values for µn
P are derived from the estimates in Table 2 of Kouvelis et al. (2017), with details

described in the Electronic Companion (see §Appendix EC.6). The resulting values range from

0.002M to 0.04M and they satisfy the following inequality: µ100
P <µ200

P < ... < µ10000
P . These values

are also in line with those from Sertkaya et al. (2016) and Moore et al. (2018). In addition, we

assume each site incurs a site cost per stage of µS = 2.25M , which is derived from Sertkaya et al.

(2016) (see §Appendix EC.6).

7.3. Study Description and Parameters

In the baseline scenario, we perform the numerical study with the parameters based on the Phoenix

Trial. From earlier studies, we assume that the probabilities that a randomly chosen patient fails

to survive are ρa = 0.039 and ρ0 = 0.051 under the treatment group (cangrelor group) and control

group (clopidogrel group) respectively (Bhatt et al. (2013)). We assume cangrelor has a true prob-

ability of efficacy of π0 = 0.5, because this value represents historically the percentage of phase-III

clinical trials that succeed (Pretorius (2016)). We also assume an annual discount rate of 0.1, a

common assumption in many clinical trial studies (Sertkaya et al. (2016), Chaudhuri et al. (2018)

and Woo et al. (2019)).

To select the parameters (R0, κ0,Ra, κa), we attempt to estimate the parameters implied by

the actual design used in the Phoenix Champion Trial. To do this, we search over the range of

possible parameters, and for each choice considered we compute the lower and upper boundaries

to maximize total economic benefit and then derive the type I and type II errors. Finally, we
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select the parameters that most closely match the actual type I and type II errors: α= 0.05, β =

0.15. We find that (R0, κ0,Ra, κa) = (3000,0,2700,4000) generates the desired type I and type II

errors. This approach leads into a Bayesian framework that generates the type I and type II errors

required by the frequentist design used in the actual clinical trials. It is based on the methodology

outlined in Silva (2018) which calibrates non adaptive Bayesian and frequentist tests to generate

concordant conclusions. The values obtained through this method suggest that the trial designer

assigns roughly a 33% higher cost of incorrectly accepting the alternative compared to the reward of

correctly accepting either the null or the alternative, and assigns zero cost to incorrectly accepting

the null. This implies that the cost of introducing an ineffective drug to the market is perceived

to be 1/3rd larger than the benefit of introducing an effective drug, and that there is no loss in

incorrectly concluding that an effective drug is ineffective.

Starting from this baseline scenario, we then evaluate the performance of OIP relative to the

other policies over a variety range of parameters. First, we vary ρ0−ρa over a range of 0.01 to 0.02

(with ρa from 0.02 to 0.45). Second, we vary π0 over a range of 0.4 to 0.7. The range for ρ0 − ρa

is chosen as such because when it is less than 0.01, the experiments are not informative enough

and hence all policies would never run any experiment and would immediately accept H0; when it

is more than 0.02, the approximation behind our dynamic policy OIP becomes increasingly worse

and there is a point where OIP’s performance becomes worse than those of the simpler policies. We

are going to explore the value where that switch happens, but most of the informative variations

of performance between the three policies happen when ρ0 − ρa is between 0.01 and 0.02, which

is also the range of values that is very similar to that of the actual clinical trial (0.012) and is a

clinically relevant range. The range for π0 is chosen because this represents the different estimates

of the probability that a phase-III clinical trial succeeds (Pretorius (2016)).

7.4. Result

In this subsection, we will present results on the following: a) Performance of all policies in four

scenarios - a baseline scenario that represents the Phoenix Trial, a best-case scenario in which the
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OIP attains the greatest performance improvement, an intermediate scenario in which the OIP

attains a moderate performance improvement and a worst-case scenario that is representative of

OIP’s performance relative to the other policies’ among all parameters considered; b) Aggregate

performance improvement of 2PABest, 2PA70-30, Multi and OIP relative to 1NA; c) Performance

improvements of OIP relative to the other policies as ρa and ρ0 vary.

π0

7000˚0.5

π1

0.36

0.88

Ha

3000

H0

π2

0.72

Ha

H0

(a) 2PA70-30

π0

6500˚0.5

π1

0.3

0.9
Ha

6500

H0

π2

0.72

Ha

H0

(b) 2PABest

πt

0.3

0.9
Ha

6500

H0

0.5 ˚

(c) Multi

πt

Ha

7000

6500

6000

6500

7000

H0

˚0.5

0.91
0.85

0.70

0.60

0.41

0.34

(d) OIP

Figure 5 Explicit policies of 2PA70-30, 2PABest, Multi and OIP in the baseline scenario. 2PA70-30 & 2PABest:

first axis presents #patients recruited in the 1st stage; second axis presents the lower / upper critical

beliefs and #patients recruited in the 2nd stage; third axis shows the terminal belief threshold. OIP:

axis shows the belief thresholds and #patients recruited. Multi: axis shows the belief thresholds and

#patients recruited.

Baseline Scenario: Figure 5 shows the explicit policies of 2PA70-30, 2PABest, Multi and OIP.

For 2PA70-30 and 2PABest, the first axis presents the number of patients recruited in the 1st stage.

In particular, 2PA70-30 recruits 7000 patients and 2PABest recruits 6500. The second axis presents

the lower critical belief (below which H0 is accepted) and the upper critical belief (above which Ha

is accepted) thresholds, as well as the number of patients recruited in the 2nd stage (if the posterior
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belief falls between the lower and upper thresholds). For instance, 2PA70-30 recruits 3000 patients

in the 2nd stage if the posterior belief is between 0.36 and 0.88. The third axis shows the terminal

belief threshold, below which H0 is accepted and above which Ha is accepted. For both 2PA70-30

and 2PABest this thresholds is 0.72 (the value can be shown to be (R0+κa)/(R0+κ0+Ra+κa)).

For OIP, the only axis presents the belief thresholds and the number of patients recruited for a

posterior belief that falls between two adjacent thresholds. For instance, when the posterior belief

at any particular stage is between 0.41 and 0.6, OIP recruits 6500 patients. For Multi, the only

axis presents the identical information as that of OIP.

We observe that in the first period, all the adaptive policies begin with approximately the same

sample size. In the second period, they have similar lower and upper critical beliefs, but 2PABest,

Multi and OIP approximately double the sample size. Because 2PABest, Multi and OIP adopt

very similar sample sizes and for both OIP and Multi most decisions are made within 2 periods,

these policies perform almost the same (results to be shown next).

Table 1 Average economic benefits of all policies in the baseline scenario (π0 = 0.5, ρa = 0.039, ρ0 − ρa = 0.012). Brackets show the percentage
change relative to 1NA.

1NA 2PA70-30 2PABest Multi OIP
Econ. Benefit ± SE (∆%) 1663.5±45.4 (0%) 1789.3±39.7 (7.6%) 1869.1±33.3 (12.4%) 1877.9±30.8 (12.9%) 1876.4±30.9 (12.8%)

T ± SE (∆%) 1±0 (0%) 1.23±0.01 (22.7%) 1.31±0.01 (31.3%) 1.42±0.02 (41.8%) 1.39±0.02 (39.4%)
Sample Size ± SE (∆%) 8000±0 (0%) 7681±39.8 (-4%) 8534.5±95.4 (6.7%) 9217±143.6 (15.2%) 9089±142 (13.6%)

Cost of Experiments ± SE (∆%) 440.3±0 (0%) 379.9±1.3 (-13.7%) 410.3±4.3 (-6.8%) 437.7±6.1 (-0.6%) 432.9±6.1 (-1.7%)
α ± SE (∆%) 0.09±0.01 (0%) 0.06±0.01 (-27.3%) 0.04±0.01 (-52.3%) 0.04±0.01 (-59.1%) 0.03±0.01 (-61.4%)
β ± SE (∆%) 0.17±0.02 (0%) 0.15±0.02 (-11.8%) 0.1±0.01 (-43.5%) 0.06±0.01 (-63.5%) 0.08±0.01 (-55.3%)

The performance of all policies in the baseline scenario (which represents a reduction of 23% in

the relative risk of adverse events) is shown in Table 1. The result shows that OIP performs better

than the policies used in practice (with 12.8% improvement compared to 1NA, and additional 5.2%

improvement compared to 2PA70-30). However OIP’s improvement achieved relative to 2PA70-

30 is almost the same as 2PABest’s and Multi’s, that is, the same as if we would optimize the

two-period policy and make it multi-period. Note that this conclusion can already be deduced

from Figure 5. All adaptive policies have termination greater than 1NA, as they may continue

experimenting after observing the result from the first period, with the termination time of OIP
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comparable to that of 2PABest and Multi, and slightly larger than that of 2PA70-30. In terms

of sample size, 2PABest, Multi and OIP have larger values than 1NA, whereas 2PA70-30 has a

smaller value than 1NA. In terms of experiment cost, all adaptive policies achieve a smaller value

than 1NA, with 2PA70-30 having the smallest value. In terms of type-I and II errors, 2PABest,

Multi and OIP achieve lower values compared to 2PA70-30. To summarize, in the baseline scenario

that is representative of the actual Phoenix Trial, OIP performs better than the adaptive policy

used in practice (2PA70-30) and the non-adaptive one (1NA), but is almost indistinguishable to

the two-period optimized policy 2PABest and the simpler multi-period policy (Multi).

Best Case Scenario: Here we present a scenario that represents the largest performance gap

(among all scenarios considered) between OIP and the remaining policies. The parameters are

π0 = 0.6, ρ0 − ρa = 0.014, ρa = 0.2. This is a scenario in which the primary endpoint occurs 20% of

the time and the treatment arm represents a reduction of 7% in the relative risk of adverse events.

Table 2 shows the result, where OIP achieves an additional 9.7%, 8.9% and 4.4% economic benefit

relative to 2PA70-30, 2PABest and Multi, respectively. In this scenario, π0 lies relatively in the

middle of experimentation interval for all policies, and the information quality is not very large

(both ρa and ρ0 − ρa are in the intermediate range). OIP performs the best because in this set of

parameters, the expected duration of a trial is long on average (1.7, longer than 1.4 in the baseline

scenario), and the asymptotic regime in our framework is relatively more accurate.

Table 2 Average economic benefits of all policies. Brackets show the percentage change relative to 1NA, for π0 = 0.6, ρ0 − ρa = 0.014, ρa = 0.2.

1NA 2PA70-30 2PABest Multi OIP
Econ. Benefit ± SE (∆%) 1308.5±52.4 (0%) 1316.4±49.6 (0.6%) 1327.3±48.8 (1.4%) 1385.2±44.4 (5.9%) 1443.9±42.9 (10.3%)

T ± SE (∆%) 1±0 (0%) 1.32±0.01 (31.5%) 1.4±0.02 (40.1%) 1.62±0.03 (61.6%) 1.7±0.03 (69.8%)
Sample Size ± SE (∆%) 7000±0 (0%) 8739.5±48.5 (24.9%) 9106.5±100.8 (30.1%) 10504±190.3 (50.1%) 9619±190.5 (37.4%)

Cost of Experiments ± SE (∆%) 357.7±0 (0%) 449.6±1.6 (25.7%) 435.9±4.5 (21.8%) 490.5±7.8 (37.1%) 415.4±7.3 (16.1%)
α ± SE (∆%) 0.13±0.02 (0%) 0.13±0.02 (-1.9%) 0.12±0.02 (-9.4%) 0.09±0.01 (-30.2%) 0.08±0.01 (-39.6%)
β ± SE (∆%) 0.38±0.02 (0%) 0.29±0.02 (-24.1%) 0.3±0.02 (-21.9%) 0.23±0.02 (-38.2%) 0.26±0.02 (-32.5%)

Intermediate Scenario: Here we present a scenario that represents an average performance gap

(among all scenarios considered) between OIP and the remaining policies, where in the alternative,

the drug reduces the adverse events by 12%. The parameters are π0 = 0.6, ρa = 0.09 and ρ0 − ρa =
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0.012. Table 3 shows the result, where OIP achieves an additional 8.5%, 6.5% and 5.5% economic

benefit relative to 2PA70-30, 2PABest and Multi, respectively. Similarly as in the best case scenario,

the expected duration of a trial is long on average (1.65, longer than 1.4 in the baseline scenario),

and the asymptotic regime in our framework is relatively accurate.

Table 3 Average economic benefits of all policies. Brackets show the percentage change relative to 1NA, for π0 = 0.6, ρ0 − ρa = 0.012,
ρa = 0.09.

1NA 2PA70-30 2PABest Multi OIP
Econ. Benefit ± SE (∆%) 1394.8±50.1 (0%) 1441.8±46.5 (3.4%) 1470.2±46.3 (5.4%) 1484.6±43.6 (6.4%) 1561±40.2 (11.9%)

T ± SE (∆%) 1±0 (0%) 1.28±0.01 (28.1%) 1.38±0.02 (37.9%) 1.59±0.03 (59.2%) 1.65±0.03 (64.7%)
Sample Size ± SE (∆%) 8000±0 (0%) 8627.3±46.9 (7.8%) 8963.5±99.8 (12%) 10348±199.1 (29.3%) 10034±196 (25.4%)

Cost of Experiments ± SE (∆%) 440.3±0 (0%) 445.8±1.6 (1.2%) 429.5±4.5 (-2.5%) 482.7±8 (9.6%) 450.8±7.7 (2.4%)
α ± SE (∆%) 0.13±0.02 (0%) 0.11±0.02 (-14%) 0.11±0.02 (-12%) 0.09±0.01 (-26%) 0.07±0.01 (-42%)
β ± SE (∆%) 0.28±0.02 (0%) 0.24±0.02 (-12%) 0.22±0.02 (-21.6%) 0.17±0.02 (-37.7%) 0.17±0.02 (-39.5%)

Worst Case Scenario: Finally we present a scenario that represents the worst performance gap

(among all scenarios considered) between OIP and the remaining policies, where in the alternative,

the treatment reduces the relative risk of the adverse events by 50%. The result (see Table 4) is

that OIP achieving about 7% less economic benefit than 2PABest and Multi, and about 6% less

than 2PA70-30. In this scenario, π0 lies relatively near the end of the experimentation range for all

policies, and the information quality is relatively large (ρa is relatively small, ρ0 − ρa is relatively

large, and both are at the extreme end of the range). OIP performs the worst because in this set

of parameters, the expected duration of a trial is short on average (1.04, shorter than 1.4 in the

baseline scenario), and the asymptotic regime in our framework becomes relatively less accurate.

Table 4 Average economic benefits of all policies. Brackets show the percentage change relative to 1NA, for π0 = 0.4, ρ0 − ρa = 0.02, ρa = 0.02.

1NA 2PA70-30 2PABest Multi OIP
Econ. Benefit ± SE (∆%) 2305.6±21 (0%) 2336.2±16 (1.3%) 2354.8±13.5 (2.1%) 2359.7±11.8 (2.3%) 2192.6±7.4 (-4.9%)

T ± SE (∆%) 1±0 (0%) 1.08±0.01 (8.3%) 1.12±0.01 (12%) 1.13±0.01 (13.2%) 1.04±0.01 (4%)
Sample Size ± SE (∆%) 5000±0 (0%) 5074.1±18.3 (1.5%) 5041.4±46.3 (0.8%) 5095.4±53.6 (1.9%) 7804.1±48.8 (56.1%)

Cost of Experiments ± SE (∆%) 216.6±0 (0%) 215.5±0.5 (-0.5%) 206.6±1.7 (-4.6%) 208.5±2 (-3.7%) 412.8±2.4 (90.6%)
α ± SE (∆%) 0.013±0.004 (0%) 0.008±0.003 (-36.8%) 0.005±0.002 (-59.2%) 0.003±0.002 (-73.7%) 0.001±0.001 (-93.4%)
β ± SE (∆%) 0.049±0.007 (0%) 0.02±0.004 (-59.5%) 0.011±0.003 (-78.5%) 0.007±0.003 (-85.1%) 0.001±0.001 (-99%)

In summary, these scenarios suggest that OIP tends to perform well when the prior belief π0

lies in the intermediate range between the lower and upper boundaries (0.5 - 0.7), ρa is not of the

same order of magnitude as ρ0 − ρa, and ρ0 − ρa lies between 0.01 and 0.02.
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Figure 6 Aggregate performance improvement of 2PA70-30, 2PABest, Multi and OIP relative to 1NA for π0 =

0.4,0.5,0.6 and 0.7.

Aggregate Performance Improvement: Next, we evaluate the aggregate performance

improvement of 2PA70-30, 2PABest, Multi and OIP relative to 1NA for π0 = 0.4,0.5,0.6 and 0.7.

Specifically, for each value of π0 considered, we simulate the performance of all policies holding

ρ0 − ρa fixed and ρa ranging from 0.02 to 0.45 (in increment of 0.01). We repeat this for ρ0 − ρa

ranging from 0.01 to 0.02 (in increment of 0.002) and then compute the aggregate performance

improvement of all adaptive policies relative to 1NA. Figure 6 shows the result, with the 4 panels

corresponding to π0 = 0.4,0.5,0.6 and 0.7. We see that when the prior is very close to the lower

boundary (i.e. π0 = 0.4), the simple multi-period policy performs the best. However, when the prior

moves away from the boundary, OIP performs the best. The largest performance gap between OIP
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and the remaining policies occurs when the prior is in the middle of the range considered (i.e.

π0 = 0.6). In this case, we see an additional economic benefit improvement of 1.6%, 1.9% and 2.3%,

when the policy transitions from 2PA70-30 to 2PABest, from 2PABest to Multi, and from Multi to

OIP respectively. In this case, the improvement of OIP comes from all three of its adaptive features:

multi periods, changing sample sizes between periods, and adjusting the sample size based on the

strength of the evidence.
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Figure 7 Plot of OIP’s incremental benefit (relative to 2PA70-30, 2PABest and Multi) against ρ0 − ρa for π0 =

0.5,0.6 and 0.7.
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Figure 8 Plot of OIP’s incremental benefit (relative to 2PA70-30, 2PABest and Multi) against ρa for π0 = 0.5,0.6

and 0.7.

Factors Driving the Performance of OIP. To further explore the drivers of the performance

gains of OIP, we focus on the π0 values where OIP achieves a significant improvement relative to
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1NA (π0 = 0.5, 0.6 and 0.7) and provide more detailed data on the incremental benefit of OIP’s

performance improvement relative to 2PA70-30, 2PABest and Multi. Furthermore, to determine

how much of the improvement in OIP is due to simple adaptive elements (e.g. changing sample

size from period to period, allowing multiple periods) versus more complex elements (adapting

the sample size to the strength of evidence), we express the improvement of OIP versus the three

adaptive policies as a percentage of the improvement of the OIP relative to 1NA. More specifically,

we compute (Economic Benefit of OIP − Economic Benefit of 2PA70-30) / (Economic Benefit of

OIP − Economic Benefit of 1NA) and we repeat for 2PABest and Multi.

Figure 7 plots the three metrics against ρ0 − ρa, and Figure 8 plots them against ρa. In both

Figures, we can see that the relative improvement can be quite significant. In Figure 7, for OIP

versus 2PA70-30 the relative improvement can be as high as 90% (see Panel (b)) and the average

across all panels is 65.1%; for OIP versus 2PABest it can be as high as 65% (see Panel (c)) with an

average of 45.3%; for OIP versus Multi it can be as high as 45% (see Panel (b)) with an average

of 23.8%. In Figure 8, for OIP versus 2PA70-30 the relative improvement can be as high as 85%

(see Panel (a)) with an average of 56.6%; for OIP versus 2PABest it can be as high as 65% (see

Panel (a)) with an average of 40.7%; for OIP versus Multi it can be as high as 35% (see Panel

(b)) with an average of 21.6%. These results put in perspective the improvement of OIP versus

the other adaptive policies: while in absolute percentage terms the improvement is in the single

digits, as a percentage of the maximum possible improvement (measured as the improvement of

OIP versus 1NA), it can be significant and as high as 90%. These results also demonstrate how

different aspects of the adaptive policy contribute to the economic benefit gains: In Figure 7, the

non-optimized two stage adaptive policy used in practice attains on average 34.9% of the maximum

improvement attainable by the OIP, the optimized two stage policy attains on average 54.7% of the

maximum improvement and the multi-period policy attains 76.2% improvement. The remaining

25.8% of the attainable improvement can be attributed to the OIP’s adaptation of the sample size

in each period based on the strength of the evidence. The corresponding numbers for Figure 8 are

45.4%, 59.3 %, 78.4% and 21.6%.
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Figure 9 Plot of difference in economic benefit (OIP versus 1NA, 2PA70-30, 2PABest and Multi) against ρ0−ρa

for π0 = 0.5,0.6 and 0.7.

Validity of Asymptotic Approximation. Finally, we explore what happens when the asymp-

totic approximation no longer applies by examining how the performance of OIP deteriorates as

ρ0 − ρa becomes greater than 0.02. Figure 9 shows this observation: for example given π0 = 0.5,

when ρ0 − ρa is about 0.02 OIP starts to perform worse than Multi; when ρ0 − ρa is about 0.023

OIP starts to perform worse than 2PABest; and when ρ0−ρa is about 0.025 OIP starts to perform

worse than 2PA70-30. A similar pattern can be observed for π0 = 0.6 and π0 = 0.7.

In conclusion, these results demonstrate that for a wide range of parameters that are typical

of real life phase III trials, the proposed dynamic OIP policy provides significant improvement in

economic benefit. In many scenarios, most of the improvement can be attained by simple optimized

adaptive policies but not always. The greatest improvement happens when π0 is in the intermediate

range, ρ0 − ρa is relatively moderate, and ρa is relatively not too small. Although for the baseline

parameters in the context of the Phoenix Trial, the benefit is small compared to the optimized

two-stage adaptive policy and the simpler multi-period policy, for a population where the baseline

rate of adverse event is 10% (doubles that of the actual trial, e.g. the intermediate scenario) or

higher (e.g. the best scenario), the benefit can be much more significant. There are also scenarios

where the asymptotically optimal policy performs poorly compared to the other policies. This is

because in these scenarios the underlying asymptotic approximation is not valid. This suggests that

computing the exactly optimal adaptive design (not asymptotically optimal) can lead to further

improvements.
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8. Discussion

Adaptive clinical trial is a special form of adaptive experimentation that is used for hypothesis

testing. Beyond drug discovery, our framework for adaptive experimentation can be applied to other

areas, such as adaptive A/B testing, randomized control trials in development economics and new

product testing. With regard to adaptive A/B testing, it can help technology companies determine

how they can improve key customer metrics. For example, a high growth company may want to

test alternative ways of reducing the customer churn rate, from 20% to 18%. While 2% may seem

like a small improvement, it can have a potentially large impact on the company’s profitability. Our

results from the numerical study, in particular, the best case scenario and intermediate scenario

from Table 2 and Table 3, show that our adaptive policy can provide significant economic benefit

to companies performing A/B testing. With respect to development economics, our model can be

directly applied to trials testing whether micro-lending helps lift people out of poverty or makes

them more indebted, and trials testing whether changing the structure of the voting forms positively

affects voter turnouts in elections. Most of these experiments involve pilot programs to estimate

how effective a given intervention policy is, before irreversibly launching the policy in large scale.

In the abstraction of our model, the controls can represent the number of communities to run

pilot program on, and accepting H0 or Ha corresponds to abandoning the policy or launching the

policy at scale. Our framework is also relevant to the entrepreneurship literature involving product

development. In the real world, an entrepreneur tries to determine whether a novel product will be

successful by performing a series of experiments that inform him or her about the prospects of the

product, and eventually makes a decision whether to develop the product or not. Depending on

whether the final decision is correctly or incorrectly made, there is an associated reward or penalty.

In the abstraction of our model, the controls represent different experiments the entrepreneurs can

run, and accepting H0 or Ha corresponds to abandoning the product or investing on the product

development.

Our modeling framework has several limitations. First, the sequential hypothesis testing frame-

work does not control for the realized termination time. Although a heuristic is presented to control
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for the expected termination time, it is possible that in some realizations of signal sequences,

the log-likelihood ratio stays within the continuation region for a very long period of time. This

may be undesirable from a practical point of view. Second, the terminal rewards and penalties

R0.Ra, κ0, κa are assumed to be constant independent of the termination time T . It is plausible

that in some scenarios or applications, these may be dependent. For instance, a large T may lead

to a lower reward Ra due to a shorter patent protection period. Third, all experiments have the

same duration. This implies follow-up times are the same for all patients in the trial. The frame-

work, for example, does not allow for clinical trials where the key outcome is time-to-event (TTE).

Fourth, patient outcomes are perfectly observed. Specifically, the framework assumes no patients

quit due to unforeseen circumstances during the trials. Fifth, our model does not allow testing

of multiple (≥ 3) hypotheses, as this may involve generalizing the one-dimensional belief space to

multi-dimensional which may be relatively more challenging to characterize and solve. Lastly, our

model does not consider switching cost when the decision maker changes experiments during the

trial. Extensions that address any of these limitations present opportunities for future development.
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Appendix EC.1. Proof of Theorem 1

Proof of Theorem 1. Suppose (8) and (9) hold. Define

W
(K)
j (t) =

L
(K)
j (t)−µ

(K)
0 (j) ⌊Kt⌋

σ
(K)
0 (j)

?
K

. (38)

Then it can be easily verified that under the null hypothesis, W
(K)
j (t) is a martingale and

E

„

W
(K)
j (t)2

ˇ

ˇ

ˇ

ˇ

H0

ȷ

= 1

σ
(K)
0 (j)2K

(⌊Kt⌋σ(K)
0 (j)2)→ t as K →∞. By applying the martingale FCLT

(Pang et al. (2007) Theorem 8.1(ii)) to this process, we have

Under H0, W
(K)
j (t)⇒B(t; 0,1) as K→∞. (39)

Under the alternative hypothesis,

W
(K)
j (t) =

L
(K)
j (t)−µ(K)

a (j) ⌊Kt⌋
σ
(K)
0 (j)

?
K

+
(µ(K)

a (j)−µ
(K)
0 (j)) ⌊Kt⌋

σ
(K)
0 (j)

?
K

=
σ(K)
a (j)

σ
(K)
0 (j)

L
(K)
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a (j) ⌊Kt⌋
σ
(K)
a (j)

?
K

+
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a (j)−µ
(K)
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σ
(K)
0 (j)
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Thus under Ha, W̃
(K)
j (t) fiW

(K)
j (t)− (µ

(K)
a (j)−µ

(K)
0 (j))⌊Kt⌋

σ
(K)
0 (j)

?
K

is a martingale. Since limK→∞(σ
(K)
a (j)

σ
(K)
0 (j)

) = 1

(c.f. Lemma EC.1), E

„

W̃
(K)
j (t)2

ˇ

ˇ

ˇ

ˇ

Ha

ȷ

→ t as K →∞. Applying the martingale FCLT Theorem

again we have

Under Ha, W
(K)
j (t)⇒B(t;

?
ηj,1) as K→∞. (40)

Note that by (38),

L
(K)
j (t) = σ

(K)
0 (j)

?
KW

(K)
j (t)+µ

(K)
0 (j) ⌊Kt⌋ , (41)

and by Lemma EC.1 we have

?
Kσ

(K)
0 (j) =

?
ηj, (42)

Kµ
(K)
0 (j) =−ηj

2
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Under H0 we have (39). This together with (41), (42), (43) proves (12). Similarly under Ha we

have (40). This together with (41), (42), (43) shows (13). ˝

Lemma EC.1. For any j ∈ S denote ηj fi µa(j)−µ0(j) and suppose (8), (9) hold, then

lim
K→∞

Kµ(K)
a (j) =

ηj
2
, lim

K→∞
Kµ

(K)
0 (j) =−ηj

2
, lim

K→∞
Kσ(K)

a
2(j) = ηj , lim

K→∞
Kσ

(K)
0

2(j) = ηj , (44)

lim
K→∞

?
K

”

µ(K)
a (j)−µ

(K)
0 (j)

ı

σ
(K)
0 (j)

=
?
ηj . (45)

Proof of Lemma EC.1. Fix an experiment j and denote its signal set Ω = {1,2,3, ...}. Without

loss of generality assume p
(K)
0 (·|j)→ p̃(·|j)> 0 uniformly. Denote for each x ∈ Ω, h(K)

x = p
(K)
0 (x|j)

and k(K)
x = p(K)

a (x|j)− p
(K)
0 (x|j). The two sets {k(K)

x }x,K and {h(K)
x }x,K satisfy

∑
x

h(K)
x = 1, h(K)

x ∈ (0,1) for all x,K, (46)

∑
x
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x = 0, h(K)

x + k(K)
x ∈ (0,1) for all x,K. (47)

Since (9) holds, for every ϵ > 0 there exists k′ such that whenever K ≥ k′, supx|
k
(K)
x

h
(K)
x
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this happens, we have
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Hence as K→∞,
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If (8) holds, then

lim
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and

lim
K→∞

?
K

(µ(K)
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σ
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0 (j)
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K(µ(K)
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?
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˝

Appendix EC.2. Proof of Lemma 1, 2, 3 and 4

Proof of Lemma 1.

Without loss of generality, we can assume H0 : dLt =
?
ηdBt, Ha : dLt = ηt+

?
ηdBt.

Suppose prior is π0 = Pr(Ha) and we observe Lt at time t. Denote ϕt =
Pr(Lt|Ha)

Pr(Lt|H0)
to be the

likelihood ratio, then the posterior belief πt satisfies

πt =

π0
1−π0

ϕt

1+ π0
1−π0

ϕt

. (54)

By an application of Ito’s formula, we have

dπt = πt(1−πt)dLt −π2
t (1−πt)ηdt. (55)

Note that dLt = ηπtdt+
?
ηdBt, and hence

= πt(1−πt)(ηπtdt+
?
ηdBt)−π2

t (1−πt)ηdt (56)

=
?
ηπt(1−πt)dBt. (57)

˝

Proof of Lemma 2. By a standard result in the sequential hypothesis testing paradigm

log

ˆ

πt

1−πt

˙

=Lt + log

ˆ

π0

1−π0

˙

,

i.e. πt =
π0e

Lt

(1−π0)+π0e
Lt

and Lt = ln 1−π0
π0

πt
1−πt

. We further define the following two quantities

û= ln
1−π0

π0

u

1−u
, l̂= ln

1−π0

π0

l

1− l
. (58)

Suppose H0 is true, i.e. dLt =−ηj
2
dt+

?
ηjdBt. Denote the type I and II errors as

Pα(y) = Pr(Lt hits û before l̂ | H0,L0 = y), (59)

Pβ(y) = Pr(Lt hits l̂ before û | Ha,L0 = y). (60)
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Using a standard first-order analysis we have

Pα(Lt) =EdLtPα(Lt + dLt) (61)

=Pα(Lt)+E[P ′
α(Lt)dLt] +E[P ′′

α(Lt)dL
2
t/2]+ o(dt) (62)

=Pα(Lt)+P ′
α(Lt)(−ηj/2)dt+P ′′

α(Lt)((
?
ηj)

2
/2)dt+ o(dt), (63)

where the last inequality follows from Ito’s formula (under H0, dLt =−(ηj/2)dt+
?
ηjdBt).

Thus Pα(y) satisfies the following ODE

−P ′
α(y)+P ′′

α(y) = 0, (64)

Pα(l̂) = 0, Pα(û) = 1. (65)

which has the solution Pα(y) =
ey−el̂

eû−el̂
. Similarly we have Pβ(y) =

e−y−e−û

e−l̂−e−û
. Substituting l̂, û as in

(58) gives the desired result. ˝

Proof of lemma 3. Given l, u fixed, for a given control j and current belief y ∈ (l, u), we will

show that expected termination time Ey,l,u(T ; j) satisfies

Ey,l,u(T ; j) =
2

ηj(u− l)
r(u− y)ψl(y)+ (y− l)ψu(y)s , (66)

where ψz(y) =−(2y− 1) ln
´

y
1−y

¯

+(2z− 1) ln
´

z
1−z

¯

.

Denote T (y) =Ey,l,u(T ; j). Then T (y) satisfies the following ordinary differential equation

1+
ηjy

2(1− y)2

2
T ′′(y) = 0. (67)

The solution to (67) gives (where C1,C2 are constants to be determined)

T (y;C1,C2) =
1

ηj
(−4y+2)ln(

y

1− y
)+

4

ηj
+C1y+C2. (68)

Applying the boundary conditions T (l) = T (u) = 0, we have

T (y) =
2

ηj(u− l)

„

−(2y− 1)ln

ˆ

y

1− y

˙

(u− l)+ (2l− 1)(u− y)ln

ˆ

l

1− l

˙

+(2u− 1)(y− l)ln

ˆ

u

1−u

˙ȷ

(69)

=
2

ηj(u− l)

„

−(2y− 1)ln

ˆ

y

1− y

˙

(u− y+ y− l)+ (2l− 1)(u− y)ln

ˆ

l

1− l

˙

+(2u− 1)(y− l)ln

ˆ

u

1−u

˙ȷ

(70)

=
2

ηj(u− l)
r(u− y)ψl(y)+ (y− l)ψu(y)s . (71)
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˝

Proof of lemma 4. Let VΠ∗(·), VΠ̂∗(·) denote the value function associated with Π∗, Π̂∗ respectively.

Suppose l(Π∗)> l(Π̂∗), then this means for ϵ > 0 sufficiently small, VΠ̂∗(l(Π̂∗)+ ϵ)>VΠ∗(l(Π̂∗)+ ϵ),

a contradiction. Similarly the same conclusion can be deduced for u(Π∗) and u(Π̂∗).

Appendix EC.3. Proof of Theorem 2 and 3

In this section, we will prove Theorem 2 by constructing the OIP policy. The proof is organized

into four main steps. First, we define some relevant quantities that will be useful in the proof.

Second, we show we can construct a value function given any lower critical belief that lies within

certain ranges. Third we show that the set of value functions constructed in this way possess certain

desired properties and are ordered. Lastly combining all the previous steps, we show that there

exists an interval policy which is the required OIP. The proof of Theorem 3 mimics the exact same

steps and is omitted.

EC.3.1. Step I: Notations and Definitions

To express compactly the differential equations that appear frequently in the remainder of the

section, we will denote the differential operator

Γf(y) fi
y2(1− y)2f ′′(y)

2
, (72)

whenever f(·) is twice continuously differentiable. For the convenience of presenting the results, we

will also define the following terms “partially underneath”, “over-touch” and “lie above”. These

definitions are intuitive and they are illustrated in Figure 10.

Definition 2. Let f(y) and g(y) be two continuous functions over an interval A= (a, b)⊂R

i) f(y) is partially underneath g(y) over A if f(y)< g(y) over some sub-interval As ⊂A.

ii) f(y) over-touches g(y) over A if f(y)≥ g(y) over A and there exists at least one y0 ∈A s.t.

f(y0) = g(y0).

iii) f(y) lies above g(y) if f(y)> g(y) over A.
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Figure 10 (Color) Definitions of partially underneath, over-touch, and lie above.

(a) f(·) is partially underneath
g(·) over (a, b).

(b) f(·) over-touches g(·) over
(a, b).

(c) f(·) lies above g(·) over
(a, b).

Moreover, in the remainder of the section, we will assume the set of controls {(ηi, ci)}Ni=1 is

numbered as in (24), (25), (26) and (27) with Ñ corresponding to the control with the highest

information quality on the efficient frontier. To proceed further, it will be convenient to define

the following set of thresholds Ψ= {ξi}Ñi=0. The thresholds are chosen to ensure that the resulting

constructed value function Vl(·) is twice continuously differentiable at the switch points (to be

identified), and hence twice continuously differentiable over the whole interval [l,1) (shown later

in Lemma EC.3).

Definition 3.

ξi =



1

λ

ˆ

ci+1ηi − ciηi+1

ηi+1 − ηi

˙

, if i∈ {1,2, ..., Ñ − 1},

− c1
λ

, if i= 0,

∞ , if i= Ñ ,

(73)

(74)

(75)

and it can be shown that this set of thresholds satisfies the following.

Lemma EC.2. Let the set Ψ= {ξi}Ñi=0 be defined as in (73), (74) and (75). Then we have

−c1
λ

= ξ0 < ξ1 < ... < ξÑ−1 < ξÑ =∞. (76)

Proof of Lemma EC.2. ξi+1 > ξi if and only if
ci+2ηi+1−ci+1ηi+2

ηi+2−ηi+1
>

ci+1ηi−ciηi+1

ηi+1−ηi
and we will verify

that the latter holds. Since (ηi+2, ci+2) is on the efficient frontier, we have ci+2 > ci+1 + (ηi+2 −

ηi+1)
ci+1−ci
ηi+1−ηi

, and thus

ci+2ηi+1 − ci+1ηi+2

ηi+2 − ηi+1

>

”

ci+1 +(ηi+2 − ηi+1)
ci+1−ci
ηi+1−ηi

ı

ηi+1 − ci+1ηi+2

ηi+2 − ηi+1

(77)
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=
ci+1ηi − ciηi+1

ηi+1 − ηi
. (78)

Moreover since η2 > η1, ξ1 >− c1
λ

if and only if η2c1−η1c2
η2−η1

< c1, which is equivalent to c2 > c1. ˝

Lastly, the following two quantities will be useful in presenting the proofs.

Definition 4.

Lc = argmin
{y∈[0,1]}

G(y),

lmax =min{−ξ0 +R0

R0 +κ0

,Lc}.

where G(·) is defined as in (22). Note that −ξ0+R0
R0+κ0

is equivalent to c1+R0λ
λ(R0+κ0)

.

EC.3.2. Step II: Construction of Vl(·) for a given l

Given l s.t. 0< l ≤ lmax, we will now construct a trial function Vl(·) such that it is C2 over (l,1)

and satisfies

Vl(l) =−(R0 +κ0)l+R0, V
′
l (l) =−(R0 +κ0), (79)

V ′′
l (y)≥ 0 for all y ∈ (l,1), (80)

and later we will show that we can choose an appropriate value of l s.t. Vl(·) solves

max
j∈{1,2,...,N}

{
−cj −λV (y)+

1

2
ηjy

2(1− y)2V ′′(y)

}
= 0, (81)

and over-touches G(·) at l and some u with 0< l < u< 1.

The construction process starts by taking an initial guess of l. Then, it sequentially identifies

switch points and controls, based on whether the function’s value crosses the thresholds in Ψ. Given

l, we set ζ0 = l and define (see Figure 11)

i0 =


j , if l ∈

„

−ξj +R0

R0 +κ0

,
−ξj−1 +R0

R0 +κ0

˙

for some j s.t. 1≤ j ≤ n,

0 , if l=
−ξ0 +R0

R0 +κ0

.

(82)

(83)
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If l= −ξ0+R0
R0+κ0

(i.e. Vl(l) = ξ0 =− c1
λ
), we trivially construct Vl(·) as Vl(y) =−(R0+κ0)y+R0 over

[l,1), and the construction process for Vl(·) is complete. If l < −ξ0+R0
R0+κ0

, then (82) is equivalent to

(c.f. Lemma EC.2)

i0 =max
{
i∈ {1,2, ..., Ñ} | − (R0 +κ0)l+R0 > ξi−1

}
, (84)

and it can be easily verified that i0 ≥ 1.

Figure 11 The Thresholds that determine i0.

...

−ξ3+R0
R0+κ0

i0 = 3

−ξ2+R0
R0+κ0

i0 = 2

−ξ1+R0
R0+κ0

i0 = 1

−ξ0+R0
R0+κ0

i0 = 0
ˇ

ˇ

ˇ

ˇ

l

Let f0(·) be C2 over (l,1) that solves

f0(l) =−(R0 +κ0)l+R0, f
′
0(l) =−(R0 +κ0), (85)

− ci0 + ηi0y
2(1− y)2f ′′

0 (y)/2 = λf0(y). (86)

Since f ′
0(l)< 0, there exists δ0 > 0 s.t. {f0(y), y ∈ (l, l+ δ0)}∩Ψ= ∅ and f0(l+ δ0)∈ pξi0−1, ξi0q. We

identify the first switch point (where by default we denote inf{∅}=+∞)

ζ1 fi inf{y ∈ (l+ δ0,1) | f0(y)≤ ξi0−1 or f0(y)≥ ξi0 , f
′
0(y) ̸= 0}. (87)

There are four possible cases (see Figure 12): i.1) f0(y) never falls out of the range (ξi0−1, ξi0), in

which case ζ1 =∞ (note that ξi0 =+∞ when i0 = Ñ); ii.1) f0(y) first reaches ξi0−1 and i0 = 1; iii.1)

f0(y) first reaches ξi0−1 and i0 ≥ 2 and iv.1) f0(y) first reaches ξi0 . In particular, for i,1) and ii.1)

the construction of Vl(·) is complete and for iii.1) and iv.1) the construction is not yet complete

and we will need to identify the next switch point (if it exists). More specifically in each case, we

will proceed as follows:

i.1) Suppose ζ1 =∞ then we set Vl(y) = f0(y) for all y ∈ [l,1) and the construction of Vl(·) is

complete.
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Figure 12 (Color) Four cases of the first switch point ζ1

i.1), ζ1 =∞. ii.1), f0(ζ1) = ξi0−1, i0 = 1. iii.1), f0(ζ1) = ξi0−1, i0 ≥ 2. iv.1), f0(ζ1) = ξi0 .

ii.1) Suppose ζ1 = inf {y ∈ (l,1) | f0(y)≤ ξi0−1} < 1 (this happens if and only if f ′
0(y) < 0) and

i0 = 1, then let i1 = 0 and define f1(·) over [ζ1,1) as

f1(ζ1) = f0(ζ1), f
′
1(ζ1) = f ′

0(ζ1), (88)

f1(y) = f ′
0(ζ1)(y− ζ1)+ f0(ζ1). (89)

Set Vl(y) = f0(y) on [l, ζ1), Vl(y) = f1(y) on [ζ1,1) and the construction of Vl(·) is complete.

iii.1) If ζ1 = inf {y ∈ (l,1) | f0(y)≤ ξi0−1}< 1 (this happens if and only if f ′
0(y)< 0) and i0 ≥ 2,

then let i1 = i0 − 1 and define f1(·) over [ζ1,1) as

f1(ζ1) = f0(ζ1), f
′
1(ζ1) = f ′

0(ζ1), (90)

− ci1 + ηi1Γf1(y) = λf1(y), y ∈ (ζ1,1). (91)

iv.1) If ζ1 = inf {y ∈ (l,1) | f0(y)≥ ξi0}< 1 (this happens if and only if f ′
0(y)> 0), then let i1 =

i0 +1 and define f1(·) over [ζ1,1) as

f1(ζ1) = f0(ζ1), f
′
1(ζ1) = f ′

0(ζ1), (92)

− ci1 + ηi1Γf1(y) = λf1(y), y ∈ (ζ1,1). (93)

In iii.1) or iv.1), since f ′
1(ζ1) = f ′

0(ζ1) ̸= 0, there exists δ1 > 0 s.t. {f0(y), y ∈ (ζ1, ζ1 + δ1)}∩Ψ= ∅

and f1(ζ1 + δ1)∈ (ξi1−1, ξi1). Define the next switch point

ζ2 fi inf{y ∈ (ζ1 + δ1,1) | f1(y)≤ ξi1−1 ∧ f1(y)≥ ξi1 , f
′
1(y) ̸= 0}, (94)
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and repeat the same process. Continuing in the same way, we iteratively identify {ζk}k≥0,{ik}k≥0

and functions {fk(·)}k≥0 that satisfy

0< lfi ζ0 < ζ1 < ζ2 < ...ζD̃ < ζD̃+1 fi 1, (95)

ik − ik−1 =


−1, if f ′

ik−1
(zk)< 0,

1, if f ′
ik−1

(zk)> 0,

(96)

− cik + ηikΓfk(y)−λfk(y) = 0, y ∈ (ζk,1), (97)

fk(ζk) = fk−1(ζk), f
′
k(ζk) = f ′

k−1(ζk), (98)

where D̃≥ 0 is the total number of switch points arisen from the above construction process, with

ζD̃+1 defined to be 1. Moreover, define for k ∈ {0,1, ..., D̃} the associated control function ml(·) as

ml(y) = ik , if y ∈ [ζk, ζk+1), (99)

and we will omit the subscript l (i.e. denote it as m(·)) whenever doing so does not cause confusion.

We have thus constructed Vl(·) for any given l ∈ (0, lmax] to be

Vl(y) = fk(y) , if y ∈ [ζk, ζk+1). (100)

EC.3.3. Step III: The Properties & Orderings of Vl(·)

Now we are ready to prove some properties of Vl(·) and show that the set {Vl(·)}l∈(0,lmax] is ordered.

The former is given by Lemma EC.3 and the latter by Lemma EC.4.

Lemma EC.3 (Properties of Vl).

Fix l ∈ (0, lmax] and let Vl be constructed as in Step II (§EC.3.2), then

a) On (l,1), Vl(·) is twice differentiable. The sequence of switch points {ζk(l)} is finite. The sequence

{ik(l)} is unimodally consecutive.

b) V ′′
l (y)≥ 0 for all y ∈ (l,1), i.e. Vl(·) is convex. If 0 ̸∈ {ik(l)}k≥1, then in (l,1) Vl has at most one

local minimum and cannot have any local maximum.
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c) If at any y0 ∈ (l,1), m(y0) ≥ 2 or m(y0) = 1 and Vl(y0) > − c1
λ
, then V ′′

l (y0) > 0. If at any

y0 ∈ (l,1), m(y0) = 0, then V ′′
l (y) = 0 for all y≥ y0.

d) For y ∈ (l,1) s.t. ΓVl(y) ̸∈Ψ, we have m(y) = j, where j ∈ {1,2, ..., Ñ} satisfies

cj − cj−1

ηj − ηj−1

< ΓVl(y)<
cj+1 − cj
ηj+1 − ηj

. (101)

Moreover, for k ∈ {1,2,3, ..., D̃} the ζk(l)’s satisfy

ΓVl(ζk) =
cik−1

− cik
ηik−1

− ηik
. (102)

e) If 0∈ {ik(l)}D̃k=0, we must have

iD̃(l) = 0, ζD̃(l) = inf{ΓVl(y)≤ 0}, ΓVl(ζD̃(l)) = 0, V ′
l (ζD̃(l))≤ 0. (103)

Next we will show that the set {Vl(·)}l∈(0,lmax] can be ordered. Because the Vl(·)’s are defined

over different domains, we extend all of them to be defined over (0,1) so that their values can be

directly compared. Specifically, for each l ∈ (0, lmax], Vl(·) will be extended to V̂l(·), defined below.

V̂l(y) fi


− (R0 +κ0)y+R0 , if y ∈ (0, l),

Vl(y) , if y ∈ (l,1),

(104)

(105)

and Lemma EC.4 states that the V̂l(·)’s are ordered as in Figure 13, with a larger l giving a

uniformly smaller function V̂l(·).

Lemma EC.4 (Ordering of V̂l). Fix l ∈ (0, lmax] and let Vl(·) be constructed as in Step II

(§EC.3.2), V̂l(·) be defined as in (104), then

a) Vl(·) lies above G(·) over [Lc,1) for l sufficiently small, Vlmax(·) is partially underneath G(·)

over [Lc,1). If 0∈ {ik}k≥1, then Vl(·) is partially underneath G(·) over [Lc,1).

b) For a given l ∈ (0, lmax), V
′′
l (y)> 0 for all y ∈ (l, lmax].

c) The functions {V̂l(·)}l∈(0,lmax] are ordered, with a larger l producing a uniformly smaller function

V̂l(·). That is, for any l1, l2 s.t. 0< l1 < l2 ≤ lmax, V̂l1(y)> V̂l2(y) for all y ∈ [l2,1).

The proofs of Lemma EC.3 and EC.4 require additional supplementary Lemmas, and we defer

them to §EC.3.5. The last step (§EC.3.4) combines all the results we have so far to prove Theorem

2.
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Figure 13 (Color) Ordering of V̂l(·): curves I through IV represent l= 0.07, l= 0.08, l= 0.09, l= 0.1, respectively.

Note. The data used are: {ηi}6
i=1 = {10,20,30,40,50,60},{ci}6

i=1 = {8,14,24,35,48,64}, λ = 5,R0 = 5.4, κ0 = 19.6 (Ra and
κa’s values are not needed to produce the Figure).

EC.3.4. Step IV: Proof of Theorem 2

Proof of Theorem 2. We will now prove Theorem 2. In particular, we will show that there exists

an interval policy (M,m(·),{ik}Dk=0,{ζk}D+1
k=0 , l, u) with {ik} unimodally consecutive, whose value

function V (·) is continuously differentiable at l and u (the policy’s lower and upper critical beliefs),

V (·)∈C2 over (0,1)\{l, u}, and further satisfies the followings

V (y)≥G(y), (106)

V (l) =−(R0 +κ0)l+R0, V
′(l) =−(R0 +κ0), V (u) = (Ra +κa)u−κa, V

′(u) =Ra +κa, (107)

− cj + ηjy
2(1− y)2V ′′(y)/2≤ λV (y) , for all y ∈ (0,1)/{l, u} and all j ∈ {1,2, ...,N}, (108)

− cj + ηjy
2(1− y)2V ′′(y)/2 = λV (y) , for all y ∈ (l, u) and some j ∈ {1,2, ...,N}. (109)

Moreover, we will show that the above interval policy specified is optimal. Under this policy,

the optimal action is to reject Ha when πt ∈ [0, l), to reject H0 when πt ∈ [u,1], and to continue

experimenting when πt ∈ [l, u).

By Lemma EC.3 (a) and Lemma EC.4 (a),(c), there exists a value l s.t. its associated control

sequence {ik(l)} is unimodally consecutive, 0 ̸∈ {ik(l)} and its associated value function V̂l(·) satisfies

the following

V̂l(l) =−(R0 +κ0)l+R0, V̂
′
l (l) =−(R0 +κ0)
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V̂l(u) = (Ra +κa)u−κa, V̂
′
l (u) =Ra +κa.

i.e. V̂l(·) over-touches G(·) for some u ∈ (l,1), V̂l(·) is continuously differentiable at l and u (the

policy’s lower and upper critical beliefs), is twice differentiable at each of the switching beliefs

ζ1(l), ζ2(l), ..., ζK(l). By Lemma EC.3 (b), V̂l(y)≥G(y) over [Lc,1). We will now establish

−cj + ηjy
2(1− y)2V̂ ′′

l (y)/2≤ λV̂l(y) , for all y ∈ (0,1)\{l, u} and all j ∈ {1,2, ...,N}. (110)

For convenience, we shall use the following terminology: we say that control j dominates control

i at y if

−ci + ηiy
2(1− y)2V̂ ′′

l (y)/2≤−cj + ηjy
2(1− y)2V̂ ′′

l (y)/2. (111)

Let Fk be the collection of intervals of y s.t. m(y) = k, i.e. −ck +ηkΓVl(y)−λV̂l(y) = 0. By Lemma

EC.3 (d), for all y ∈ Fk we have

ck − ck−1

ηk − ηk−1

≤ ΓV̂l(y)≤
ck+1 − ck
ηk+1 − ηk

. (112)

Fix y ∈ Fk. For (ηi, ci) on the efficient frontier s.t. 1≤ i < k, we have ci < ck, ηi < ηk and

−ci + ηiΓV̂l(y)−λV̂l(y)≤ 0⇔−ci + ηiΓV̂l(y)−λV̂l(y)≤−ci + ηiΓV̂l(y)−λV̂l(y) (113)

⇔ ck − ci
ηk − ηi

≤ ΓV̂l(y), (114)

which is true by (112) and the fact that (ηi, ci) is on the efficient frontier.

For (ηi, ci) on the efficient frontier s.t. i > k, we have ci > ck, ηi > ηk and

−ci + ηiΓV̂l(y)−λV̂l(y)≤ 0⇔−ci + ηiΓV̂l(y)−λV̂l(y)≤−ci + ηiΓV̂l(y)−λV̂l(y) (115)

⇔ ci − ck
ηi − ηk

≥ ΓV̂l(y), (116)

which is again true by (112) and the fact that (ηi, ci) lies on the efficient frontier.
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If i ∈ {1,2, ...,N} is not on the efficient frontier, then it can be easily verified that for every

y ∈ (l,1), there exists at least one j ∈ {1,2, ..., Ñ} s.t. control i is dominated by j at y. Thus (110)

is established. Now define

V (y) fi


V̂l(y) , if y ∈ [0, u),

(Ra +κa)y−κa , if y ∈ [u,1),

(117)

Dfi max{k ∈ {0,1, ..., D̃} | ζk <u}, (118)

ζD+1 = u. (119)

The value function V (·) is the desired value function that satisfies (106), (107), (108) and (109).

˝

EC.3.5. Supplementary: Proof of Lemma EC.3 and EC.4

Proof of Lemma EC.3. First we show a part of (a): Vl(·) is twice differentiable. The construc-

tion process of Vl(·) in Step II (§EC.3.2) ensures that Vl(·) is C1 over (l,1). To show Vl is twice

differentiable over (l,1), it suffices to only look at Vl at the zk’s. By definition

Γfk−1(zk) =
cik−1

− cik
ηik−1

− ηik
⇒
cik−1−λfk−1(ζk)

ηik−1

=
cik−1

− cik
ηik−1

− ηik
(120)

⇒ λfk−1(ζk) = cik−1
− ηik−1

cik−1
− cik

ηik−1

(121)

⇒ λfk(ζk) = cik−1
− ηik−1

cik−1
− cik

ηik−1

(122)

⇒ Γfk(zk) =
cik−1

− cik
ηik−1

− ηik
(123)

Thus f ′′
k−1(zk) = f ′′

k (zk) and Vl is twice differentiable.

To prove (b), note that by construction V ′′
l (y) ≥ 0 for all y ∈ (l,1) (This is because ΓVl(y) =

cj +λVl(y) for some j, and by construction, Vl(y)≥− c1
λ
≥− cj

λ
for all j). If 0 ̸∈ {ik}k≥1, then V

′′
l (·)

can be equal to 0 at at most one point in (l,1). Hence it has at most one local minimum and cannot

have any local maximum in (l,1).
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We shall next prove (c). If at any y ∈ (l,1),m(y) ≥ 2, then by definition of the construction

process, ΓVl(y)≥ ci−ci−1

ηi−ηi−1
> 0, which implies V ′′

l (y)> 0. If at any y ∈ (l,1),m(y) = 1 and Vl(y)>− c1
λ
,

then ΓVl(y) =
c1+λVl(y)

η1
> 0. Note that (d) is trivially true by the continuity of ΓVl(·).

We shall next prove (e). If 0∈ {ik}k≥0, this means iD̃ = 0, ζD̃ = inf{ΓVl(y)≤ 0} and ΓVl(ζD̃) = 0,

i.e. V ′′
l (ζD̃) = 0 and Vl runs control 1 over (ζD̃−1, ζD̃). We claim that V ′

l (ζD̃) ≤ 0. Suppose not,

i.e. V ′
l (ζD̃) > 0, then there exists δ > 0 s.t. δ < ζD̃ − ζD−1 and Vl(ζD̃ − δ) < Vl(ζD̃). Since Vl runs

control 1 at ζD̃ − δ, this means ΓVl(ζD̃ − δ)< ΓVl(ζD̃) = 0, which implies ζD̃ ̸= inf{ΓVl(y)≤ 0}, a

contradiction.

Lastly we prove the remaining part of (a). The sequence {ik} is a singleton if and only if D̃= 0,

i.e. the sequence {ζk} is empty, and is monotone if and only if D̃= 1, i.e. the sequence {ζk} consists

only of one element. Suppose D̃≥ 2 then we have two possibilities:

i) If 0∈ {ik}k≥0, by (e) V ′′
l (y)> 0 for y ∈ (l, ζD̃) and V

′
l (ζD̃)≤ 0. This implies that

V ′
l (y)< 0 for all y ∈ (l, ζD̃) (124)

Hence Vl(·) is strictly decreasing over (l, ζD̃). By (100), −cik + ηikΓVl(y) − λVl(y) = 0 for y ∈

[ζk, ζk+1), k ∈ {0,1, ...D̃}, i.e. ΓVl(y) =
cik

+λVl(y)

ηik
for y ∈ [ζk, ζk+1). Hence ΓVl(·) follows the mono-

tonicity of Vl(·) in each interval [ζk, ζk+1), and by the continuity of ΓVl(·), it follows the monotonicity

of Vl(·) for y ∈ [l,1). By (124), ΓVl(·) is monotonically decreasing and hence the sequence {ik} is

monotonically decreasing.

ii) If 0 ̸∈ {ik}k≥0, then by the same argument, ΓVl(·) follows the monotonicity of Vl(·) for y ∈ [l,1).

By (b), Vl(·) has at most one local minimum and cannot have any local maximum, and hence this

holds for ΓVl(·) over (l,1) as well. Hence, {ik} can only be monotonically decreasing, monotonically

increasing or monotonically decreasing then monotonically increasing.

In addition, since {ik} is unimodally consecutive, the sequence of switch points is finite. ˝

Proof of Lemma EC.4. First we prove (a). We note that if 0∈ {ik}k≥0, then by Lemma EC.3 (e)

V ′
l (ζD̃)≤ 0, Vl(ζD̃) =−c1

λ
. (125)
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where ζD̃ < 1. This implies Vl(y)≤− c1
λ

for y ∈ [ζD̃,1) and hence is partially underneath G(y) over

[Lc,1).

By definition, Vlmax is a line with negative slope, and hence is partially underneath G(y) for

some y ∈ [Lc,1).

To prove Vl(y) lies above G(y) for l sufficiently small, let j = sup{i |ξi <R0}. Then there exists

l̄ > 0 sufficiently small such that G(l̄) > 0, and we can choose l > 0, ϵ > 0 sufficiently small that

together satisfy

l+ ϵ < l̄,

m(y) = j+1, for all y ∈ (l, l+ ϵ),

V ′′
l (y)> 0, for all y ∈ (l, l̂).

Since V ′
l (l) = −(R0 + κ0), by (126) we have V ′

l (y) > −(R0 + κ0) for y ∈ (l, l + ϵ). This implies

Vl(l+ ϵ)>Vl(l)+V
′
l (l) · ϵ=R0− (R0+κ0)l− (R0+κ0)ϵ=G(l̄)> 0. In other words, Vl(y)>G(l̄)> 0

for y ∈ (l, l+ ϵ), which implies ΓVl(y)>
λG(l̄)+cj+1

ηj+1
> 0 for y ∈ (l, l+ ϵ). As a result, V ′′

l (y)>
δ
y2

for

some δ independent of l for y ∈ (l, l+ ϵ). Hence

V ′
l (l+ ϵ) = V ′

l (l)+

∫ l+ϵ

l

V ′′
l (s)ds≥−(R0 +κ0)+

∫ l+ϵ

l

δ

s2
ds=−(R0 +κ0)+ 2δ(

1

l
− 1

l+ ϵ
). (126)

By taking l > 0 sufficiently small and by choosing an appropriate ϵ > 0 (such that l + ϵ < Lc),

V ′
l (l+ ϵ) > R0 + κ0 and hence by Lemma EC.3 (b), V ′

l (y) > V ′
l (l+ ϵ) > R0 + κ0 for y ∈ (l+ ϵ,1).

This implies Vl(l+ ϵ)>G(l+ ϵ) and Vl(·) lies above G(·) over [Lc,1).

To prove (b), we fix l ∈ (0, lmax), and let its associated control set be {ik}k≥0 with i0 ≥ 1 (see

Figure 11). Suppose 1 ̸∈ {ik}k≥0, then by Lemma EC.3 (c) we are done. Suppose 1∈ {ik}k≥0, then

let ζk be the switch point that Vl first switches to control 1 (and let k= 0 if i0 = 1). If ζk ≥ lmax we

are also done. If ζk < lmax, by Lemma EC.3 (c) we must have

Vl(ζk)≥−(R0 +κ0)ζk +R0, (127)

V ′
l (ζk)≥−(R0 +κ0), (128)

− c1 + η1ΓṼ (y)−λṼ (y) = 0, for y ∈ [ζk, ζk+1). (129)
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If lmax ∈ [ζk, ζk+1], by Lemma EC.6 we are done. If lmax > ζk+1, by Lemma EC.6 we must have

V ′′
l (ζk+1−) > 0 and hence by Lemma EC.3 (e) we must have ik+1 = 2. Hence V ′′

l (y) > 0 for

y ∈ [ζk+1, lmax] and we are done.

The following two supplementary Lemmas will be useful in the proof of Lemma EC.3 and EC.4.

Lemma EC.5. Suppose c1 +λz0 > 0 and let f1(·) and f2(·) be defined by the following
f1(w0) = z0,

f ′
1(w0) = z1,


f2(w0) = z0 +h0,

f ′
2(w0) = z1 +h1,

(130)

−c1 + η1Γfi(y)−λfi(y) = 0, i∈ {1,2}. (131)

for some h0 ≥ 0, h1 ≥ 0. Then f ′′
i (w0)> 0, i∈ {1,2}. If either h0 > 0 or h1 > 0, then we have

f2(y)> f1(y), f
′
2(y)> f

′
1(y), f

′′
2 (y)> f

′′
1 (y), (132)

for all y ∈ (w0,1).

Proof of Lemma EC.5. Note that since Γfi(y) =
c1+λz0

η1
, the condition c1 +λz0 > 0 implies that

f ′′
i (w0)> 0, i∈ {1,2}.

If either h0 > 0 or h1 > 0, there exists y0 >w0 s.t. f2(y0)> f1(y0), f
′
2(y0)> f

′
1(y0), f

′′
2 (y0)> f

′′
1 (y0).

For y > y0,

f2(y)> f1(y)
(131)⇔ Γf2(y)> Γf1(y)⇔ f ′′

2 (y)> f
′′
1 (y)

˝

Lemma EC.6. Let w0 ∈ (0, c1+R0λ
λ(R0+κ0)

) and let f(·) be defined by the following

f(w0)≥−(R0 +κ0)w0 +R0, (133)

f ′(w0)≥−(R0 +κ0), (134)

− c1 + η1Γf(y)−λf(y) = 0. (135)

Then we have f ′′(y)> 0 for all y ∈ [w0,
c1+R0λ

λ(R0+κ0)
].
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Proof of Lemma EC.6. w0 <
c1+R0λ

λ(R0+κ0)
implies c1 + λ[−(R0 + κ0)w0 +R0]> 0. By Lemma EC.5,

f ′′(w0)> 0. By the continuity of f ′′(·), there exists δ > 0 s.t.

f ′′(y)> 0 for y ∈ (w0,w0 + δ). (136)

Suppose there exists y0 ∈ [w0,
c1+R0λ

λ(R0+κ0)
] s.t. f ′′(y0)≤ 0. Let tfi inf{y ∈ [w0,

c1+R0λ
λ(R0+κ0)

] | f ′′(y)≤ 0}

(and it can be easily verified that t ≤ y0 ≤ c1+R0λ
λ(R0+κ0)

). Since f ′′(y) is continuous, we must have

f ′′(t) = 0, which by (135) implies that c1+λf(t)

η1
= 0, i.e.

f(t) =−c1
λ
. (137)

By the definition of t, for y ∈ [w0, t], f
′′(y)≥ 0. Moreover, by (136) we have f ′(y)>−(R0 + κ0)

for y ∈ (w0 + δ, t). Thus,

f(t) = f(w0)+

∫ t

w0

f ′(s)ds >−(R0 +κ0)w0 +R0 +

∫ t

w0

−(R0 +κ0)ds=R0 − (R0 +κ0)t≥−c1
λ
,

(138)

i.e. f(t)>− c1
λ

which contradicts equation (137). ˝

We will now proceed to prove (c), i.e. to show {V̂l, l ∈ (0, lmax]} is ordered. Suppose 0< l1 < l2 ≤

lmax, by the proofs in the previous part of this Lemma we know that V ′′
l1
(y)> 0 for all y ∈ (l1, l2],

which by (85) and (100) implies that

Vl1(l2)>Vl2(l2)−−(R0 +κ0)l2 +R0, (139)

V ′
l1
(l2)>V

′
l2
(l2) =−(R0 +κ0). (140)

We shall claim and show that for y ∈ [l2,1), Vl1(y)>Vl2(y) implies V ′′
l1
(y)>V ′′

l2
(y). If this is true,

by (140) we have Vl1(y)> Vl2(y) for y ∈ [l2,1). Moreover, it is obvious that Vl1(y)>−(R0 + κ0)y

for y ∈ (l1, lmax), so the Lemma is proven.

We shall now show out claim above. Take any y ∈ [l2,1) and it suffices to consider the case where

neither ml1(y) ̸= 0 nor ml2(y) ̸= 0 uses control 0 at y. Suppose Vl1(y)> Vl2(y). If ml1(y) =ml2(y),

then ΓVl1(y)> ΓVl2(y) which implies V ′′
l1
(y)>V ′′

l2
(y). So it only remains to consider the case where
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at y, ml1(y) = j1 ̸= j2 =ml2(y). Consider the case where ΓVl(y) ̸∈Ψ (the case where ΓVl(y)∈Ψ can

be trivially shown and is omitted).

Suppose j2 ≥ 2. Since Vl1(y)>Vl2(y), by Lemma EC.2 we have

j2 fi max{i | ΓVl2(y)≥
ci − ci−1

ηi − ηi−1

}=max{i | Vl2(y)≥−γi−1} (141)

≤max{i | Vl1(y)≥−γi−1}=max{i | ΓVl1(y)≥
ci − ci−1

ηi − ηi−1

} fi j1. (142)

Suppose j2 = 1, then obviously we still have j2 ≤ j1. Since j2 ̸= j1 we must have ΓVl1(y)> ΓVl2(y),

i.e. V ′′
l1
(y)>V ′′

l2
(y). The Lemma is thus proven. ˝

Appendix EC.4. Proof that (8) and (9) are strictly weaker than Assumption 1
of Araman and Caldentey (2021)

Lemma EC.7. Given two sequences of probability distributions {p(K)
0 (X | j)}∞K=1 and {p(K)

a (X |

j)}∞K=1 (where j ∈ S), Suppose there exists p(X | j), αa(X,j), α0(X,j) such that

?
K

ˆ

p(K)
a (X | j)
p(X | j)

− 1

˙

→ αa(X,j),
?
K

˜

p
(K)
0 (X | j)
p(X | j)

− 1

¸

→ α0(X,j), (143)

which represents Assumption 1 of Araman and Caldentey (2021). Then there exists ηj such that

(8) and (9) hold. On the other hand, there exist sequences of probability distributions such that (8)

and (9) hold but (143) does NOT hold.

Proof. First we note that by (143), we have

?
K

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1

¸

=
?
K

˜

αa(X,j)
?
K

+1
α0(X,j)

?
K

+1
− 1

¸

(144)

→ αa(X,j)−α0(X,j), (145)

and hence (8) holds. To prove (9), we will define α(X,j) fi αa(X,j)−α0(X,j). By definition,

µ
(K)
0 (j) =

∑
X

ln

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

¸

p
(K)
0 (X | j)

=
∑
X

¨

˝

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1+O

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1

¸2
˛

‚p
(K)
0 (X | j)
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µ(K)
a (j) =

∑
X

ln

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

¸

p(K)
a (X | j)

=
∑
X

¨

˝

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1+O

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1

¸2
˛

‚p(K)
a (X | j)

Hence we have,

K
´

µ(K)
a (j)−µ

(K)
0 (j)

¯

→
∑
X

˜

?
K

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1

¸¸

?
K

´

p(K)
a (X | j)− p

(K)
0 (X | j)

¯

(146)

=
∑
X

˜

?
K

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1

¸¸ ˜

?
K

˜

p(K)
a (X | j)
p
(K)
0 (X | j)

− 1

¸¸

p
(K)
0 (X | j)

(147)

→E
p
(K)
0 (·|j)[α(X,j)

2] (148)

→Ep(·|j)[α(X,j)
2], (149)

and hence (9) holds.

Next we will show that there exist sequences of probability distributions such that (8) and (9)

hold but (143) does NOT hold. We assume there is only a single control and omit the notation j.

Let

p
(K)
0 (·) = p(·)∼Bernoulli(1/2), p(K)

a (·)∼Bernoulli(1/2+
1

?
K

(−1)K). (150)

Then in this case, we have

p(K)
a (X = 1)

p
(K)
0 (X = 1)

− 1 =
(1/2)+ 1?

K
(−1)K

1/2
− 1 =

2
?
K

(−1)K , (151)

which implies (8) holds and

?
K[

p(K)
a (X = 1)

p
(K)
0 (X = 1)

− 1] =
?
K[

p(K)
a (X = 1)

p(X = 1)
− 1] = 2(−1)K , (152)

which does NOT converge as K→∞ (i.e.(143) does NOT hold). Moreover,

lim
K→∞

K[
p(K)
a (X = 1)

p
(K)
0 (X = 1)

− 1]2 = lim
K→∞

K[
2

?
K

(−1)K ]2 = 4(−1)2K = 4, (153)



Zhengli Wang and Stefanos Zenios: Adaptive Design of Clinical Trials
Article submitted to Operations Research; manuscript no. EC-21

i.e. α2(X = 1) = 4 is well-defined, and

lim
K→∞

K[
p(K)
a (X = 0)

p
(K)
0 (X = 0)

− 1]2 = lim
K→∞

K[− 2
?
K

(−1)K ]2 = 4(−1)2(−1)2K = 4, (154)

i.e. α2(X = 0) = 4 is also well-defined. By (148),

K
´

µ(K)
a (j)−µ

(K)
0 (j)

¯

→E
p
(K)
0

[α(X,j)2] =
1

2
· 4+ 1

2
· 4 = 4, (155)

i.e. (9) holds. ˝

Appendix EC.5. Comparison of OIP’s Efficient Frontier with HS’s

The efficient frontier in our model, introduced in §5, is different from that of HS’s, where they

analyze a model with no reward or penalty when θ= 0. In this section we will compare the efficient

frontiers from both models. Using the same notation as before, let the set of controls be {(ηi, ci)}Ni=1

and let the controls be numbered as in (24), (25), (26) and (27). HS’s efficient frontier is the

function ϕHS(·) given by

0< ηn < ... < ηÑ , (156)

cn
ηn
<
cn+1 − cn
ηn+1 − ηn

< ... <
cÑ − cÑ−1

ηÑ − ηÑ−1

, (157)

ci = ϕHS(ηi), for i= n,n+1, ..., Ñ , (158)

ci ≥ ϕ(ηi), for i= 1,2, ..., n− 1, Ñ +1, ...,N , (159)

where ϕHS(·) is the strictly increasing, piece-wise linear and convex function that connects

(0,0), (ηn, cn), (ηn+1, cn+1), ..., (ηÑ , cÑ).

Figure 14 shows the two main differences between ϕ(·) and ϕHS(·). First, ϕHS(·) passes through

(0,0) but ϕ(·) does not. Second, points on ϕHS(·) must be on ϕ(·), but not vice versa. In other

words, the points on HS’s efficient frontier are a subset of the points on ours.

In HS’s model structure where there is no reward or penalty when θ= 0, the optimal policy only

uses the controls on ϕHS(·), in increasing order of their index as the posterior belief increases. In

our model with a more general reward structure (where when θ = 0 there is either a reward or a

penalty, or both), the optimal policy shifts to one which may also incorporate controls on ϕ(·), and

the optimal control sequence of the controls may no longer be increasing but becomes unimodally

consecutive (see Theorem 2).
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Figure 14 The difference between the efficient frontier in our model and that in HS’s model.
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(a) The efficient frontier in our model.
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(b) The efficient frontier in HS’s model.

Appendix EC.6. Derivation of Patient Recruiting Cost and Site Retaining Cost
from Past Literature

Patient Recruiting Cost. The values for µn
P are derived from the estimates in Table 2 (Chan-

tix/Champix) of Kouvelis et al. (2017). The weekly patient enrollment rate of 58, 93, 140 is

equivalent to to an annual enrollment rate (a year has 52 weeks) of 3016, 4836, 7280, and has a

per patient cost of 0.01M , 0.02M , 0.03M respectively. Therefore based on the above numbers, we

assume that when the number of patients recruited nP in a stage is 2500, 5000, 7500, 10000, the

per patient cost is to 0.01M , 0.02M , 0.03M , 0.04M respectively. Otherwise, we approximate the

value of the per patient cost using linear interpolation of the nearest two cost rates (and assuming

enrolling 0 patients costs 0).

Site Cost. From table 2 of Sertkaya et al. (2016), the total retaining cost for a site for a typical

phase III clinical trial is (0.395+1.31+2.32+1.62)/4 = 5.6M . Again from Sertkaya et al. (2016),

the average duration of a typical phase III trial is about 2.5 years. Therefore, the retaining cost

per site per year is 5.6/2.5 = 2.25M .
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Appendix EC.7. Mapping of Difference in Patient Outcomes between the
Treatment Group and Control Group to Log-likelihood Ratio

Assume the decision maker is testing between H0 : µY − µX = 0 and Ha : µY − µX =∆, where µY

and µX represent the patient outcome in the treatment group and control group, and ∆ represents

the treatment effect to be detected.

Let Yi andXi denote the realized outcome for one patient in the treatment and control group, and

assume Yi ∼N(µY , s
2), Xi ∼N(µX , s

2). Assume an experiment consists of recruiting K patients,

with half allocated in treatment group and half in control group. The difference in outcome is

Ẑ =
∑K/2

i=1 Yi −
∑K/2

i=1 Xi. Note that

Ẑ ∼N

ˆ

K

2
(µY −µX),2(

K

2
)s2

˙

, (160)

and the log-likelihood ratio L can be computed by

ln
pa(Ẑ)

p0(Ẑ)
= ln

1?
Ks

?
2π
e

−(Ẑ−K
2 ∆)2

Ks2

1?
Ks

?
2π
e

−Ẑ2

Ks2

(161)

= ln
e

−(Ẑ−K
2 ∆)2

Ks2

e
−Ẑ2

Ks2

(162)

= ln

ˆ

e
−(Ẑ−K

2 ∆)2+Ẑ2

Ks2

˙

(163)

=
K
2
∆(2Ẑ − K

2
∆)

Ks2
(164)

i.e. keeping track of Ẑ and L is equivalent.


