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Abstract

A canonical setting in supply chain research is one in which a retailer sources product,

under a wholesale price contract, from a manufacturer that invests in capacity in advance of

the retailer’s order. When the retailer possesses private information about demand, it is well

understood that credible cheap-talk communication is not possible absent considerations of

trust or the reactive setting of the wholesale price. This understanding is based on the practice

of demand information being shared as a point forecast. Motivated by the fact that some

firms are now sharing information on forecast uncertainty along with the mean, we re-visit the

canonical setting but allow the retailer to communicate its average demand and its forecast

accuracy and allow the manufacturer to have multiple sources of capacity. We establish that

credible and informative communication emerges in equilibrium under very general conditions.

Moreover, when the manufacturer has multiple sources of capacity that differ in reservation

and execution costs, the communication can be influential, strictly improve the manufacturer’s

expected profit, and result in a Pareto-improvement of supply chain profits. Our results suggest

that both the forecast average and accuracy should be communicated in a supply chain not only

because upstream firms benefit from a quantification of uncertainty but because communicating

information about forecast accuracy (in addition to average demand) enhances the credibility of

communication. We establish that improvements to the manufacturer’s capacity portfolio (e.g.,

expansion or cost reduction) can hurt the manufacturer because of an associated reduction in

information revelation. This negative effect can occur if the improvement alters or impacts the

resource that, in isolation, provides the highest optimal service level.
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1 Introduction

Investments in operations (capacity, inventory, etc.) are made under uncertainty and firms therefore

engage in forecasting to reduce the uncertainty faced in their investment decisions. Downstream

firms in a supply chain often possess better demand information than upstream firms. It has been

long understood that, by sharing information, downstream firms can help upstream firms improve

their forecasts and thus improve overall supply chain performance. However, because buying firms

“routinely share demand forecasts but usually as single points” (Niranjan et al., 2022), it is well

known (e.g., Cachon and Lariviere, 2001; Özer et al., 2011; Donohue et al., 2018) that downstream

firm might self-interestedly exaggerate or “inflate forecasts to assure sufficient supply” (Terwiesch

et al., 2005). This tendency can hurt upstream firms through overinvestment: for example, the

contract manufacturer Solectron was left with $4.7 billion of excess inventory after several large

customers exaggerated their demand forecasts (Engardio, 2001). Not surprisingly, then, there is a

credibility issue when a downstream supply-chain party seeks to communicate its demand forecast

to an upstream party.1

In some circumstances, sophisticated supply chain contracts might be used by an upstream firm

to elicit a downstream firm’s truthful demand information or for a downstream firm to credibly signal

its private forecast (e.g., Cachon and Lariviere, 2001; Özer and Wei, 2006; Taylor and Xiao, 2010; Hu

et al., 2013; Feng et al., 2015). However, simple wholesale price contracts are widely used in many

situations in which supply chain firms share demand information primarily through nonbinding

and unverifiable forecasts (Cohen et al., 2003; Chu et al., 2017; Berman et al., 2019). Consider a

single-period setting in which the downstream party (“the retailer”) obtains a private point forecast

(average demand) that it can communicate (through a nonbinding, costless and unverifiable message,

i.e., cheap talk) to the upstream party (“the manufacturer”) who then invests in a capacity quantity.

The extant literature has established that in such a setting, credible communication is impossible in

equilibrium because the retailer always has an incentive to exaggerate the estimated average demand

to secure enough capacity, unless supply chain members have trust and trustworthy behaviors (Özer

et al., 2011) or the manufacturer can set the wholesale price in response to the retailer’s message

(Chu et al., 2017).

Although the sharing of point forecasts is common in practice, there are examples in both capital-
1The sharing and exaggeration of point forecasts is also observed internally in firms when marketing is better

informed about demand than manufacturing (e.g., Celikbas et al., 1999; Kolassa et al., 2023). Our focus, however, is
on the communication between firms and not that internal to firms.
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goods (Cohen et al., 2003) and consumer-goods (Niranjan et al., 2022) supply chains in which

downstream firms share private multi-dimensional forecast information that quantifies, to some

degree, the uncertainty in the forecast. The buyer in Cohen et al. (2003) began communicating

an interval instead of a point forecast to enhance credibility. Walmart and Procter & Gamble

share forecast scenarios with suppliers (Niranjan et al., 2022). Amazon shares forecast percentile

information so that vendors can improve their inventory planning (Amazon Vendor Training Center,

n.d.). In this paper, we re-examine the credible communication question in a manufacturer-retailer

capacity investment setting where the retailer has multi-dimensional private information (average

demand and forecast accuracy) and the manufacturer can invest in multiple sources of capacity that

differ in their reservation and execution costs.

We establish that, different to the extant literature, informative and credible communication

emerges in equilibrium under very general conditions. When the manufacturer has multiple sources

of capacity that differ in reservation and execution costs, this informative communication can be in-

fluential, i.e., the manufacturer makes different investment choices under different retailer messages.

Moreover, cheap-talk communication can strictly improve the manufacturer’s expected profit and

result in a Pareto-improvement of the supply chain parties’ profits. Our results suggest that both

the forecast average and accuracy should be communicated in a supply chain not only because up-

stream firms benefit from a quantification of forecast uncertainty but also because communicating

information about the forecast accuracy (in addition to information about average demand) en-

hances the credibility of the communication. We observe that for symmetric demand distributions,

the value of communication is highest when the manufacturer’s optimal service level is 0.5, because

this service-level environment induces more information revelation about the forecast accuracy, and

accuracy information is particularly beneficial to the manufacturer. For left- and right-skewed dis-

tributions, the service levels leading to the highest value of communication are lower or higher than

0.5, respectively. We explore the impact of operational improvements on the manufacturer’s portfo-

lio of capacity sources (e.g., reducing the cost of an existing source or expanding the set of sources)

and establish that such an improvement, even if free, may hurt the manufacturer (because of an

associated reduction in information revelation) if the improvement alters or impacts the resource

that, in isolation, provides the highest optimal service level. From a managerial perspective, there-

fore, cost reduction and capacity expansion opportunities need to be viewed not only through an

operational lens but also through an informational lens.

We organize the rest of the paper as follows. We review the relevant literature in §2. We
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describe the model in §3 and present the results in §4. We discuss several model extensions in §5

and conclude the paper in §6. Proofs of all theoretical results and supplemental results referenced

in the paper can be found in the Online Appendices.

2 Literature Review

Cheap-talk models have been used to study the communication of operationally-relevant information

in a variety of important contexts, e.g., demand-forecast sharing in supply chains (Özer et al., 2011),

delay announcements in service industries (Allon et al., 2011), inventory availability in retail settings

(Allon and Bassamboo, 2011), new product launches (Berman et al., 2019), supply-chain social

responsibility (Lu and Tomlin, 2022), project management (Beer and Qi, 2022), and manufacturing

outsourcing (Lu, 2024).

The demand-forecast communication papers are those most relevant to our work. Özer et al.

(2011) consider a supply chain in which a retailer sources a product from a manufacturer under an

exogenous wholesale price contract.2 The retailer privately obtains a forecast of average demand

and then communicates this forecast to the manufacturer via cheap talk. The manufacturer in turn

decides on a capacity level to build before demand is realized. Absent considerations of trust, Özer

et al. (2011) establish that no informative or influential equilibrium exists because the retailer always

prefers to over-report its demand forecast. However, based on behavioral experiments and analytical

modeling, when notions of trust (on the part of the manufacturer) and trustworthiness (on the part of

the retailer) are taken into account, Özer et al. (2011) establish that truthful information sharing can

arise. Chu et al. (2017) explore a similar supply-chain setting but intentionally omit any behavioral

concepts such as trust and trustworthiness. They establish that truthful communication can arise in

equilibrium if the wholesale price is determined by the manufacturer after the communication stage.

A key reason is that over-reporting demand gives the manufacturer an incentive to install a higher

capacity level but also provides it with an incentive to charge the retailer a higher wholesale price.

Due to this trade-off, the retailer might truthfully report its private demand forecast in equilibrium.

We consider a similar supply chain setting as that in Özer et al. (2011), but like Chu et al. (2017)

we purposefully omit trust-based considerations. Motivated by the fact that many aspects of the

retailer’s forecasting process are private, we depart from these papers by exploring a setting in which
2Özer et al. (2011) refer to the downstream (upstream) party as the manufacturer (supplier), but when summarizing

their work we refer to the downstream (upstream) party as the retailer (manufacturer) to be consistent with other
cheap-talk papers, e.g., Chu et al. (2017), and with the terminology adopted in our paper.
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the retailer has private information about both the average demand and the forecast accuracy. We

also depart from these papers by allowing the manufacturer to have multiple sources of capacity

with different levels of flexibility. We establish that even when the wholesale price is predetermined,

as in Özer et al. (2011), communication on these two dimensions of private information can be

truthful in equilibrium. Furthermore, the communication can be influential and strictly improve

the manufacturer’s payoff if the manufacturer has access to multiple capacity sources with different

reservation and execution costs. Some other papers also examine cheap-talk communication of

demand forecasts but focus on different factors that may lead to truthful communication such as

repeated interactions (Ren et al., 2010), horizontal competition (Shamir and Shin, 2016) and partial

vertical ownership (Avinadav and Shamir, 2023). Recently, Li et al. (2022) compare two behavioral

economics theories, and with experimental data, they show that the trust-embedded model better

explains truthful cheap talk than level-k bounded rationality.

Turning to the economics literature on cheap talk, pioneered by Crawford and Sobel (1982),

our work is relevant to the studies on cheap talk games with multi-dimensional private informa-

tion. Battaglini (2002) reveals the role of multiple senders in inducing informative communication.

Chakraborty and Harbaugh (2007) show that credible information transmission is possible when a

sender can communicate the ranking of the realized values of the multi-dimensional private infor-

mation. Chakraborty and Harbaugh (2010) find that a sender with state-independent preferences

can credibly communicate its private information with comparative statements. Our work, partly

inspired by Chakraborty and Harbaugh (2010), is focused on a supply chain setting which differs

from Chakraborty and Harbaugh (2010). In particular, in Chakraborty and Harbaugh (2010) the

sender’s utility is expressed as a function of the expected values of each private information dimen-

sion under the receiver’s posterior belief. However, in our model the payoff of the sender (i.e., the

retailer) depends on the total capacity level chosen by the receiver (i.e., manufacturer) which is the

solution to a set of newsvendor-type optimality conditions, instead of a function of the expected

values of private information. Moreover, the operational implications of communicating the aver-

age forecast and forecast accuracy, as highlighted by our paper, are not examined in the existing

economics literature.

In our model, the manufacturer can procure (build) capacity from multiple sources that differ in

their reservation and execution costs. The manufacturer’s problem is thus related to the literature

on capacity procurement with supply-option contracts. Martínez-de Albéniz and Simchi-Levi (2005)

and Fu et al. (2010) study the optimization problem in which a firm facing uncertain demand chooses
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from a set of supply-option contracts. Each contract specifies a reservation and an execution cost.

For each contract, the firm first decides on a quantity to reserve, and then based on realized demand,

executes the contract up to the quantity reserved. Martinez-de Albeniz and Simchi-Levi (2009)

examine the case when the firm’s suppliers competitively determine their contract terms. Very

different to this literature, our focus is on the cheap-talk communication of demand information

between a downstream retailer and an upstream firm with multiple capacity options. Among other

findings, our results highlight the implications of having multiple capacity sources on the value of

communication.

3 Model

We consider a supply chain consisting of a manufacturer (she) and a retailer (he). The retailer

sources a product from the manufacturer to sell at a per-unit price p in a single selling season

with uncertain demand. Prior to the selling season, the retailer communicates his private demand

forecast to the manufacturer via cheap talk, and the manufacturer in turn determines her capacity

procurement (reservation). Then, after demand is realized, the manufacturer fills the retailer’s

demand up to the total capacity she procured earlier.

The Retailer’s Demand Forecast. The market demand is given by D = a+ (1/b)ϵ, where a

is the retailer’s forecast of the average demand, ϵ is a random noise with mean zero, and b represents

the accuracy of the retailer’s forecast. A higher b signifies less noise in the retailer’s forecast. For

example, as b approaches infinity, the retailer’s forecast a becomes perfectly accurate, i.e., the actual

demand D will exactly match the forecast a at b = ∞. We assume that a is a continuous random

variable over support [a, ā] with a cumulative distribution function (cdf) G and a probability density

function (pdf) g, and b follows a two-point distribution with support {bl, bh} where 0 < bl < bh.

Let ρt denote the probability of b = bt for each t ∈ {l, h}, where ρh + ρl = 1. The random noise ϵ

has a cdf F . Ex ante, a and b are independent but may become dependent from the manufacturer’s

perspective after communication. In §5.2, we show that our main results can be generalized to the

case when both a and b are continuous random variables.

The realizations of a and b are both the private information of the retailer. This reflects the

reality that when forecasting demand, firms obtain a point estimate of the average demand (i.e.,

a) but they also have private knowledge about the accuracy of the estimated demand. Evaluating

the forecast accuracy is one of the major steps in demand forecasting processes (see, e.g., Chapter
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7 of Chopra, 2019). Because the forecasting process adopted and the amount of data available are

privately known by the retailer, both the estimated average demand and the forecast accuracy level

are the retailer’s private information. We refer to the two-dimensional private information (a, b)

as the retailer’s forecast or type. Let S = [a, ā] × {bh, bl} denote the space of the retailer’s type.

As will be shown, this two-dimensional private information plays a critical role in the possibility of

informative communication.

The Manufacturer’s Capacity Decision. The manufacturer can procure (reserve, build)

capacity from two sources, indexed by i = 1, 2. For each capacity source i, let ri denote the

reservation cost per unit, and ci denote the execution cost per unit. Without loss of generality,

we assume 0 < r1 < r2 and c1 > c2 ≥ 0, and so the first capacity source is more flexible in the

sense that it has a lower cost to reserve (but a higher cost to execute). We will refer to capacity

source 1 (resp. choice 2) as the more flexible (resp. less flexible) capacity. In practice, it is

common that a manufacturer has multiple sources of capacity with different levels of flexibility.

For instance, in the electronics and fashion industries, a manufacturer often procures capacity from

multiple suppliers (e.g., contract manufacturers) that offer different supply-option contracts in which

different reservation and execution costs are specified; see, for example, Martínez-de Albéniz and

Simchi-Levi (2005), Martinez-de Albeniz and Simchi-Levi (2009) and Fu et al. (2010). In such cases,

the (ri, ci)’s in our model represent the reservation and execution costs offered in each supply-option

contract. If the manufacturer produces in-house, then the (ri, ci)’s represent the cost structures of

different production lines or facilities. For example, a highly-automated line would incur significant

build (reservation) cost as compared to a manual line with flexibly-schedulable workers (that can

scale with demand) but the automated line’s marginal production (execution) cost would be lower.

As is common in the cheap-talk demand-forecasting literature (e.g., Özer et al., 2011; Chu et al.,

2017), we assume that the manufacturer’s cost parameters are common knowledge so as to focus on

the strategic communication of asymmetric demand information.

Following a standard assumption in the operations cheap-talk literature (e.g., Özer et al., 2011;

Berman et al., 2019; Lu and Tomlin, 2022), we assume that the manufacturer and retailer trade

based on a simple price-only contract with a given wholesale price w. We make this assumption

not only because price-only contracts are prevalent in practice but also because such an assumption

enables us to abstract away from other factors (e.g., pricing and mechanism design) that may drive

informative communication. In particular, Chu et al. (2017) show that when only the average

demand information is private, truthful and influential communication can arise in equilibrium if
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the wholesale price is endogenously determined by the manufacturer in response to the retailer’s

message, but that no informative equilibrium exists if the wholesale price is fixed (or equivalently,

set before the communication stage). In this paper, we intentionally assume the wholesale price

to be pre-determined so as to rule out the effect of the manufacturer’s responsive pricing. To

exclude uninteresting cases, assume p > w and w > ri + ci for all i such that it is profitable for the

retailer to source product and for the manufacturer to use either capacity source. As is common,

the manufacturer earns the same per-unit revenue (i.e., the wholesale price w in our model) from

selling its product to the retailer regardless of which capacity source it uses (Martínez-de Albéniz

and Simchi-Levi, 2005; Dada et al., 2007; Ang et al., 2017; Dong et al., 2022).

The manufacturer’s problem consists of two stages: capacity reservation before demand real-

ization, and execution after demand realization. Let Ki denote the amount of capacity that the

manufacturer chooses to reserve from source i. In the capacity reservation stage, the manufacturer

determines (K1,K2) to maximize the following expected profit

Πm(K1,K2|m) = E[R(K1,K2, D)|m]−
2∑

i=1

riKi, (1)

where the expectation is taken over D = a + (1/b)ϵ based on the manufacturer’s posterior belief

about (a, b) given any message m, and R(K1,K2, D) is the optimal objective value of the second-

stage execution problem as defined below.

R(K1,K2, D) = maxx1,x2 wmin (x1 + x2, D)−
∑2

i=1 cixi

s.t. 0 ≤ xi ≤ Ki for i = 1, 2.
(2)

In the execution problem (2), the manufacturer chooses production quantities (x1, x2) to maximize

her profit given any demand realization D and capacity levels (K1,K2). The constraints in (2)

ensure that each production quantity cannot exceed the corresponding capacity level reserved in

the first stage.

The Retailer’s Payoff. It is easy to show that the total production quantity delivered by the

manufacturer will be x∗1 + x∗2 = min(K1 + K2, D), i.e., the manufacturer will either fulfill all the

demand if the total capacity level is sufficient, or exhaust all the capacity otherwise. Therefore, the

retailer’s expected profit is a function of K1 +K2 as given below:

Πr(K1,K2) = (p− w)E[min(D,K1 +K2)]. (3)
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Clearly, the retailer’s payoff depends on the manufacturer’s capacity levels only through the total

capacity level K1 +K2, and moreover, it is increasing in K1 +K2. Throughout the paper, we use

“increasing” and “decreasing” in the weak sense.

Equilibrium Concept. As is common in the literature, we adopt the Perfect Bayesian Equi-

librium (PBE) as our solution concept. Before formally defining the PBE for our problem, we

provide a sketch of the sequence of events: (i) The retailer first observes a private forecast, i.e., the

realization of (a, b); (ii) the retailer communicates with the manufacturer by sending a costless and

unverifiable message m ∈ M where M is the message space, and the manufacturer forms a posterior

belief, denoted by µ(a, b|m), about the retailer’s forecast; (iii) based on her posterior belief, the

manufacturer determines the optimal capacity levels (K∗
1 ,K

∗
2 ) to maximize (1); (iv) after demand is

realized, the manufacturer chooses production quantities by solving problem (2) and the two supply

chain members obtain their profits. Note that the retailer’s reporting decision in (ii) is based on how

the manufacturer forms her posterior belief, as formalized in the following definition. The retailer’s

reporting strategy γ : S → M and the manufacturer’s capacity levels (K∗
1 ,K

∗
2 ) and belief system

µ(a, b|m) constitute a PBE if the following conditions hold:

• For any retailer type (a, b) ∈ S, γ(a, b) ∈ argmaxm∈M Πr(K
∗
1 ,K

∗
2 );

• for any message m ∈ M , (K∗
1 ,K

∗
2 ) ∈ argmaxK1,K2≥0Πm(K1,K2|m) as defined in (1);

• the manufacturer’s belief is updated per Bayes’ rule on the equilibrium path, i.e., µ(a, b|m) =

I(γ(a,b)=m)g̃(a,b)∑
b′∈{bl,bh}

∫ ā
a I(γ(a′,b′)=m)g̃(a′,b′)da′

where I(x) is an indicator function which equals one (resp.

zero) if statement x is true (resp. false), and g̃(a, b) represents the prior joint density function

of (a, b), i.e., g̃(a, bt) = ρtg(a) for t = h, l. For messages off equilibrium paths, i.e., m′ with

I(γ(a, b) = m′) = 0 for all (a, b) ∈ S, no requirement is imposed on µ(a, b|m′).

In any cheap talk game, a babbling equilibrium always exists in which the communication is not

credible and hence not informative at all such that the receiver’s belief remains as the prior. As is

common in the cheap talk literature (Chu et al., 2017; Berman et al., 2019; Lu and Tomlin, 2022),

one key goal is to show whether and under what conditions an informative equilibrium exists. An

informative equilibrium exists if there is a partition {S1, S2} of the type space S such that the

retailer will report γ(a, b) = m for (a, b) ∈ S1 but report γ(a′, b′) = m′ for (a′, b′) ∈ S2 where

m ̸= m′. Moreover, we say an informative equilibrium is influential if the manufacturer chooses

different capacity levels in response to different messages m and m′. As we will establish below, an

informative and influential equilibrium can exist under quite general conditions.
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4 Informative Equilibrium and Implications

4.1 The Manufacturer’s Optimal Capacity Levels

Given any message m, the manufacturer’s optimal capacity levels K∗
1 and K∗

2 will depend on her

posterior belief µ(a, b|m) of the demand distribution. In general, we can define the posterior demand

distribution as FD(x|m) =
∑

t∈{l,h}
∫ ā
a F ((x− a)bt)µ(a, bt|m)da and its complement as F̄D(x|m) =

1 − FD(x|m). The optimal capacity levels K∗
1 and K∗

2 are characterized in the following lemma.

We note that similar results have been documented in the literature (e.g., Martínez-de Albéniz

and Simchi-Levi, 2005; Fu et al., 2010) in which the authors study optimization problems from the

manufacturer’s perspective. In our paper, the result will serve as a building block for the analysis

of the cheap-talk game between the manufacturer and the retailer.

Lemma 1. Given any message m, the manufacturer’s optimal capacity levels K∗
1 and K∗

2 are

characterized as follows.

(1) If r2 + c2 ≥ r1 + c1, then K∗
1 solves the equation F̄D(K

∗
1 |m) = r1

w−c1
and K∗

2 = 0.

(2) If r2 + c2 < r1 + c1 and r1
w−c1

≥ r2
w−c2

, then K∗
1 = 0 and K∗

2 solves the equation F̄D(K
∗
2 |m) =

r2
w−c2

.

(3) If r2 + c2 < r1 + c1 and r1
w−c1

< r2
w−c2

, then K∗
1 and K∗

2 are determined by the following

equations: F̄D(K
∗
1 +K∗

2 |m) = r1
w−c1

and F̄D(K
∗
2 |m) = r2−r1

c1−c2
.

Depending on the reservation and execution costs of the capacity sources, the manufacturer

procures capacity from only one source or from both sources. Note that if the manufacturer procures

only source-i capacity then the newsvendor critical fractile is 1 − ri
w−ci

. Recall that by definition

source 1 (the more flexible source) has the lower reservation cost, i.e., r1 < r2. In Case (1) of

Lemma 1, source 1 is also cheaper in its total cost, i.e., reservation plus execution. Therefore,

source 1 dominates source 2 – and is the only procured source – because the profit of any capacity

portfolio that procures both sources can be improved upon by trading a unit of source 2 capacity for

a unit of source 1 capacity. In Case (2) of Lemma 1, source 2 is cheaper in total cost and also has a

higher critical fractile (resulting in a higher service level). It therefore dominates source 1 because

the profit of any capacity portfolio that procures both sources can be improved upon by trading a

unit of source 1 capacity for a unit of source 2 capacity. In Case (3), neither source dominates and

the manufacturer procures capacity from both sources: taking advantage of source 2’s lower total
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cost but also source 1’s lower reservation cost and higher critical fractile to enable a higher service

level. In this case, source 1’s critical fractile determines the total portfolio capacity.

4.2 Strategic Communication of the Retailer’s Forecast (a, b)

The retailer, with private forecast information consisting of both the average demand a and the

forecast accuracy b, decides on message m to send, anticipating that the manufacturer will optimize

capacity levels according to Lemma 1 given her posterior belief µ(a, b|m).

4.2.1 Existence of Informative Equilibrium The entire space of the retailer’s type can be

represented by two line segments as shown in Figure 1. Each line segment corresponds to an accuracy

level (bh or bl) while the continuum of points on each line segment represents the range of average

demand [a, ā]. Given any two points xh ∈ [a, ā] and xl ∈ [a, ā] on line segments corresponding

to bh and bl, respectively, the type space S can be partitioned into two subspaces defined as:

S1(xl, xh) = {(a, b) ∈ S|a ≤ xhI(b = bh) + xlI(b = bl)} and S2(xl, xh) = {(a, b) ∈ S|a > xhI(b =

bh)+xlI(b = bl)}, where I(·) is an indicator function. As such, S1(xl, xh) and S2(xl, xh) denote the

subspaces on the a end and the ā end (i.e., on the left and right in Figure 1), respectively.3

Figure 1: Illustration of type partition: S1(xl, xh) = {(a, b) ∈ S|a ≤ xhI(b = bh) + xlI(b = bl)} in
grey; S2(xl, xh) = {(a, b) ∈ S|a > xhI(b = bh) + xlI(b = bl)} in black.

We focus on a class of message spaces in which, given some (xl, xh), the retailer self-reports

to which subspace his private forecast (a, b) belongs. That is, we consider the message space as

M = {Si(xl, xh)|i ∈ {1, 2}, xl, xh ∈ [a, ā]}. For example, by sending a message m = S1(xl, xh),

the retailer indicates “my average demand a and forecast accuracy b fall into set S1(xl, xh).” We

are interested in whether there are some xl, xh ∈ [a, ā] such that an informative equilibrium exists
3By parameterizing partitions with a pair of (xl, xh), we have restricted attention to contiguous two-region parti-

tions in the sense that within each subspace, the set of a is convex on each accuracy level. Theoretically, there can
be noncontiguous partitions involving a nonconvex set of a on some accuracy level; see an example in Appendix I.
However, such noncontiguous partitions may lack managerial interpretation and therefore be difficult to implement
in practice. We therefore focus on contiguous two-region partitions throughout the paper.
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in which the retailer will truthfully report m = Si(xl, xh) if his forecast (a, b) ∈ Si(xl, xh) where

i = 1, 2.

In any informative equilibrium in which the retailer reports m = S1(xl, xh), the resulting poste-

rior belief of the manufacturer is given by

µ(a, bt|S1(xl, xh)) =
ρtG(xt)

ρlG(xl) + ρhG(xh)
· g(a)

G(xt)
=

ρtg(a)

ρlG(xl) + ρhG(xh)
, ∀t ∈ {l, h}, a ∈ [a, xt].

Note that for any t ∈ {l, h}, ρtG(xt)
ρlG(xl)+ρhG(xh)

is the conditional probability of b = bt given m =

S1(xl, xh), and g(a)
G(xt)

is the conditional probability density of a given b = bt and m, i.e., the original

density truncated by interval [a, xt].4 Similarly, for m = S2(xl, xh) we have

µ(a, bt|S2(xl, xh)) =
ρtḠ(xt)

ρlḠ(xl) + ρhḠ(xh)
· g(a)

Ḡ(xt)
=

ρtg(a)

ρlḠ(xl) + ρhḠ(xh)
, ∀t ∈ {l, h}, a ∈ [xt, ā],

where Ḡ(x) = 1 − G(x). The retailer has no incentive to lie if under the two posterior beliefs

µ(a, bt|S1(xl, xh)) and µ(a, bt|S2(xl, xh)), the manufacturer will choose the same level of total ca-

pacity KT = K1 + K2, because the retailer’s expected payoff (3) depends on the manufacturer’s

capacity levels only through KT . In other words, for any informative equilibrium to exist, the manu-

facturer’s total capacity level must be message-independent. Otherwise, the retailer will choose the

message leading to the highest total capacity, regardless of the actual forecast. Furthermore, we can

show that this message-independent total capacity level is also optimal for the manufacturer in the

case of no communication (such that the retailer will not be worse off engaging in communication).

Lemma 2. In any informative equilibrium, the manufacturer’s total optimal capacity level is message-

independent, i.e., K∗
T (S1) = K∗

T (S2).5 Furthermore, K∗
T (S1) = K∗

T (S2) are also optimal for the

manufacturer’s problem without communication.

In the following, we will show that an informative equilibrium always exists, and moreover, although

informative communication does not change the total capacity, it can be influential because different

messages enable the manufacturer to choose different capacity combinations, i.e., K∗
i (S1) ̸= K∗

i (S2)

for both i = 1, 2.

Consider the case where neither capacity source dominates, i.e., case (3) of Lemma 1. As we

established in Lemma 1, the manufacturer’s optimal total capacity is determined by a single equation
4By the original definition, the conditional density given b = bt and S1 is ρtg(a)

ρtG(xt)
= g(a)

G(xt)
where probability ρt is

canceled.
5For ease of notation, we suppress the dependence of Si on (xl, xh) in the manufacturer’s optimal capacity levels

K∗
i (Sj(xl, xh)).
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F̄D(K
∗
T |m) = r1

w−c1
. We can express F̄D(k|m) given m = Si(xl, xh) as a function Ψi(k;xl, xh) defined

below.

Ψ1(k;xl, xh) =
∫ xl

a F̄ ((k − a)bl)
ρlg(a)

ρlG(xl)+ρhG(xh)
da+

∫ xh

a F̄ ((k − a)bh)
ρhg(a)

ρlG(xl)+ρhG(xh)
da,

Ψ2(k;xl, xh) =
∫ ā
xl
F̄ ((k − a)bl)

ρlg(a)
ρlḠ(xl)+ρhḠ(xh)

da+
∫ ā
xh

F̄ ((k − a)bh)
ρhg(a)

ρlḠ(xl)+ρhḠ(xh)
da.

(4)

As a result, an informative equilibrium exists if one can find some xl, xh ∈ [a, ā] and KT which solve

the following system of equations:

r1
w − c1

= Ψ1(KT ;xl, xh) and
r1

w − c1
= Ψ2(KT ;xl, xh). (5)

The two equations in (5) correspond to the manufacturer’s optimal total capacity in response to

m = S1(xl, xh) and m = S2(xl, xh), respectively. In fact, the existence of a pair (xl, xh) satisfying

(5) is guaranteed as long as a is a continuous random variable as we have assumed. This can be

proved by applying the Intermediate Value Theorem. An analogous result holds for the cases where

only one capacity source is used, i.e., cases (1) and (2) of Lemma 1.

Defining am = a+ā
2 as the mid-point of [a, ā], a key result is stated in the following proposition.

Proposition 1. There exists y ∈ [− ā−a
2 , ā−a

2 ] such that an informative equilibrium exists in which

for i = 1, 2, the retailer with private forecast (a, b) ∈ Si(xl, xh) reports m = Si(xl, xh) where

xl = am − y and xh = am + y.

Figure 2: Graphic illustration of informative partitions

Proposition 1 establishes that, in general, the retailer may in equilibrium truthfully report

the subspace to which his forecast belongs. Moreover, one can always construct a partition in a

symmetric manner (i.e., with xl + xh = 2am) to support an informative equilibrium. Throughout

this section, we will focus on symmetric partitions as characterized in Proposition 1. As discussed
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later in §5.3, there can be asymmetric partitions that support informative equilibra, but our main

findings based on symmetric partitions remain to hold under asymmetric partitions.

The partition characterized in Proposition 1 takes on one of two possible forms depending on

whether y < 0 or y ≥ 0: when y < 0 we have xl > xh but we have xl ≤ xh when y ≥ 0. The

two possible cases are illustrated in Figure 2. In either case, from the manufacturer’s perspective,

the posterior expected average demand conditional on receiving message S1(xl, xh) is lower than

that conditional on receiving S2(xl, xh). Consider the case of xl > xh. Comparing the messages

S1(xl, xh) and S2(xl, xh), the message S1(xl, xh) consists of a shorter interval of a (i.e., [a, xh]) at

the high accuracy bh but a longer interval of a (i.e., [a, xl]) at the low accuracy bl. Therefore,

the expected accuracy conditional on S1(xl, xh) is lower than the expected accuracy conditional

on S2(xl, xh). Therefore, when xl > xh, a message m = S1(xl, xh) can be viewed as a statement

implying that “in your expectation I have a lower average demand and a lower forecast accuracy”

than implied by a message m = S2(xl, xh). For expositional brevity, when xl > xh, we refer to

S1(xl, xh) as a “low-average, low-accuracy” message and refer to S2(xl, xh) as a “high-average, high-

accuracy” message. Analogously, and again based on conditional expectations, when xl ≤ xh, a

message m = S1(xl, xh) represents a “low-average, high-accuracy” message whereas m = S2(xl, xh)

represents a “high-average, low-accuracy” message.

4.2.2 When the Informative Equilibrium Is also Influential Next, we will elaborate on why

these forms of messages can result in informative communication and show that such communication

can be influential. For the moment, let us consider a special case where the prior distribution of a is

uniform over [a, ā] and the random noise ϵ also follows a uniform distribution with support [−σ, σ].

We define ϕ = r1
w−c1

and

yo =


4σρhρl(bh−bl)(1−2ϕ)−

√
(ā−a)2(ρlbl+ρhbh)4+16σ2ρ2hρ

2
l (bh−bl)2(1−2ϕ)2

2(ρlbl+ρhbh)2
for ϕ ≤ 1

2

4σρhρl(bh−bl)(1−2ϕ)+
√

(ā−a)2(ρlbl+ρhbh)4+16σ2ρ2hρ
2
l (bh−bl)2(1−2ϕ)2

2(ρlbl+ρhbh)2
for ϕ > 1

2 .
(6)

Additionally, define Ψ0(k) =
∑

t=l,h ρt
∫ ā
a F̄ ((k− a)bt)dG(a). Note that Ψ0(k) represents the short-

age probability given a total capacity level k under the prior demand distribution, whereas Ψ1 and

Ψ2 defined in (4) represent the shortage probabilities conditioning on S1 and S2, respectively. We

impose two regularity conditions: (C1) Ψ0(a+
σ
bh
) ≤ ϕ; (C2) mini=1,2Ψi(ā− σ

bh
; am−yo, am+yo) ≥

r2−r1
c1−c2

. These conditions ensure that the equilibrium capacity levels K∗
T and K∗

2 will not cover or

leave out all the demand realizations, i.e., for all (a, b) ∈ S, (K∗
T − a)b and (K∗

2 (m)− a)b are within
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[−σ, σ]. In Appendix D, we show that for the case of ρh = ρl =
1
2 , these conditions hold if the

support of ϵ is sufficiently wide compared to the support of a, i.e., ā − a is small enough relative

to 2σ. Note that these regularity conditions are assumed only for analytical convenience. Without

these conditions, one can always numerically determine the values of y and (xl, xh) that support an

informative equilibrium per Proposition 1.

Proposition 2. Consider the case in which G is a uniform distribution over [a, ā] and F is a uniform

distribution over [−σ, σ]. (i) if neither capacity source dominates the other (i.e., r2 + c2 < r1 + c1

and r1
w−c1

< r2
w−c2

) and regularity conditions (C1)(C2) hold, then an informative equilibrium exists

with xl = am − yo and xh = am + yo in which the retailer reports m = Si(xl, xh) if his private

forecast (a, b) ∈ Si(xl, xh) for all i = 1, 2; moreover, the informative equilibrium is influential as

characterized below:

(a) If ϕ ≤ 1
2 , then we have xl > xh and the manufacturer’s optimal capacity levels satisfy K∗

1 (S1) >

K∗
1 (S2) and K∗

2 (S1) < K∗
2 (S2).

(b) If ϕ > 1
2 , then we have xl < xh and the manufacturer’s optimal capacity levels satisfy K∗

1 (S1) <

K∗
1 (S2) and K∗

2 (S1) > K∗
2 (S2).

(ii) If one of the capacity sources dominates the other (i.e., r2+ c2 ≥ r1+ c1 or r1
w−c1

≥ r2
w−c2

), then

an informative but noninfluential equilibrium exists.

Proposition 2 provides a closed-form characterization of the informative partition. Importantly,

part (i) establishes that when neither capacity source dominates, informative communication is

influential: the manufacturer will choose different capacity levels in response to different retailer

messages. Note that under the optimal capacity portfolio, ϕ = r1
w−c1

equals the shortage probability

(when neither source dominates) and 1− r1
w−c1

, the newsvendor fractile, is the optimal service level.

First, consider case (a) of part (i), that is, ϕ ≤ 1
2 . We have xl > xh, and therefore, as dis-

cussed after Proposition 1, S1(xl, xh) represents a “low-average, low-accuracy” retailer message and

S2(xl, xh) represents a “high-average, high-accuracy” message. When ϕ ≤ 1
2 , the optimal service

level is greater than or equal to 50% and thus the optimal total capacity level increases in demand

variability. In this case, intuitively, the two messages, “low-average, low-accuracy” and “high-average,

high-accuracy,” can result in the same total capacity level such that the retailer has no incentive

to lie. However, when choosing how to reserve the same total capacity, it is valuable to the man-

ufacturer to know in which subspace the retailer’s forecast resides. It will choose to reserve more
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of the flexible capacity (source 1) when receiving the “low-average, low-accuracy” message S1 than

when receiving the “high-average, high-accuracy” message S2. Likewise, it will reserve more of the

inflexible capacity (source 2) under message S2 than under message S1. That is, K∗
1 (S1) > K∗

1 (S2)

and K∗
2 (S1) < K∗

2 (S2).

Next consider case (b) of part (i), i.e., ϕ > 1
2 . We have xl < xh and, therefore, as discussed

after Proposition 1, S1(xl, xh) represents a “low-average, high-accuracy” message and S2(xl, xh)

represents a “high-average, low-accuracy” message. When ϕ > 1
2 , the optimal service level is less

than 50% and thus the optimal total capacity level decreases in demand variability. In this case,

the same total capacity level can result from either a “low-average, high-accuracy” message or a

“high-average, low-accuracy” message. As before, the retailer has no incentive to lie but again the

manufacturer will react differently to the two messages: reserving less flexible capacity under the

“low-average, high-accuracy” message than under the “high-average, low-accuracy” message and vice

versa for the inflexible capacity. That is, K∗
1 (S1) < K∗

1 (S2) and K∗
2 (S1) > K∗

2 (S2).

Corollary 1. Under the informative equilibrium characterized in Proposition 2, as ϕ becomes closer

to 1
2 , |xh−xl| increases; moreover, at ϕ = 1

2 , |xh−xl| attains the maximum value ā−a with xl = ā

and xh = a, whereas the minimum value of |xh − xl| is nonzero and attained as ϕ → 0 or 1.

Figure 3: Illustration of xh − xl as a function of ϕ.

Corollary 1, as illustrated in Figure 3, shows that as ϕ becomes closer to 1/2, xh and xl move

further away from each other. In particular, when ϕ = 1
2 , (xl, xh) = (ā, a) such that the equilibrium

messages reduce to simply reporting whether b = bl or b = bh, i.e., forecast accuracy b is fully

revealed.6 To provide an intuitive explanation for this, recall that in a newsvendor problem with

a critical fractile 1
2 (and a symmetric demand distribution), the optimal capacity depends only

6Note that in the special case of ϕ = 1
2
, both (xl, xh) = (ā, a) and (xl, xh) = (a, ā) can constitute an informative

partition such that b is fully revealed. We break the tie by choosing (xl, xh) = (ā, a). This is without loss of generality,
since setting (xl, xh) = (a, ā) instead is equivalent to swapping the current indexes of S1 and S2.
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on the average demand, independent of the variance. In our context, the manufacturer solves a

similar newsvendor problem while choosing the total capacity level based on a critical fractile 1−ϕ.

Therefore, in the special case of ϕ = 1
2 , the retailer is willing to fully reveal his forecast accuracy,

because the accuracy has no impact on the manufacturer’s total capacity. Moreover, as ϕ deviates

from 0.5 in either direction, the difference between xl and xh shrinks and so less forecast-accuracy

information will be revealed.7 As ϕ goes to 0 or 1, xl and xh will have the minimum distance but

cannot coincide, since a partition with xl = xh reveals only the demand-average information and

cannot be incentive-compatible.8

4.2.3 Value of Communication We now return to the general case. Importantly, and as for-

mally established in the following proposition (subject to a very mild restriction on the forecast

noise distribution), influential communication strictly improves the manufacturer’s expected profit

as compared to the case without any communication. The reason is that communication enables

the manufacturer to tailor her capacity portfolio to the subspace in which the demand forecast (a, b)

resides instead of using a one-size-fits-all capacity configuration based only on the prior knowledge

of (a, b). The retailer’s expected payoff, on the other hand, is not impacted by this influential com-

munication because (as shown in Lemma 2) the manufacturer’s total capacity level with influential

communication is the same as in the case without any communication.

Proposition 3. Assume that F is strictly increasing over its support. Compared to the case without

any communication, influential communication, whenever it occurs in equilibrium, will make the

manufacturer strictly better off while maintaining the retailer’s payoff unchanged. Therefore, the

supply chain members’ payoffs are Pareto-improved by cheap talk communication.

The assumption of a strictly increasing F ensures that the manufacturer’s capacity reservation

problem always has a unique solution so that the manufacturer is strictly better off with message-

dependent capacity configurations. Cheap talk (which incurs no cost and requires no investment)

can lead to a Pareto-improvement of the supply chain payoffs. Proposition 3 also provides support

for informative communication to be a reasonable outcome despite the multiplicity of equilibria

in cheap talk games. It has been shown that in any cheap talk game a babbling equilibrium, in
7The amount of forecast-accuracy information being revealed can be measured by the variance of b conditional on

messages. The variance of a two-point distributed b is equal to v(1− v)(bh − bl)
2 where v represents the conditional

probability of b = bl, that is, v = ρlG(xl)
ρlG(xl)+ρhG(xh)

conditional on S1(xl, xh) whereas v = ρlḠ(xl)

ρlḠ(xl)+ρhḠ(xh)
conditional

on S2(xl, xh). The variance is zero when xl and xh are respectively at the two end points of [a, ā] (i.e., v = 1 or
v = 0), and increases as xl and xh move toward the midpoint of [a, ā].

8If xl = xh, then S1 = {(a, b) ∈ S|a ≤ am} and S2 = {(a, b) ∈ S|a > am}. As a result, S2 will imply a higher
demand average with the same accuracy information compared to S1, so the retailer always prefers to report m = S2.
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which communication is not informative at all, always exists per the definition of PBE (Sobel,

2020). However, as proved, the informative equilibrium results in a Pareto-improvement and is

thus preferable to the babbling equilibrium based on the Pareto-dominance rule commonly used in

equilibrium selection.

Table 1: Numerical Examples of Influential Communication [Parameter values: ϵ ∼ U [−500, 500],
a ∼ U [500, 600], (r1, c1) = (1, 4.5), (r2, c2) = (5, 0), bl = 1, bh = 10 and ρl = ρh = 0.5]

No Communication With Communication

w ϕ KN
1 ,KN

2 ΠN
M K∗

1 (S1),K
∗
2 (S1) K∗

1 (S2),K
∗
2 (S2) Π∗

M
Π∗

m−ΠN
m

ΠN
m

(%)

7 0.40 297.8, 272.2 729.4 396.5, 173.5 73.3, 496.7 771.1 5.71
6.5 0.50 277.8, 272.2 487.5 388.9, 161.1 52.9, 497.1 553.7 13.58
6 0.67 241.5, 272.2 252.3 74.0, 439.7 300.5, 213.2 263.4 4.40
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Figure 4: Informative partitions of the numerical examples in Table 1

We illustrate our findings and explore the profit implications with a numerical example presented

in Table 1. We consider three instances with different wholesale prices; w = 6, 6.5 and 7. The

parameters are chosen such that neither capacity source dominates, and so the manufacturer will

procure both capacity sources in the optimal portfolio. For the three different values of w, ϕ = r1
w−c1

is given by 0.4, 0.5, and 0.67, respectively. We compute the informative partitions for each of the

three instances; see Figure 4. The partitions echo our analytical results. When ϕ = 0.4, credible

communication arises in equilibrium with a “low-average, low-accuracy” versus “high-average, high-

accuracy” partition as in case (i-a) of Proposition 2, whereas when ϕ = 0.67, credible communication

is supported by a “low-average, high-accuracy” versus “high-average, low-accuracy” partition as in

case (i-b) of Proposition 2. When ϕ = 0.5, the equilibrium messages reduce to simply reporting the

true accuracy level b.

We also numerically compute and report the manufacturer’s capacity levels (KN
1 ,KN

2 ) and ex-

pected profits ΠN
M without any communication, i.e., based on the prior belief of the retailer’s forecast
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(a, b) (see the No Communication columns of Table 1), and the manufacturer’s message-dependent

capacity levels (K∗
1 (m),K∗

2 (m)) and expected profits Π∗
M in the informative and influential equilib-

rium (see the With Communication columns of Table 1). As reported in Table 1, the manufacturer

chooses very different capacity portfolios (K∗
1 (m),K∗

2 (m)) under messages m = S1 and m = S2,

which showcases that cheap talk communication can substantially influence the manufacturer’s ca-

pacity decisions. (Also, as established theoretically, the total capacity K∗
1 (m) +K∗

2 (m) is constant

for different messages and so the retailer has no incentive to lie.) For example, in the case of

ϕ = 0.4, the manufacturer, if receiving a low-average, low-accuracy message S1, will reserve more

capacity from the flexible source, i.e., K∗
1 (S1) = 396.5 > K∗

2 (S1) = 173.5; however, if receiving a

high-average, high-accuracy message S2, she will do the opposite K∗
1 (S2) = 73.3 < K∗

2 (S2) = 496.7.

These message-dependent capacity combinations also differ significantly from (KN
1 ,KN

2 ), the man-

ufacturer’s optimal capacity levels absent of any communication.

Furthermore, comparing ΠN
M and Π∗

M in Table 1, we can see that the manufacturer obtains

a higher expected profit with influential communication than without communication. We also

observe that the percentage improvement of the manufacturer’s payoff is the highest at w = 6.5,

i.e., when ϕ = 0.5. This is because, as proved in Corollary 1, the retailer’s forecast accuracy

b is fully revealed in equilibrium when ϕ = 0.5. Consequently, the manufacturer can configure

her capacity portfolio based on full information about the forecast accuracy, and thus receive the

greatest gain from communication. Our observations imply that the value of communication stems

from the information revelation of forecast accuracy, not the average demand. The reason is that

in equilibrium the manufacturer’s total capacity level is not responsive to different messages and

so the updated average-demand information is not leveraged. (However, the dimension of private

average-demand information is essential for an informative equilibrium to exist.) We note that

although the magnitude of the improvement in the manufacturer’s payoff depends on parameter

values, the improvement can be achieved at no cost because it is the outcome of pure cheap talk.

Therefore, our results indicate that money is being left on the table if upstream firms are unaware of

the value of eliciting a downstream firm’s demand forecast (that includes both the average demand

and the forecast accuracy) through free and nonbinding communication.

A more extensive numerical study is reported in Appendix E.1 where we consider the case in

which ϵ follows a truncated normal distribution. This additional numerical study confirms that the

above observations on the value of communication are robust. It is worth noting that accuracy

information is fully revealed specifically at ϕ = 0.5 because ϵ is assumed to follow symmetric
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distributions. In Appendix E.2, we numerically show that with asymmetrically distributed ϵ, the

value of communication is still maximized when accuracy information is fully revealed, but this

happens at some ϕ > 0.5 (resp. ϕ < 0.5) when the distribution of ϵ is left-skewed (resp. right-

skewed).

4.2.4 Remarks In closing this subsection, we make the following remarks.

Remark 1. An important feature of our model is that the retailer’s profit depends on the man-

ufacturer’s capacity portfolio only through the total capacity level. This feature is essential for

an informative equilibrium to exist, because the retailer has no incentive to lie between the two

partitions inducing the same total capacity. As discussed in Appendix H, although we focus on a

simple wholesale price contract, our results apply to other given contract agreements that retain

this feature such as revenue-sharing contracts and under-delivery penalty contracts.

Remark 2. We focus on an exogenous wholesale price w and our results are established for any

given wholesale price w. Hence, if w is endogenously determined before the retailer observes and

communicates his private forecast, then our main findings continue to hold. Alternatively, w can

be determined by the manufacturer after the retailer reports his private forecast. Chu et al. (2017)

have analyzed such a setting when the retailer possesses private information only about average

demand. They find that because in this case the manufacturer can choose w in response to the

retailer’s report, cheap-talk communication can be truthful under certain conditions. It is a valuable

question for future research whether including forecast accuracy as an additional dimension of private

information will enhance the communication credibility when w is determined after communication.

Remark 3. It is worth noting that the message m in our model need not be the exact set S1 or

S2; it can be plain words or simpler measures as long as the manufacturer can map each message

to the corresponding set of types given the common knowledge of model parameters.9 For example,

analogous to Amazon’s practice of sharing forecast quantiles (Intentwise, Inc., n.d.), a retailer with

type (a, b) ∈ Si could report a number of quantiles based on the conditional demand distribution

E[D|Si]. Such communication will be credible, provided that the manufacturer can map the quantile

information to the corresponding set Si.
9By the definition of PBE, the manufacturer needs to form a consistent belief µ(a, b|m) given each message m

in equilibrium where message m can take any form. For example, in the case of xl > xh, S1(xl, xh) and S2(xl, xh)
represent “low-average, low-accuracy” and “high-average, high-accuracy” subspaces, respectively. The message space
can be defined simply as M = {“low-average, low-accuracy”, “high-average, high-accuracy”}. Under a belief system
such that the manufacturer anticipates “low-average, low-accuracy” sent from a type (a, b) ∈ S1(xl, xh) and “high-
average, high-accuracy” sent from a type (a, b) ∈ S2(xl, xh), the simple message space M will support a PBE which
is essentially equivalent to that with M = {S1(xl, xh), S2(xl, xh)}.
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4.3 Effect of Capacity Costs

Intuitively one might anticipate that the manufacturer would always be worse off with a higher

reservation or execution cost. However, such intuition is not necessarily correct when the value of

communication is considered. On the one hand, an increase in these costs has a direct negative im-

pact because the manufacturer pays more for the capacity sources. On the other hand, as discussed

above, a change in these costs may influence the value of ϕ, resulting in more information revelation

(with respect to the forecast accuracy) if ϕ becomes closer to 1
2 . In the following proposition, we

show that, perhaps surprisingly, the manufacturer can be better off if the flexible source (i.e., source

1) becomes more expensive to reserve or execute.

Proposition 4. Suppose that both capacity sources are used (i.e., r1+c1 > r2+c2 and r1
w−c1

< r2
w−c2

)

and ρh = ρl =
1
2 . The manufacturer’s expected profit is always decreasing in r2 and c2, but can be

increasing in r1 and c1. In particular, given a ∼ U [a, ā], ϵ ∼ U [−σ, σ] and the regularity conditions

of Proposition 2(i), there exists a threshold Γ, which is increasing in σ, such that if ā− a < Γ, the

manufacturer’s expected profit is increasing in r1 and c1 within an interval ϕ = r1
w−c1

∈ [12 − δ, 12 ] for

some δ > 0.10
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Figure 5: The manufacturer’s expected profits as functions of r1 and c1. [Parameter values: a ∼
U [500, 510], ρh = ρl = 1/2, bh = 20, bl = 1, ϵ ∼ Truncated Normal(0, 10002) over [−500, 500],
(r2, c2) = (5, 0); in panel (a), c1 = 4.5 and r1 is varied; in panel (b), r1 = 0.7 while c1 is varied.]

Because ϕ is solely determined by the flexible capacity source, any cost increase associated with

the inflexible source (i.e., increase in r2 or c2) can only hurt the manufacturer. However an increase

in r1 or c1 can bring ϕ = r1
w−c1

closer to 1
2 , thereby improving the information revelation during

10The closed-form expression of Γ can be found in the proof of Proposition 4. A more general version of Proposition
4 is presented in Proposition A.1 of Appendix A where the threshold is generalized to the case with more than two
capacity sources.
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communication. Under the special case considered in Proposition 2, we can prove that if the range

of the average demand ā − a is small compared to the support of the noise term such that the

accuracy information is relatively important, then the informational advantage from an increase in

r1 or c1 can outweigh the direct cost disadvantage. Figure 5 represents a numerical example with

ϵ following a truncated normal distribution, which illustrates the analytical result in Proposition 4.

As expected, without communication, the manufacturer is always worse off as r1 or c1 increases.

However, the manufacturer’s expected profit with communication is U-shaped in r1 for r1 ≤ 1 in

Panel (a) and in c1 for c1 ≤ 5.1 in Panel (b). The gap between the profits with and without

communication represents the value of communication which is maximized when the values of r1

and c1 lead to ϕ = 0.5. In other words, our results imply that a reduction in the cost of the flexible

capacity (for example, a reduction in r1 from 1 to 0.9 in Panel (a)) can hurt the manufacturer if

the operational benefit from the cost reduction cannot offset the loss resulting from information

revelation.

Additionally, in Appendix G, we present an analysis on the impact of ρh, the probability of

forecast accuracy being high. We find that the value of communication is maximized as ρh takes a

moderate value and that an increase in ρh generally benefits the manufacturer but not necessarily

the retailer.

5 Extensions

5.1 More Than Two Capacity Sources: Implications for Portfolio Expansion

Our results can readily be extended to the case where the manufacturer has access to n sources

where n > 2. Let ri and ci denote the reservation and execution costs, respectively, for capacity

source i where i = 1, 2, ..., n. We continue to assume that the retailer knows the manufacturer’s set

of sources and their cost structures. We note that it is quite common for companies to publicly list

the location of their factories and/or their external manufacturing sources.11 Moreover, companies

are at times transparent about the comparative cost structures of their manufacturing base.12 In

the literature on asymmetric demand information, it is often assumed that cost information is
11See, for example, page 46 of contract manufacturer’s Celestica’s 2022 annual report and apparel manufacturer

VF Corporation’s factory list at https://www.vfc.com/responsibility/governance/factory-list
12VF Corporation states on page 4 of their 2023 annual report: “products obtained from contractors in the Western

Hemisphere generally have a higher cost than products obtained from contractors in Asia. ... The use of contracted
production with different geographic regions and cost structures, provides a flexible approach to product sourcing.”
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common knowledge (Özer et al., 2011; Chu et al., 2017).13 Without loss of generality, we assume

that w > ri + ci for all i such that each capacity source is profitable for the manufacturer, and that

r1 < r2 < r3 < ... < rn and c1 > c2 > ... > cn.14 So, as before, a capacity source with a lower index

is more flexible in the sense that it has a lower reservation cost.

The manufacturer can now reserve capacity from more than two sources. But similar to the case

of n = 2, with a capacity portfolio, the manufacturer can leverage the low costs of inflexible sources

but maintain a high service level using flexible sources. In Appendix A, we present the detailed

model formulation and an algorithm to determine the manufacturer’s optimal capacity levels 15 In

the lemma below, we highlight a key property of the manufacturer’s optimal capacity portfolio

Lemma 3. Given any posterior demand distribution FD(·|m), in the optimal solution, the manufac-

turer always reserves capacity from source κ where κ = argmin1≤i≤n
ri

w−ci
. Moreover, the optimal

total capacity K∗
T =

∑n
i=1K

∗
i = F̄−1

D ( rκ
w−cκ

|m).

That is, under any posterior demand distribution, the manufacturer’s total capacity is deter-

mined solely by the reservation and execution costs associated with source κ, i.e., the source that

is associated with the lowest ratio ri
w−ci

and thus provides the highest service level if being used in

isolation. Let us call κ the critical source. As in our base model, the retailer has no incentive to

lie between messages m = S1 and m = S2 if both messages induce the manufacturer to choose the

same total capacity level. Therefore, our main results can readily be generalized. Moreover, the

informative partition depends only on the the critical source κ.

Proposition 5. Suppose that the manufacturer has n ≥ 2 capacity sources. There exists y ∈

[− ā−a
2 , ā−a

2 ] such that an informative equilibrium exists in which, for each i = 1, 2, the retailer with

private forecast (a, b) ∈ Si(xl, xh) reports m = Si(xl, xh) where xl = am−y, xh = am+y. Moreover,

the value of y and the message-independent total capacity level KT can be found by solving equations:
rκ

w−cκ
= Ψ1(KT ; am − y, am + y) = Ψ2(KT ; am − y, am + y) where κ = argmin1≤i≤n

ri
w−ci

.

We now explore the value to the manufacturer of expanding its capacity portfolio, that is,
13In fact, the essential assumption we need is that the retailer has sufficient knowledge to infer the manufacturer’s

total capacity given any posterior demand distribution. As we establish in Lemma 3, the manufacturer’s total capacity
is determined solely by the lowest ratio ri

w−ci
among all capacity sources i. Therefore, all we need is to assume is that

the retailer knows mini
ri

w−ci
.

14If w ≤ ri + ci for some i, then we can eliminate source i from consideration and re-index the remaining sources.
If ci < cj and ri = rj , or ci = cj and ri < rj , for some i and j, it is easy to see that source j is dominated by source
i, and thus j can be eliminated from the set of sources under consideration.

15We note that given any posterior demand distribution, the manufacturer in our problem solves a portfolio selection
problem similar to those studied in Martínez-de Albéniz and Simchi-Levi (2005) and Fu et al. (2010). In our problem,
however, the optimal capacity portfolio will serve as the manufacturer’s best response to any retailer message m.
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expanding the set of sources at which it can build (reserve) capacity. We examine two problem

instances that differ only in the capacity portfolio and in doing so we determine the value of having

three sources instead of two.

Example 1 (Three sources). The manufacturer has three capacity sources with costs (r1, c1) =

(0.6, 5), (r2, c2) = (1, 4.5), and (r3, c3) = (5, 0). The wholesale price w = 6.5. The prior for the

average demand a follows a uniform distribution U [500, 600]; the two accuracy levels are bl = 1 and

bh = 10; the noise term ϵ follows a truncated normal N(0, 5002) over [−500, 500]. Using Algorithm

A.1 presented in Appendix A, we can show that I∗ = {1, 2, 3}, that is, capacity is reserved at all

three sources. The total capacity is determined by critical source κ = 1, resulting in a service level of

1− r1
w−c1

= 60%. Solving for the informative partition, we find that xl = 585.3 and xh = 514.7 and

therefore the retailer’s forecast accuracy is partially revealed in equilibrium. The manufacturer’s

expected profit is Π∗
m = 559.3.

Example 2 (Two sources). Everything is identical to Example 1 except that source 1 is not in the

manufacturer’s capacity portfolio, or equivalently (r1, c1) = (∞,∞). The optimal capacity portfolio

becomes I∗ = {2, 3} with critical source κ = 2, leading to a service level 1 − r2
w−c2

= 50%. As

discussed in §4, this results in xl = 600 and xh = 500 such that the retailer’s forecast accuracy is

fully revealed. The manufacturer’s expected profit is Π∗
m = 568.9.

Thus, and perhaps surprisingly, the manufacturer is worse off if she has more sources available to

her. What explains this? It is driven by the change in information revelation – from full to partial –

when the portfolio is expanded to include source 1. Source 2 is the critical source if only 2 and 3 are

available but source 1 is the critical source when all three are available. Source 1 provides a higher

service level (0.6) than source 2 (0.5). In our earlier two-source model, we established that if the

forecast noise is symmetrically distributed, communication brings greatest value when rκ
w−cκ

= 0.5,

because in such a case the retailer’s forecast accuracy can be fully revealed through communication.

The higher service level achieved by the addition of source 1 reduces the information revelation and

therefore hurts the manufacturer even though source 1 is operationally attractive from a reservation

cost and service level perspective. In the following proposition, we formalize and generalize this

observation regarding the tradeoff between the operational advantage and potential informational

disadvantage of having an expanded capacity portfolio. In doing so, we ignore any upfront search

or qualification costs associated with portfolio expansion.
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Proposition 6. Consider a firm with n sources, where n ≥ 2, that expands its portfolio to n + 1

sources by adding some new source j. All else remains the same. With communication, (i) if the

critical source κ is unchanged by the addition of j then the manufacturer’s expected profit is (weakly)

higher for the expanded portfolio; (ii) if the critical source in the expanded portfolio is κ = j then

the manufacturer’s expected profit can be strictly lower for the expanded portfolio.16

In Appendix A, we show that, similar to the findings in §4.3, the manufacturer’s expected

profit can be increasing in rκ and cκ when the optimal capacity portfolio consists of more than

one sources. Altogether our results indicate that information revelation considerations can have a

significant impact on the profit implications of capacity portfolio initiatives (set expansion and cost

reduction) that would seem to be obviously beneficial from an operations perspective.

5.2 Continuous Accuracy Level

We now consider the case where the forecast accuracy b, like demand average a, also follows a

continuous probability distribution with support [b, b̄], instead of being two-point distributed. Let

g(a, b) represent the prior joint density function of the retailer’s forecast (a, b). The entire type

space, S = {(a, b)|a ∈ [a, ā], b ∈ [b, b̄]}, can be represented as a rectangle as illustrated in Figure

6. Let (am, bm) = (a+ā
2 , b+b̄

2 ) be the middle point of the rectangle area. With any straight line

passing through (am, bm), we can divide the rectangle area into two subspaces. Let y denote the

angle measured from the horizontal line b = bm to this straight line. By varying y from 0 to π, we

can rotate the straight line clockwise to construct various partitions. We use S1(y) (resp. S2(y)) to

represent the subspace to the left (resp. right) of the straight line. Specifically, the two subspaces

can be explicitly defined with the tangent (tan) and cotangent (cot) functions:

S1(y) =


{(a, b) ∈ S|(am − a) tan y ≥ b− bm} if 0 ≤ y ≤ y†,

{(a, b) ∈ S|am − a ≥ (b− bm) cot y} if y† < y < π − y†,

{(a, b) ∈ S|(am − a) tan y ≤ b− bm} if π − y† ≤ y ≤ π

(7)

16To be precise, we compare the manufacturer’s expected profit in two different problem instances in which one
instance has an additional capacity source but otherwise the instances are identical. For expositional ease, we refer
to this comparison as capacity expansion. Also, as noted in the statement, adding a source can have a potentially
negative impact only if the existing portfolio has at least two sources. The reason is as follows. Recall from §4 that
communication is never influential in a portfolio with only one source, and therefore communication does not create
value. Thus, adding a second source not only provides a potential operational cost advantage but also increases
(weakly, and perhaps strictly) the value of communication; thus the second source always (weakly) benefits the
manufacturer.
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and

S2(y) =


{(a, b) ∈ S|(am − a) tan y < b− bm} if 0 ≤ y ≤ y†,

{(a, b) ∈ S|am − a < (b− bm) cot y} if y† < y < π − y†,

{(a, b) ∈ S|(am − a) tan y > b− bm} if π − y† ≤ y ≤ π

(8)

where y† = tan−1 b̄−b
ā−a . The optimal total capacity conditional on each Si(y) is determined by

equation Ψi(k; y) = min1≤i≤n
ri

w−ci
where Ψi(k; y) = E[F̄ ((k − a)b)|Si(y)]. The Ψi(k; y)’s can be

derived in closed form with tan and cot functions of y as presented in Appendix B.

Figure 6: Type partition when (a, b) follows a continuous probability distribution G(a, b).

With variable y, we can generalize our result that an informative equilibrium always exists.

The intuition behind the proof is as follows. As y increases from 0 to π, subspaces S1 and S2

are flipped and so the optimal total capacities conditional on S1 and S2 are swapped. Because

the optimal total capacity is continuous as a function of y, by the Intermediate Value Theorem,

there must be some y ∈ [0, π] such that the total capacity level conditional on S1 is equal to that

conditional on S2. Furthermore, for y ≤ π
2 , S1(y) represents a “low-average, low-accuracy” subspace

and S2(y) represents a “high-average, high-accuracy” subspace. For y > π
2 , S1(y) and S2(y) become

“low-average, high-accuracy” and “high-average, low-accuracy,” respectively.

Proposition 7. When a and b are both continuous random variables with joint density function

g(a, b), there exists y ∈ [0, π] such that an informative equilibrium exists in which for i = 1, 2, the

retailer with private forecast (a, b) ∈ Si(y) reports m = Si(y) where S1(y) and S2(y) are as defined

in (7) and (8).

Proposition 8 proves that, as in the base model, the manufacturer’s total capacity level in the

informative equilibrium is identical to that without any communication. Consequently, informative

communication will not make the retailer worse off as compared to the case of no communication

but benefit the manufacturer by enabling a better informed decision on capacity reservation.
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Proposition 8. Under the informative equilibrium characterized in Proposition 7, the manufac-

turer’s total capacity level is message-independent, and is also optimal to the manufacturer’s problem

without communication. Compared to the case without communication, informative and influential

communication, whenever it occurs, will make the manufacturer better off while maintaining the

retailer’s payoff unchanged.

Figure 7: Illustration of informative partitions when (a, b) follows a joint continuous probability
distribution.

We consider a set of numerical examples in which a ∼ U [500, 600], b ∼ U [1, 10] and ϵ ∼

U [−500, 500] and they are independent. The manufacturer has two sources of capacity with

r1 = 1, c1 = 4.5 and r2 = 5, c2 = 0. For each w = 7, 6.5 and 6 and correspondingly ϕ = 0.4, 0.5 and

0.67, we numerically solve for the value of y leading to an informative equilibrium, and compute the

equilibrium outcomes. The results are shown in Figure 7. Consistent with our findings from the base

model, for the case of ϕ = 0.4, the type space is partitioned into “low-average, low-accuracy” and

“high-average, high-accuracy” regions. For the case of ϕ = 0.5, the space is horizontally divided into

two parts such that only accuracy information is revealed whereas the information about average

demand remains as the prior conditional on each subspace. For ϕ = 0.67, the type space is parti-

tioned into “low-average, high-accuracy” and “high-average, low-accuracy” regions. Communication

27



enables the manufacturer to reserve more flexible capacity and less inflexible capacity conditional

on a high-accuracy message than conditional on a low-accuracy message, thereby improving the

manufacturer’s expected profit compared to the case without communication. Furthermore, in Ap-

pendix B, we numerically show that our findings regarding the impact of capacity cost reduction and

expansion continue to hold when both a and b are continuous. The manufacturer can be worse off

with a reduction in capacity costs or with portfolio expansion if these changes significantly attenuate

information revelation compared to their operational benefit.

5.3 Informative Equilibria Supported by Asymmetric Partitions

In the base model, we have focused on symmetric partitions in the sense that the two partition

points have equal distances from the middle point am, i.e., xl + xh = 2am. In general, informative

communication can be supported by asymmetric partitions if (xl, xh) ∈ [a, ā]2 and the total capacity

KT constitute a solution to the system of nonlinear equations: ϕ = Ψ1(KT ;xl, xh) = Ψ2(KT ;xl, xh).

Infinitely many (xl, xh) may exist to solve these equations since there are three unknowns with two

equations.

For the special case of uniformly distributed a and ϵ, by fixing xl or xh at one of the end-

points of [a, ā], we are able to characterize a few representative asymmetric partitions under certain

conditions.17 Define vh = 2σρl(bh−bl)
bh(ρlbl+ρhbh)

and vl =
2σρh(bh−bl)
bl(ρlbl+ρhbh)

.

Proposition 9. Suppose that a ∼ U [a, ā] and ϵ ∼ U [−σ, σ] and that there are two capacity sources,

neither of which dominates the other (i.e., r1 + c1 > r2 + c2 and r1
w−c1

< r2
w−c2

). The (xl, xh)’s

given below support an informative and influential equilibrium if ā − a ≥ |1 − 2ϕ|max(vl, vh),

Ψ0(a+ σ
bh
) ≤ r1

w−c1
, and mini=1,2Ψi(ā− σ

bh
;xl, xh) ≥ r2−r1

c1−c2
.

(a) For ϕ ≤ 1
2 , (xl, xh) = (ā, a+ (1− 2ϕ)vh) and (xl, xh) = (ā− (1− 2ϕ)vl, a), and the manufac-

turer’s equilibrium capacity levels satisfy K∗
1 (S1) > K∗

1 (S2) and K∗
2 (S1) < K∗

2 (S2).

(b) For ϕ > 1
2 , (xl, xh) = (a, ā− (2ϕ− 1)vh) and (xl, xh) = (a+ (2ϕ− 1)vl, ā), and the manufac-

turer’s equilibrium capacity levels satisfy K∗
1 (S1) < K∗

1 (S2) and K∗
2 (S1) > K∗

2 (S2).

The asymmetric partitions characterized in Proposition 9 are illustrated in Figure 8. These parti-

tions and the corresponding equilibrium capacity levels exhibit similar properties as with the sym-

metric partitions derived earlier in Proposition 2. For the case of ϕ ≤ 1/2, we have xl > xh and so
17The condition, ā − a ≥ |1 − 2ϕ|max(vl, vh), ensures that xl and xh are within [a, ā]. The other two conditions

are analogous to the regularity conditions imposed in Proposition 2.
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Figure 8: Illustration of asymmetric informative partitions

informative communication is supported by “low-average, low-accuracy” versus “ high-average, high-

accuracy” messages. For the case ϕ > 1/2, xl < xh and informative communication is supported by

“low-average, high-accuracy” versus “high-average, low-accuracy” messages. The communication is

also influential because the manufacturer reserves more flexible capacity source given a low-accuracy

message than given a high-accuracy message.

Furthermore, it should be noted that the manufacturer’s expected profit can vary under dif-

ferent forms of partitions. Suppose that the manufacturer can pinpoint a specific partition (and

the retailer has no incentive not to conform during communication). Then, one can determine the

profit-maximizing partition by optimizing the manufacturer’s equilibrium profit, which is a function

of (xl, xh) ∈ [a, ā]2, subject to a nonlinear equality constraint ϕ = Ψ1(K
T
T ;xl, xh) = Ψ2(K

T
T ;xl, xh).

Since the retailer’s profit is not impacted by communication, the equilibrium under the profit-

maximizing partition is the most favorable one in the sense of Pareto-dominance. We conducted

a numerical study on the profit-maximizing partition (x∗l , x
∗
h) and the resulting equilibrium. As

reported in Appendix F, we observed that the profit-maximizing partition can be symmetric, asym-

metric as characterized in Proposition 9 in which one of the x∗l and x∗h equals an endpoint of [a, ā], or

of other asymmetric forms in between (i.e., neither symmetric nor with x∗l or x∗h at an endpoint).18

18Our numerical study suggests that for the special case of ϕ = 1/2, the symmetric partition is the unique partition
that supports an informative equilibrium and thus maximizes the manufacturer’s profit. This is because given
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Additionally, according to our numerical results, the maximized manufacturer profit is on average

1.37% higher than that under the symmetric partition. Hence, symmetric partitions can serve as

a good approximation if it is difficult for supply chain firms to pinpoint and conform to a specific

partition during communication. Nonetheless, all the equilibrium properties we derived earlier con-

tinue to hold under the profit-maximizing partition. For example, (i) consistent with Proposition

2, x∗l < x∗h if ϕ > 1
2 whereas x∗l > x∗h otherwise; (ii) when neither capacity sources dominates, the

manufacturer tailors the capacity portfolio based on the revealed accuracy information; (iii) the

difference |x∗h − x∗l | and the value of communication attain their maximums at ϕ = 1
2 and shrink as

ϕ moves further away from 1
2 in either direction; and (iv) the manufacturer can be better off with

an increase in the cost of the critical capacity source.

6 Conclusion

Motivated by the fact that some firms are now sharing information on forecast uncertainty and

mean, we re-visit a canonical setting in supply chain research: A downstream party (the retailer)

sources product, under a wholesale price contract, from an upstream party (the manufacturer) that

must invest in capacity in advance of the retailer’s order and then satisfies the order (subject to the

capacity built) after demand is realized. Departing from the previous research, we consider both the

forecast average and accuracy to be the retailer’s private information. We establish that credible and

informative communication emerges in equilibrium under very general conditions. Moreover, when

the manufacturer has multiple sources of capacity that differ in reservation and execution costs, the

communication can be influential, strictly improve the manufacturer’s expected profit, and result

in a Pareto-improvement of supply chain profits. Operational improvements to the manufacturer’s

capacity portfolio (e.g., cost reduction or expansion) can hurt the manufacturer if they attenuate

information revelation during communication.

In the paper, we have focused on a specific supply portfolio in which capacity sources differ in

reservation and execution costs. An interesting question for future research is whether cheap-talk

communication of forecast mean and accuracy can be influential in other multi-sourcing settings

(e.g., supply sources that differ in costs and responsiveness). More broadly, we hope our work will

open up avenues for future research into multi-dimensional cheap talk in operations and supply

ϕ = 1/2 (and a symmetric demand distribution), the manufacturer’s total capacity is always equal to the mean
demand conditional on any message, whereas any form of asymmetric partitions will entail different conditional
means given different messages, thus making informative communication impossible.
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chain settings with other types of private information beyond demand forecasts.
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