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Experts estimate 20 million electric vehicles will be on U.S. roads by 2030, and the majority (around 80%)

of the electric vehicle drivers will use home charging. Many utilities are designing managed home charging

programs to centrally manage charging times to reduce cost, avoid new and aggravated peaks and blackouts,

and ensure grid stability. These managed home charging programs are either active, in which the utility

continuously controls the charging while the vehicle is plugged in, or passive, in which the participants decide

when to charge based on pre-announced low-rate episodes. We study jointly designing and executing these

active and passive programs. We present a program-design model, which produces a menu of the charging

programs, tailored for each driver type, and a load-management model, which dynamically manages the

load supply to each individual participant. The load-management model consists of a large number of non-

homogeneous participants, and it is a large-scale mixed-integer nonlinear stochastic problem. We present an

effective approximation method, conduct thorough theoretical and numerical analyses of our approximation,

and provide worst-case bounds for its error components. Our methodology provides detailed insights on the

amount and timing of the improvements achievable in cost and demand variability by offering managed

home charging programs, and by customizing the passive programs. It also offers detailed insights on the

significance of the trade-off between cost and demand variability. We find promoting a culture of charging

electric vehicles every night may significantly increase utilities’ total cost if passive programs have high

participation levels.
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1. Introduction

An estimated 20 million electric vehicles (EVs) will be on U.S. roads by 2030. Therefore, experts

believe EVs are “the most significant new electric load since the rise of air conditioning in the

1950s” (Myers 2019, Hanvey 2019, Trabish 2019, Cooper and Schefter 2018, Blair et al. 2021).

Reasonably assuming an EV on average requires 3.8 megawatt-hours (MWh) per year (GITT and

ISATT 2019), 20 million EVs require 76 terawatt-hours (TWh) in a year. The National Renewable

Energy Laboratory predicts electrified transportation may lead to 58-336 TWh of consumption per

year by 2030, which is equivalent to an average annual consumption of 5.6 million-32.3 million U.S.

homes (NREL 2018, Myers 2019). If this load is effectively integrated and managed, it represents

a paramount opportunity for utilities; otherwise, it can pose a significant challenge in operating
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and balancing the grid loads (Hanvey 2019, Myers 2019, Blair et al. 2021).

An EV supply equipment — such as a Level-1 or a Level-2 home charging station, or a Level-3

fast charging station — is required to charge an EV, which is also referred to as a charging station.

Home charging, using Level-1 or Level-2 ports, is the most common practice, representing around

80% of all charging done by EV drivers (ChargeHub 2020). Cooper and Schefter (2018) estimate

around 9.6 million charging ports will be needed by 2030 to satisfy the EV load requirement, of

which 7.5 million are expected to be home-charging stations.

An EV driver with an installed charging station usually keeps her EV plugged in overnight, after

returning home from work, until she leaves the next morning. We refer to the time interval in

which an EV is left plugged in as a charging window. The time needed to charge an EV depends

on the battery size, the speed of the charger, and whether it is an empty-to-full charging or a

top-up charging. Most drivers prefer top-up charging instead of letting the battery run empty

(pod-point.com); for example, an EV driver with an 80% charge may plug in to fully charge the

battery by charging overnight at home. Thus, conveniently, at a full charging speed, an EV load

requirement is usually satisfiable in a much shorter time than the charging window. Additionally,

most EV drivers do not have a preference for when their EV is charged within their charging

windows. Such flexibilities provide a significant opportunity for managing the EV load.

Managed home charging (MH) programs allow utilities to centrally manage EV drivers’ home

charging times to avoid new and aggravated peaks. In the absence of MH programs, EV drivers

naturally start charging their EVs at their full charging speeds after returning home in the after-

noon/evening, which may create new peaks and significantly aggravate the existing peaks. Reducing

energy consumption during peak periods has been among the primary objectives for the utilities,

and various programs and solutions have been designed over the past several decades (see, e.g.,

Oren and Smith 1992, Ata et al. 2018, Agrawal and Yücel 2022, Alizamir et al. 2020, Fattahi

et al. 2023a,b, Keskin et al. 2020). Thus, MH programs are essential for effectively integrating and

managing the EV load, to realize “the maximum benefits for consumers, the grid, and society as a

whole” (Myers 2019, Blair et al. 2021).

An MH program is either an (i) active program (AMH), also referred to as direct load control,

in which the utility continuously controls the EV charging while the vehicle is plugged in, or a (ii)

passive program (PMH), also known as behavioral load control, in which the EV driver decides when

to charge based on pre-announced low-rate episodes (Fitzgerald and Dougherty 2021, Blair et al.

2021). As an example of AMH, in 2019, Eversource launched a new EV load-management program,

through which it has “access to customer charging data and the ability to control” charging during

peak times, and, in return, participants receive a one-time bonus of “$300 either through a $300

rebate for newly purchased chargers or a combined incentive of $150 to enroll and $50 per year of

https://pod-point.com/
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load control for 3 years” (Blair et al. 2021). As an example of PMH, Southern California Edison

(SCE: www.sce.com) offers “TOU-D-PRIME Rates,” in which 9 p.m. to 4 p.m. (the next day) is

the low-rate episode and priced at 19 ¢/KWh, whereas the cost of charging outside of the low-rate

episode is 45 ¢/KWh. In a recent survey, of the 84 utilities that responded to the survey, 53% were

interested in managed charging programs (Myers 2019). Fitzgerald and Dougherty (2021) provide

an up-to-date assessment of approximately 40 managed charging programs by different utilities.

Blair et al. (2021) present seven case studies of such programs.

In this paper, we present a program-design model (PD) and a load-management model (LM) to

jointly design and execute AMH and PMH programs over a “season” (e.g., summer, winter, or a

calendar year). We provide an overview of PD and LM below.

Program-design model (PD). During the “subscription phase,” which precedes the season,

a utility presents a menu of its MH programs to the EV drivers. Each driver selects a program

and subscribes to it after examining the menu, or she decides to subscribe to none of the offered

MH programs, which we refer to as NMH. Using PD, the utility optimally designs its menu of

MH programs, with the objective of minimizing the total expected cost, which consists of the total

bonus paid to AMH participants, the lost revenue due to PMH participants, and the total cost of

procuring electricity during the season. We construct PD as follows. First, we form driver types

such that the members of a type are homogeneous in their total EV load requirement over the

season, the flexibility of their charging times, preferences toward different MH programs, and their

compatibility with the potential low-rate episodes. Second, we evaluate the appropriateness of each

MH program for each driver type and decide which MH programs should be offered to each driver

type. Third, we formulate EV drivers’ choice probabilities to estimate the participation levels in

MH programs as well as the utility’s total cost. Last, by solving PD, we optimize the AMH bonus

and PMH low rate.

Load-management model (LM). The subscribers of each program are known within the

season, and the utility needs to dynamically manage the supply to each AMH participant. We

present a large-scale mixed-integer nonlinear stochastic optimization model to address the utility’s

load-management decisions. LM considers a large number of non-homogeneous participants. These

participants have different arrival times, charging windows, load requirements, and charging speed

limits. Each AMH participant plugs in her EV at some time and indicates her required load and

charging window. This information is transmitted to the utility. The utility is obligated to satisfy

each AMH participant’s load requirement within her charging window. The utility minimizes the

total energy cost by dynamically managing the load supply to each individual participant. LM

also determines a low-rate episode for each PMH participant on a daily basis. We solve LM on

a rolling-horizon basis, at the beginning of each period (e.g., hour). After each time solving LM,

https://www.sce.com/residential/rates/electric-vehicle-plans
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we only implement the first-period decisions and then continue to the next period. The rolling-

horizon feature allows for updating all inputs on an hourly basis, incorporating the most recent

information.

1.1. Summary of Main Results and Insights

LM is a large-scale mixed-integer nonlinear stochastic problem with three sources of difficulty.

First, it has a significantly large number of decision variables and constraints, which are introduced

to dynamically manage each AMH participant’s charging rate over her charging window. Second, it

has a long horizon. Third, its objective function is nonlinear. We present a scalable solution method

that effectively addresses these three challenges. Our approach consists of three approximations,

which we briefly outline below. First, we partition the AMH participants into groups based on

their load requirement and home charging speed limit, referred to as aggregation, which transforms

LM to a practically sound model, because its size no longer grows in the number of participants.

Second, we truncate the long horizon (season) to a shorter horizon (e.g., 15 hours), which we refer

to as truncation. Consider an AMH participant with a charging window of t′ periods within the

truncated horizon and t′′ periods after the truncated horizon ends. To accommodate this participant

in our truncation, we assume we need to supply the
(

t′

t′+t′′

)
-fraction of her requested load within

the truncated horizon. Third, we linearize the objective function by approximately assuming the

cost function is constant over intervals of length δ. This approximation, referred to as linearization,

transforms our model to a mixed-integer linear program (MILP). We present thorough theoretical

analyses and worst-case error bounds on the components of our approximation. We confirm the

effectiveness and near optimality of our approximation through extensive numerical experiments.

We use real data from California Independent System Operator (CAISO) to simulate instances for

LM. We find our approximation produces near-optimal solutions to the large instances of LM in a

reasonable amount of time.

Our methodology can effectively be employed as a decision support tool to address various

managerial questions that arise when designing and promoting MH programs. It offers valuable

managerial insights into the potential improvements in cost and demand variability achievable

through the implementation of AMH, PMH, and a combination of both, as well as the customization

of PMH. It also provides detailed insights into the trade-off between cost and demand variability.

Last, we explore the effects of charging frequency on utilities’ costs. Some EV drivers may skip

charging on certain nights for various reasons, whereas others may prefer charging nightly to

avoid running out of power. Households with multiple EVs might alternate charging each vehicle

every other night to save costs associated with installing new chargers. We find that increased

charging frequency among AMH participants could benefit utilities by enhancing load management
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flexibility. However, promoting nightly EV charging could substantially increase utilities’ costs if

NMH and/or PMH participation is high.

In summary, our contributions are as follows. First, to the best of our knowledge, we present the

first models for jointly designing and executing AMH and PMH programs. Second, we present an

approximation method that consists of aggregation, truncation, and linearization, which transforms

our large-scale mixed-integer nonlinear program LM to a MILP with a practically reasonable

size. Third, we present thorough theoretical analyses of our approximation and provide worst-case

bounds for its error components. Fourth, we perform extensive numerical experiments that confirm

the effectiveness of our methodology. Last, we present several managerial insights on how utilities

should design and promote their MH programs. Our methodology can be used as a decision support

tool to address various managerial questions regarding MH programs.

The remainder of this paper is organized as follows. We present a literature review in §2. Our

model formulation is given in §3. We present our approximation method and its theoretical analyses

in §4. We provide the results of our numerical experiments and offer several managerial insights in

§5, followed by our concluding remarks.

2. Literature Review

Our paper contributes to the domains of EV operations management and EV managed charging

programs. Lim et al. (2015) study the major barriers to mass adoption of EVs, Avci et al. (2015)

study the key mechanisms driving EV adoption, and Agrawal et al. (2022) study the role of dealer

demonstration in the EV adoption. Shi et al. (2022) study an optimal subsidy structure by modeling

the interaction between the government and a charging supplier. He et al. (2021) integrate vehicle

repositioning and charging infrastructure planning. Varma et al. (2023) study an EV fleet and

charging infrastructure capacity planning problem. Zhang et al. (2021) study EV sharing systems

and vehicle-to-grid operations. Schneider et al. (2018), Sun et al. (2019), and Mak et al. (2013)

study battery-swap stations. Different from these papers, we study jointly designing and executing

MH programs.

Optimal management of EV charging has recently been studied by Jin et al. (2013), Zhang et al.

(2013), Jiang and Powell (2016), Wu et al. (2021), and Chen et al. (2023). In particular, Jin et al.

(2013) consider deterministic EV arrivals, whereas in our paper, the participants’ plug-in times,

charging windows, and charging requirements are stochastic. Our paper is different from Zhang

et al. (2013) and Jiang and Powell (2016) because they study a charging station with multiple

charge points, whereas we study management of the charging supply of a large number of home

charging stations. In Wu et al. (2021), participants are incentivized by a price menu to delay their

charging, whereas we study jointly desiging and executing AMH and PMH, where in AMH, a utility
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directly manages the charging supply for each participant, and in PMH, the utility determines a

low-rate episode for each participant and announces it ahead of time. Chen et al. (2023) study

the scheduling of vehicle charging for a service provider with a limited number of chargers, where

non-homogeneous participants of different types (defined based on arrival/departure times and

charging requirements) arrive according to a Poisson process and employ an exponential cone

programming approach to solve their stochastic optimization problem. Different from their paper,

in LM, a utility dynamically manages supplies and low-rate episodes for a large number of non-

homogeneous participants who vary in their arrival times, charging windows, charging requirements,

and charging speed limits; we do not assume the participants’ arrival process is Poisson; and our

solution approach is different and consists of aggregation, truncation, and linearization.

Methodologically, our aggregation is related to the classical aggregation-disaggregation method-

ology (see, e.g., Whitt 1978, Mendelssohn 1982, Bean et al. 1987, Bertsekas et al. 1988, Rogers

et al. 1991, Van Roy 2006). In our aggregation, we define a measure that is unique to our problem,

called normalized load requirement, to form groups. We design a disaggregation procedure, show it

always produces a feasible solution, and present a worst-case bound on the error of our aggregation.

Our scenario-based modeling of uncertainty is a common approach in modeling uncertainty in the

context of energy management (see, e.g., Fattahi et al. 2023a,b). This scenario-based approach

allows us to model our stochastic problem as a large-scale mixed-integer nonlinear program. To

the best of our knowledge, our truncation approach, which considers the
(

t′

t′+t′′

)
-fraction of each

participant’s load requirement, as well as our theoretical analyses of the truncation, are new. Our

linearization is related to the classical approach of approximating a nonlinear function using a

piecewise linear function (see, e.g., Bertsimas and Tsitsiklis 1997), which partitions the domain

into subsets and assumes the function is linear over each subset. We also partition the domain into

intervals of length δ; however, we assume the function is constant over each interval. We present

thorough theoretical analyses and error bounds on the components of our approximation method.

3. Model Formulation

We introduce our preliminaries in §3.1. In §3.2, we tailor each MH program for each type of EV

driver. In §3.3, we present a choice model for EV drivers. We formulate PD and LM, respectively,

in §3.4 and §3.5.

3.1. Preliminaries

We introduce our preliminaries below.

Season and subscription phase. We consider a “season” (e.g., summer, winter, or a calendar

year) over which a utility executes its MH programs. During the “subscription phase,” which
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precedes the season, the utility presents a menu of its MH programs to the EV drivers who perform

home charging. Each EV driver selects a program and subscribes to it after examining the menu,

or she decides to subscribe to none of the offered MH programs, which we refer to as NMH. That

is, an NMH driver is an EV driver with an installed charger at home, who performs home charging,

but she does not participate in MH programs. If an EV driver subscribes to a program, she remains

in the same program throughout the entire season.

Periods (e.g., hours) and days. Let t∈ {1, . . . , T} denote the time periods in the season; for

example, t = 1 and t = T are the first and last periods in the season, respectively. Without loss

of generality, in this paper, we assume each period is an hour. Also, we let index t refer to the

beginning of hour t and assume the EV drivers’ arrivals and departures (i.e., plug-in and plug-out

times) occur at the beginning of periods. Let d ∈ {1, . . . ,D} denote the days in the season. We

assume each driver has D non-overlapping charging events within the season. We allow the required

load of a driver to be zero in some charging events, accommodating the days when the driver does

not charge her car. We use index d to represent the dth charging event of each driver.

Charging options. We assume each EV driver has an installed charger at home. And each EV

driver belongs to one of the following groups over the season.

• AMH: In each charging event, an AMH participant plugs in her EV at some time and indicates

her charging requirement and plug-out time. The utility fulfills the requirement within her charging

window. The driver pays the common electricity rate µ̄ ($/KWh) for charging her EV, and she

receives a one-time bonus β ($) for participating in AMH.

• PMH: The utility announces the starting time (τ), duration (L), and electricity rate (µL) for

the low-rate episode ahead of time. The utility may customize the low-rate episode (§3.2). PMH

participants enjoy a lower rate µL (≤ µ̄) for charging within the low-rate episode.

• NMH: An NMH driver does not participate in AMH or PMH. In each charging event, she starts

charging her EV at her full charging speed after plugging in her EV until her load requirement is

fulfilled. She pays the common electricity rate µ̄ and receives no bonus.

Charging events. In her dth charging event, driver j plugs in her EV at the beginning of some

period t̃Aj,d (arrival or plug-in time) and requires some load amount Q̃j,d to be charged until she leaves

at the beginning of some period t̃Dj,d (departure or plug-out time). We use tilde (˜) to distinguish

random variables in this paper. We have 1 ≤ t̃Aj,1 < t̃Dj,1 ≤ t̃Aj,2 < t̃Dj,2 ≤ · · · ≤ t̃Aj,D < t̃Dj,D ≤ T + 1 for

each driver j. In AMH, the utility decides how much load to supply to driver j in each period

t̃Aj,d, . . . , t̃
D
j,d − 1 to satisfy her requirement Q̃j,d. By contrast, the driver decides the charging time

in PMH and NMH.

Let ℓ̃j,d ≜ t̃Dj,d− t̃Aj,d ≥ 1 denote driver j’s charging window in her dth charging event; that is, her car

is plugged in for ℓ̃j,d hours. Let qUj > 0 denote her maximum charging speed, and define γ̃j,d ≜
Q̃j,d

qUj



Authors: Utilities’ Managed Home Charging Programs for Electric Vehicles8

as her normalized load requirement, which indicates the amount of time needed to charge her EV

at the full charging speed to satisfy her requirement. We assume γ̃j,d ≤ ℓ̃j,d to ensure feasibility,

meaning she plugs in her EV for at least γ̃j,d hours in her dth charging event.

Total load requirement and flexibility. For driver j, define

Qj ≜ qUj

D∑
d=1

E[γ̃j,d], Ij ≜
D∑

d=1

E[ℓ̃j,d − γ̃j,d],

where Qj is the total expected EV load requirement of driver j over the season and Ij is the total

expected time the EV is plugged in beyond the total time that is actually needed to charge the

EV. We propose Ij as a proxy for the amount of flexibility driver j could offer to the utility for

managing her charging times over the season, if she participates in AMH. Utilities can estimate Qj

and Ij through analyzing the drivers’ charging history and/or by asking questions regarding their

driving routines. Utilities must target the drivers with large Ij for their AMH programs.

Driver types. We partition EV drivers into a small number of driver types, denoted by φ∈Φ.

We assume the type-φ drivers are homogeneous in terms of (H1) total load Qj and flexibility Ij,

(H2) preferences toward different charging programs, and (H3) compatibility with the potential

low-rate episodes. We rigorously specify these conditions in §3.4. Let Kφ denote the number of

type-φ drivers. Let Π ≜ {NMH,AMH,PMH} denote the set of all three home charging options

that we consider in this paper. The utility offers a subset of these programs to each driver type φ,

denoted by Πφ ⊆Π. During the subscription phase, each type-φ driver chooses an option π ∈Πφ,

subscribes to it, and remains in it throughout the season. We design Πφ in §3.2.

With some abuse of notation, we replace index j with φ to denote a common quantity for the

drivers of type φ; for example, Iφ denotes the common load flexibility of driver type φ.

Utility’s cost function. Let ft(yt) denote the utility’s cost of procuring its total supply of yt

in period t. In this paper, we assume (i) the cost function is additive in hours, (ii) each hourly

cost function ft(y) is non-decreasing in the hourly consumption y, for y ≥ 0, and (iii) ft(y) = 0,

for y≤ 0, for all t. These assumptions are mild. In a few places, we consider a cost function in the

form of ft(y) = cy3, for y ≥ 0, for some c > 0, as a special case, which we explicitly state. Fattahi

et al. (2023b) show this cubic function is a good fit for the energy generation cost in CAISO.

Grid constraints. The scope of our problem includes g ∈ {1, . . . ,G} service regions, which are

served by several substations. Substation i serves a subset of the service regions {g|g ∈ i}. Driver

j’s service region is denoted by gj. In each period, the total load supplied by substation i cannot

exceed its limit, which is denoted by hi.
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3.2. Designing MH Programs

We show how the utility designs its offer set Πφ for each driver type φ. We include NMH in all

offer sets; that is, NMH ∈Πφ, for all φ, representing the no-participation option. The utility offers

AMH and/or PMH to a driver type if the program is compatible with their driving routines and

worthwhile for the utility. For example, PMH may be unsuitable for a driver type with irregular

arrival and departure times; PMH participants with long and inflexible charging times are worth-

less for the utility; and AMH participants with high load requirements and short charging windows

are worthless for the utility. We present eligibility requirements to determine which MH programs

should be offered to each driver type, while ensuring the utility’s interest and the participants’

high satisfaction. Eligibility requirements that are defined based on the customers’ electricity con-

sumption profiles are common in the existing demand-response programs (see, e.g., PG&E 2023,

SCE 2023).

Designing AMH. We introduce a threshold I◦ that determines whether driver type φ qualifies

for AMH; we add AMH to Πφ if Iφ ≥ I◦. By increasing I◦, fewer drivers qualify for AMH, but

each of them provides a higher value to the utility. We assume I◦ is exogenous and given by the

utility. Last, the utility optimizes the AMH bonus β by solving PD (§3.4).

Designing PMH. A low-rate episode is specified by the following three elements: starting time

τ , duration L, and rate µL. We propose customizing the starting time each day, while keeping the

duration and rate constant throughout the season and across the drivers. Customizing µL could

cause price discrimination, leading to dissatisfaction among the participants; hence, we do not

customize µL, due to its practical challenges. Customizing L has practical challenges as well because,

for example, a short low-rate episode may restrain the drivers from fulfilling their requirement

within the low-rate episode, leading to dissatisfaction. On the other hand, a long low-rate episode

is ineffective because the drivers usually fulfill their charging in the first few hours of the low-rate

episode. We propose designing a customized PMH through the following three steps.

1. Duration L: We assume L is exogenous and given by the utility. Utilities must target EV

drivers with small load requirements for PMH; otherwise, the charging times would be long and

inflexible. For example, the utility may target the EV drivers j such that P (γ̃j,d ≤ 6) = 1, for all d,

meaning each of the normalized load requirements is at most six hours with probability 1. In this

example, the utility may set L= 6 hours, ensuring the PMH participants can always fulfill their

requirement within the low-rate episode.

2. Potential starting times Tφ,d: Let Td ⊆ {1, . . . , T} denote the set of all starting times that are

worth considering by the utility on day d; for example, assuming L = 6 hours, Td could consist



Authors: Utilities’ Managed Home Charging Programs for Electric Vehicles10

of the periods corresponding to 9 p.m., 10 p.m., 11 p.m., and 12 a.m. on day d. We assume Td is

exogenous and given by the utility, and |Td| is small. Define

Tj,d ≜ {τ ∈ Td| P (t̃Aj,d ≤ τ, t̃Dj,d ≥ τ +L, γ̃j,d ≤L) = 1},

for all j and d; that is, Tj,d consists of all potential starting times on day d that are compatible with

driver j. By properly forming the driver types, as we discuss in §3.4, we ensure the members of

each type are homogeneous in Tj,d. Thus, let Tφ,d denote the common compatible starting times for

driver type φ on day d. The utility adds PMH to Πφ if Tφ,d ̸= {} for all d. During the subscription

phase that the utility offers Πφ to the drivers of type φ, the utility shows Tφ,d to the drivers and, as

one of the contract terms, the utility guarantees it will assign one of the starting times Tφ,d to the

drivers of type φ on each day d. Moreover, the utility guarantees it will communicate the assigned

starting times to the drivers at a prespecified time ťd each day d (e.g., 10 a.m.).

3. Rate µL: The utility optimizes µL by solving PD (§3.4).

Thus, L and Td are exogenous and given by the utility, whereas µL is endogenous and optimized

by solving PD. The second step ensures the following property:

P
(
t̃Aj,d ≤ τ, t̃Dj,d ≥ τ +L, γ̃j,d ≤L

)
= 1, ∀φ, ∀j ∈φ, ∀τ ∈ Tφ,d, ∀d, (CST)

referred to as compatible starting times (CST). This property is particularly interesting because it

guarantees high satisfaction over the season. In PMH, if the timing of the low-rate episode is set

inappropriately, a driver may partially or completely miss the low-rate episode, meaning she needs

to perform a portion of her charging outside of the low-rate episode, which causes dissatisfaction.

CST helps utilities avoid such occurrences to ensure high satisfaction over the season, which is

vital for the success of MH programs.

In short, we showed how the utility designs its MH programs while ensuring its interest and the

participants’ high satisfaction. We assume I◦, L, and Td are exogenous and given by the utility.

The utility optimizes β and µL by solving PD.

3.3. Choice Model

We present a choice model to obtain the drivers’ choice probabilities for a given (β,µL). We first

determine the drivers’ expected costs under different programs. Recall drivers of the same type

φ are homogeneous in their total expected load requirements, which we denote by Qφ. Thus, a

type-φ driver’s expected cost over the season under NMH, AMH, and PMH, respectively, are

ENMH
φ ≜ µ̄Qφ, EAMH

φ ≜−β+ µ̄Qφ, EPMH
φ ≜ µLQφ.
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We let the drivers’ choice probabilities be proportional to the attractiveness of the programs,

which is a common approach in the literature (see, e.g., Gallego et al. 2015, Fattahi et al. 2022). For

a type-φ driver, the offered charging programs Πφ and their expected costs (Eπ
φ) are respectively

akin to a set of products offered to a customer and their prices. A driver must select exactly one

of the offers, which could be NMH. We define the attractiveness of option π ∈Πφ to driver type

φ as Aπ
φ ≜ ρ̂πφ − ρπφEπ

φ > 0, where ρ̂πφ > 0 denotes the attractiveness of option π if its cost (Eπ
φ) is

zero, and ρπφ ≥ 0 captures the cost elasticity of option π for driver type φ. Parameters ρπφ and

ρ̂πφ can be estimated for each driver type φ offline. They respectively capture the financial and

environmental considerations of the EV drivers. Parameter ρ̂πφ also captures other considerations,

such as the discomfort due to signing up for the MH programs, communications with the utility,

and sharing information in AMH. For example, we may have ρ̂AMH
φ′ > ρ̂PMH

φ′ because driver type φ′

may value giving full control of their charging to the utility for the environmental benefits, whereas

for another driver type φ′′, we may have ρ̂AMH
φ′′ < ρ̂PMH

φ′′ due to information privacy. Last, a type-φ

driver chooses option π ∈Πφ with probability Pπ
φ ≜

Aπ
φ∑

π′∈Πφ
Aπ′

φ
.1

3.4. Program-Design Model (PD)

The utility’s expected cost due to the bonus payments to the AMH participants plus the lost

revenue because of the PMH participants’ charging during low-rate episodes is

H(β,µL) ≜ β
∑

φ: AMH∈Πφ

PAMH
φ Kφ +(µ̄−µL)

∑
φ: PMH∈Πφ

PPMH
φ KφQφ.

In return, the participants help the utility reduce its electricity cost. Let F(β,µL) denote the

utility’s total expected cost of purchasing/producing electricity to satisfy its demand over the

season. LM in §3.5 could be used to estimate F(β,µL). The utility’s PD is

(PD): min
(β,µL)

H(β,µL)+F(β,µL).

The utility designs its MH programs by constructing and solving PD as follows. First, it learns

the following input data for each driver: total load requirement Qj, flexibility Ij, parameters of

the attractiveness functions ρ̂πj and ρπj for each option π, and the compatible starting times Tj,d.

Second, it partitions the drivers into several types φ∈Φ, such that the members of each type are

homogeneous in the following conditions: (H1) Qj and Ij; (H2) ρ̂πj and ρπj , for all π; and (H3) Tj,d,

for all d. Third, it defines Πφ ≜ {NMH}, adds AMH to Πφ if Iφ ≥ I◦, and adds PMH to Πφ if

Tφ,d ̸= {} for all d. Fourth, it fixes its decision vector to some practical values (β̌, µ̌L) and performs

the following steps:

1 One may assume a type-φ driver chooses option π̄φ ≜ argmaxπ∈Πφ Aπ
φ with probability 1. Our methodology readily

extends. We prefer probabilistic choices because (i) they effectively reflect the real-world behavior of the EV drivers
and (ii) the optimal solution of PD is robust with respect to the inputs of the attractiveness functions.
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• (i) compute costs Eπ
φ , attractiveness Aπ

φ, and choice probabilities Pπ
φ , for all φ, π ∈Πφ; and

• (ii) estimate the utility’s total cost H(β̌, µ̌L)+F(β̌, µ̌L).

The utility optimizes its program-design decisions by repeating steps (i)-(ii) for all practical values

of (β,µL). Online Appendix A provides an illustrative example for PD. After solving PD, the utility

invites the EV drivers to select an option from the offer sets. After the subscription phase concludes

and the season starts, the subscribers of each program are known. Next, we present LM to jointly

execute AMH and PMH within the season.

3.5. Load-Management Model (LM)

We formulate LM to jointly execute AMH and PMH within the season. We construct and solve

LM on a rolling-horizon basis, at the beginning of each hour, throughout the season.

We formulate LM at the beginning of a given hour as follows. With some abuse of notation,

let t ∈ {1, . . . , T} denote the remaining hours in the season, including the current hour, and let

d∈ {1, . . . ,D} denote the remaining days in the season, including the current day. We incorporate

the stochasticity in our model by considering s∈ {1, . . . , S} scenarios, where scenario s occurs with

probability ps > 0. We assume all aspects of each scenario are deterministic — our extension in

Online Appendix G.1 incorporates some stochasticity beyond scenarios. The EV drivers who arrive

at the beginning of period 1 (current hour) or earlier are the same in different scenarios, whereas

the drivers who arrive at the beginning of the second period or later may vary across scenarios.

After each time we solve LM, we implement the supply decisions that correspond to the first

period. Then, we proceed to the next period and update the scenarios based on the most recent

information. Online Appendix B provides an illustrative example for scenarios.

NMH load. Let j be an NMH driver under scenario s. In a charging event, she plugs in at

the beginning of some hour t′ and starts charging with her maximum speed qUj to satisfy her

requirement γ′. The utility supplies the following amount to her in period t, under scenario s:

qs,j,t =


qUj if t′ ≤ t < t′ + ⌊γ′⌋,
γ′ −⌊γ′⌋ if t= t′ + ⌊γ′⌋,
0 otherwise.

(1)

Thus, one could pre-compute the supplied load to all NMH drivers. Let λNMH
s,g,t denote the total load

supplied to all NMH drivers in period t, in service region g, and under scenario s.

PMH load. The utility must decide the starting times of the low-rate episodes and notify the

PMH participants at the beginning of a pre-specified hour, denoted by ťd, as stipulated in the

contract (e.g., ťd = 10 a.m. for all d). To simplify our model, we assume all potential low-rate

episodes on day d start at or after the beginning of period ťd and end at or before the end of period

ťd+1 − 1. Thus, the charging of the PMH participants in periods {ťd, . . . , ťd+1 − 1} is influenced by
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the decisions made at the beginning of period ťd. Let binary variable ϑs,τ,φ,d be 1 if starting time

τ ∈ Tφ,d is assigned to the PMH participants of type φ on day d, under scenario s. Each time we

solve LM, it optimizes ϑs,τ,φ,d for all days d ∈ {1, . . . ,D}. Recall d = 1 denotes the current day

(today). After solving LM at the beginning of hour ť1, the utility communicates today’s starting

times to the PMH participants. We fix the value of ϑs,τ,φ,1 when we solve our model at the beginning

of ť1 +1, ť1 +2, and so forth.

Recall from Property CST that a PMH participant arrives home before her low-rate episode

starts. She starts charging at her full charging speed after her low-rate episode starts. Thus, the

charging behavior of the PMH participants is similar to the NMH drivers, except PMH participants

start charging after their low-rate episode starts, despite the NMH drivers who start charging after

they arrive home. Therefore, given that the low-rate episode of participant j starts at τ ∈ Tφ,d,

one could pre-compute the supplied load to her using equation (1). For driver type φ, where PMH

∈Πφ, let λ
PMH
s,g,t,φ,τ denote the total load supplied to all PMH participants of type φ in period t, in

service region g, and under scenario s, assuming the assigned starting time is τ ∈ Tφ,d. Thus, the

total load supplied to all PMH participants in period t, in region g, and under scenario s, is

∑
φ: PMH∈Πφ

 ∑
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τϑs,τ,φ,d(t)

 ,

where d(t) denotes the day on (the morning of) which the utility decides the starting times of the

low-rate episodes that influence period t — for example, d(t) = d′, for all t∈ {ťd′ , . . . , ťd′+1 − 1}.

AMH load. An AMH participant has D remaining charging events. Because these charging

events do not overlap, instead of each AMH participant, one could equivalently assume D partic-

ipants exist, each of whom has one charging event in the remainder of the season. Let Js denote

the set of such AMH participants who have one charging event, under scenario s. To simplify our

notation, for j ∈ Js, let aj, ℓj, Qj, and γj respectively denote her plug-in time, charging window,

requested load, and normalized load requirement. Observe we dropped index d because each j ∈ Js
has one charging event. Furthermore, under scenario s, these inputs (aj, ℓj, Qj, and γj) are deter-

ministic. As we previously stated, the AMH participants who arrive at the beginning of period 1

(current hour) or earlier are the same across different scenarios; that is, all Js’s include such partic-

ipants. The AMH participants who arrive at the beginning of the second period or later may vary

across scenarios. By solving our model, we determine the amount of load to be supplied to each

AMH participant in each period and under each scenario. Let decision variable qs,j,t denote the

amount of load to be supplied to participant j in period t, under scenario s. We include a constraint

in LM that enforces the same first-period decisions across different scenarios. After each time we

solve LM, we implement the supply decisions that correspond to the first (current) period; then,
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we proceed to the next period and update the scenarios based on the most recent information. We

formulate LM as follows:

(LM) : min
∑
s

ps
∑
t

ft(ys,t) (2)

s.t.

aj+ℓj−1∑
t=aj

qs,j,t =Qj, ∀s, j ∈ Js, (3)

0≤ qs,j,t ≤ qUj , ∀s, t, j ∈ Js, (4)

qs,j,1 = qs′,j,1, ∀s ̸= s′, j ∈ Js ∩ Js′ , (5)

xs,g,t = λs,g,t +
∑

j∈Js: gj=g

qs,j,t, ∀s, g, t, (6)

λs,g,t = λEXI
s,g,t +λNMH

s,g,t +
∑

φ: PMH∈Πφ

 ∑
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τϑs,τ,φ,d(t)

 , ∀s, g, t, (7)

∑
τ∈Tφ,d

ϑs,τ,φ,d = 1, ∀s, φ : PMH∈Πφ, d, (8)

ϑs,τ,φ,1 = ϑs′,τ,φ,1, ∀s ̸= s′, τ ∈ Tφ,1, φ : PMH∈Πφ, (9)

ϑs,τ,φ,d ∈ {0,1}, ∀s, τ ∈ Tφ,d, φ : PMH∈Πφ, d, (10)∑
g∈i

xs,g,t ≤ hi, ∀s, t, i, (11)

ys,t =
∑
g

xs,g,t, ∀s, t. (12)

In the objective function (2), ys,t is the total consumption in period t, under scenario s, and hence,

the objective function minimizes the expected energy cost in the rest of the season. Constraint (3)

ensures the load required by each AMH participant is supplied within her charging window. The

supplied load to a participant in any period must satisfy her charging speed limit qUj , which is

ensured by constraint (4). Constraint (5) enforces the same first-period decisions across different

scenarios. To model the grid constraints, we let xs,g,t denote the total load supplied to service

region g in period t and under scenario s. The value of xs,g,t is determined through constraint (6).

Quantity λs,g,t is the total load excluding the EV load of the AMH participants, also referred to as

the non-AMH load. Constraints (7)-(10) compute the non-AMH load λs,g,t, where λEXI
s,g,t ≥ 0 is the

total non-EV load. Grid constraints are imposed on xs,g,t, as we model in constraint (11); under

each scenario s, the total load for the service regions that are served by substation i (i.e., g ∈ i)

cannot exceed the limit of the substation hi. Last, constraint (12) computes the values of ys,t’s.

In short, we formulate LM to determine the charging supply to each AMH participant and

the starting times of the low-rate episodes, while minimizing the total energy cost and respecting

the grid-stability constraints. LM has three sources of difficulty. First, the number of decision
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variables (qs,j,t) and constraints (e.g., constraints (3) and (4)) grow linearly in the number of

AMH participants. The size of this model (i.e., its variables and constraints) is O(STJ), where

J ≜ maxs |Js|, and reasonably assuming the number of binary variables (ϑs,τ,φ,d) is small. Real-

size instances of LM can have extremely large numbers of participants, making it impractical in

its current form; hence, designing an approximation model such that its size does not grow in

the number of participants is necessary. We address this challenge by presenting an aggregation

scheme to form groups of participants. Second, T can be very large. The size of LM grows in T ;

hence, as an approximation, we propose a truncation procedure to solve LM using a short horizon.

Investigating how this approximation affects the solution, both theoretically and numerically, is

indispensable. Third, the objective function of LM is nonlinear. Nonlinear problems are extremely

more difficult to solve than linear ones. To address the nonlinearity, we present a linearization of

the objective function, which transforms our problem to an MILP. In the remainder, we present

our approximations for LM.

4. Approximations for LM

In this section, we present a solution method that consists of three approximations to address the

three challenges of LM, which we discussed at the end of §3. We briefly introduce these approxi-

mations below and defer their details to §4.1-§4.3.

Aggregation. In §4.1, we aggregate the AMH participants who belong to the same service region

and have the same arrival time and charging window into groups, based on their normalized load

requirement (γj). We also introduce a parameter ϵ that indicates which participants should be

in the same group; the members of a group have γ-values within ϵ of each other. The value of ϵ

controls the number of groups, the size of groups, and the approximation quality. Our aggregation

reduces the size of LM from O(STJ) to O( 1
ϵ
SGT 4), transforming it to a practically sound model

because its size no longer grows in the number of participants. Let ALM denote the aggregate

model. We show how to disaggregate the solution of ALM and create a feasible solution for LM.

Last, we present a worst-case error bound for aggregation and discuss how it is influenced by ϵ.

Truncation. Recall T can be large. Thus, we truncate the long horizon to T̆ periods, where

T̆ ≤ T . Consider an AMH participant with a charging window of t′ periods within the truncated

horizon and t′′ periods after the truncated horizon ends. To accommodate this participant in our

truncation, we assume we need to supply only the
(

t′

t′+t′′

)
-fraction of her requested load within

the truncated horizon. Interestingly, we show if the horizon is truncated to one period (i.e., T̆ = 1),

the solution has a nice structure in which each participant’s requirement is uniformly supplied over

her charging window. We present a theoretical analysis of our truncation and show it affects the

solution by (i) restricting the solution and (ii) discarding forecast information. Inconsistent with
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intuition, we show the error of truncation does not necessarily reduce as T̆ increases. In a special

case, we show the relative error of truncation is at most 86.6%, and we establish the tightness of this

bound. Our numerical experiments show T̆ ≥ 15 produces near-optimal solutions. Last, we present

a special case of our problem, which we obtain by imposing two assumptions that are motivated by

practical cases, and show a reasonably small T ∗ exists such that truncating the horizon to T̆ ≥ T ∗

produces an optimal solution.

Linearization. In §4.3, we linearize the objective function by approximately assuming the cost

function ft(·) is constant over intervals of length δ. We formulate an approximation model, denoted

by LLM, that is an MILP. We present a worst-case error bound for this approximation, which

shows how the error is related to the value of δ.

The above three approximations transform our large-scale nonlinear program to an MILP, which

has a practically reasonable size. Our numerical experiments indicate this MILP problem is solvable

in a short time using commercial solvers, such as Cplex. We characterize the error of the linear-

programming relaxation of this MILP problem and show it is small, supporting our conclusion

that our approximation is suitable for large-scale applications. In §4.1-§4.3, we present the details

of our aggregation, truncation, and linearization.

Notations for error characterization. Let q⋄ ≜ maxj q
U
j be the maximum home-charging

speed, J ≜maxs |Js|, and let J̌ be a practical upper bound on J . Define

λL
s,t ≜

∑
g

λEXI
s,g,t +λNMH

s,g,t +
∑

φ: PMH∈Πφ

min
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τ

 ,

λU
s,t ≜

∑
g

λEXI
s,g,t +λNMH

s,g,t +
∑

φ: PMH∈Πφ

max
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τ

 ,

Θ(δ)≜max
s,t

{
max

λL
s,t≤y≤λU

s,t+J̌q⋄
ft(y+ δ)− ft(y)

}
,

Ψ(ε) ≜ max∑
t δt≤ε, δt≥0, ∀t

∑
t

Θ(δt),

for some δ ≥ 0 and ε≥ 0. Quantities λL
s,t and λU

s,t are respectively lower and upper bounds on the

non-AMH load, and Θ(δ) (respectively, Ψ(ε)) is an upper bound on the increase in energy cost if

an hour’s (respectively, the horizon’s) load increases by δ (respectively, ε). Let λL ≜mins,t λ
L
s,t and

λU ≜ J̌q⋄ +maxs,t λ
U
s,t. Last, [e]

+ ≜max{0, e}, for e∈R.

4.1. Aggregation

We present an aggregation-disaggregation (AD) procedure that (i) constructs and solves an approx-

imation of LM, denoted by ALM, and (ii) creates a feasible solution for LM using the solution of

ALM. Steps (i) and (ii) are called aggregation and disaggregation, respectively.
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Aggregation. For each scenario s, we partition the AMH participants who belong to the same

service region g and have the same arrival time and charging window into multiple groups, based

on the closeness of their normalized load requirements (γj). We offer the following intuitive inter-

pretation. Consider two participants j′ and j′′ and assume qUj′ = 2qUj′′ and Qj′ = 2Qj′′ , meaning

participant j′ has twice the charging speed limit and requests twice the load requested by partic-

ipant j′′. In this example, we may assume participant j′ consists of two sub-participants who are

similar to j′′, and hence, we can reasonably call participants j′ and j′′ “similar” and assign them

to the same group.

To simplify our presentation, we define a combined index as κ≜ (s, g, t, ℓ); that is, each κ refers

to a specific combination of scenario s, service region g, arrival time t, and charging window

ℓ. Moreover, with some abuse of notation, we denote the s, g, t, and ℓ that correspond to κ as

s(κ), g(κ), t(κ), and ℓ(κ). With some abuse of notation, let Jκ denote the set of participants in

service region g(κ) who plug in their EVs at the beginning of period t(κ) and require a load amount

to be supplied during the next ℓ(κ) periods, under scenario s(κ).

We partition Jκ into groups based on the closeness of their γ-values. We introduce a parameter

ϵ > 0 that controls the closeness in the γ-values of the participants who fall into the same group. In

other words, we create groups such that the difference between the γ-values of the participants in

the same group is at most ϵ. The value of ϵ controls a trade-off between the number of groups (size of

the approximation model) and the approximation quality. Our detailed procedure for constructing

these groups is given below. For each nonempty Jκ, we perform the following three steps.

1. Determine the smallest γ-value, that is, γL ≜ minj∈Jκ γj. Create a group consisting of all

participants whose γ-values belong to the closed interval [γL, γL+ ϵ]. Denote this group using index

m, and let Mm be the set of all participants who belong to this group.

2. Define γU ≜maxj∈Mm γj. For participant j ∈Mm, consider a synthetic load requirement Q̂j ≜

γUq
U
j (instead of her actual load requirement Qj). Note we increase the required load by each

participant j by at most ϵqUj . We assume ϵ is sufficiently small that the model remains feasible after

such increases. Last, we consider group m a “super-participant” with a load requirement of Q̂m =∑
j∈Mm

Q̂j and a charging speed of qUm =
∑

j∈Mm
qUj . In simple terms, a group’s load requirement

and charging speed are equal to sums of those of its members.

3. Let Jκ ≜ Jκ\Mm, and repeat steps 1-3 until Jκ becomes empty.

After forming groups, instead of individual participants, we have groups that act as super-

participants. Each group has a synthetic load requirement and a synthetic charging speed limit.

We construct ALM using these groups; in other words, ALM is similar to LM except that instead

of individual participants, its inputs are the groups.
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Size of ALM. We partition each Jκ into at most 1
ϵ
T groups, because γ-values are between 0

and T . In each scenario, the number of Jκ’s is at most GT 2; hence, in each scenario, we create at

most 1
ϵ
GT 3 groups. Recall the size of LM is O(STJ). Using 1

ϵ
GT 3 groups instead of J participants,

the size of ALM is O( 1
ϵ
SGT 4). Note the size of this approximation model is not affected by the

number of participants J ; that is, regardless of the number of participants, the size of ALM remains

practically reasonable.

Disaggregation. So far, we have described our procedure for creating ALM. We solve this

model on a rolling basis, and each time, we implement the decisions corresponding to the first

period. Let qs,m,1 denote the amount of load to be supplied to group m in period 1, based on

the solution of ALM. Recall that because of constraint (5), the values of qs,m,1’s are equal across

different scenarios. ALM supplies a cumulative amount qs,m,1 to group m, but it does not specify

how to dispense this cumulative load to the members of this group. We allocate such cumulative

loads to the individual participants as follows. For each participant j in group m, we supply the

following load amount in the first period:

qs,j,1 ≜min

{
Qj,

Q̂j

Q̂m

qs,m,1

}
.

In simple terms, we allocate the group’s total load to its members proportional to their synthetic

load requirements. We are also careful not to supply more than a participant’s actual load require-

ment; that is, if the proportional allocation is more than her requirement Qj, we supply Qj.

Analysis of AD procedure. To show the effectiveness and appropriateness of our AD proce-

dure, we need to investigate two properties. First, we need to show AD always creates a feasible

solution — for example, it does not under-supply early in a participant’s charging window, result-

ing in an unsatisfiable remaining load closer to the end of her charging window. Second, we need

to theoretically and numerically investigate its solution quality. We study these properties below.

Theorem 1. (a) (Feasibility of AD). Our AD procedure creates a feasible solution for LM.

(b) (Aggregation Error). If hi ≥ λU, for all i, the absolute error of our AD procedure is at

most Ψ(Jϵq⋄).

All proofs are available in Online Appendix C. Part (a) establishes that AD always produces a

feasible solution for LM. The proof of part (a) entails showing the disaggregated supply quantities

(qs,j,1’s) satisfy the constraints of LM. Part (b) relates the error of AD to the value of ϵ and J .

Intuitively, because we increase each participant’s load by at most ϵq⋄, the total EV load is increased

by at most Jϵq⋄ over the season, which creates an error of at most Ψ(Jϵq⋄). The assumption

hi ≥ λU, for all i, is made to simplify our proof; under this assumption, with small changes in the

supply quantities, the solution of LM remains feasible. Importantly, part (b) outlines the trade-off,
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controlled by the value of ϵ, between the solution quality of AD and the computational performance

in solving ALM. One could reduce the error by selecting ϵ small; however, this advantage comes at

the price of increasing the size of the approximation model ALM, recalling the number of variables

and constraints of ALM are both in the order of O( 1
ϵ
SGT 4). Our numerical study demonstrates AD

produces near-optimal solutions. Also note our aggregation is different than the existing clustering

approaches (see, e.g., Mettu and Plaxton 2004, Feldman et al. 2007), in which the number of clusters

is fixed and a partition of some given points into clusters must be found, without controlling the

maximum distance within each cluster. By contrast, we impose the maximum distance of ϵ within

each cluster and let the algorithm decide the number of clusters. The advantage of our aggregation

is that it allows us to track the total changes in the requested loads and bound the error in Theorem

1(b).

4.2. Truncation: Truncating the Long Horizon

We propose truncating the long horizon to T̆ periods, where T̆ ≤ T . Intuitively, we consider a

truncated horizon (TH) that consists of periods {1, . . . , T̆}, and discard all periods succeeding T̆ .

Truncation affects an AMH participant if her charging window exceeds TH. For example, assume

participant j arrives t′ hours before TH ends, and her charging window is t′ + t′′ hours; that is,

her charging window consist of t′ hours inside TH and t′′ hours outside of TH. In our truncation,

we accommodate this participant by assuming she arrives t′ hours before TH ends and requests a(
t′

t′+t′′

)
-fraction of her actual load requirement to be supplied in the next t′ hours. For example, if

a participant plugs in her EV at the beginning of hour T̆ − 1 and requires 20 KWh to be supplied

in the next eight hours, we assume this participant requires 5 KWh to be supplied in the next

two periods {T̆ − 1, T̆}. Because we solve our problem on a rolling basis and T̆ is reasonably large,

the impact of these manipulations in the latter part of TH is negligible, which our theoretical and

numerical analyses verify. Truncation creates an approximate problem, denoted by TLM(T̆ ). We

assume TLM(T̆ ) is feasible for all T̆ ∈ {1, . . . , T}.

Analysis of truncation. Truncation affects the solution in the following two ways: (i) restricting

the solution, recalling it enforces the supply of a
(

t′

t′+t′′

)
-fraction of a participant’s load within

the truncated horizon; and (ii) discarding forecast information, because TLM(T̆ ) does not consider

beyond T̆ periods. Therefore, truncation may introduce an error. Inconsistent with intuition, we

show the error does not necessarily reduce as T̆ increases, if the forecast is highly inaccurate.

Because the forecast of the near future (e.g., the next 24 hours) is highly accurate in the context

of this paper, we believe the solution quality should improve in T̆ in a practical setting, which our

numerical experiments confirm. In other words, we believe that in a practical setting, truncating

the horizon to T̆ = 1 produces the worst solution. Interestingly, if T̆ = 1, we show the utility
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uniformly supplies each participant’s requirement over her charging window. In a special case, we

show truncation increases the utility’s energy cost by at most 86.6%. Our numerical experiments

show T̆ ≥ 15 produces near-optimal solutions. The following theorem summarizes our theoretical

analyses of truncation.

Theorem 2. (a) (Uniform Supply). TLM(1) uniformly supplies an AMH participant’s load Qj

over her charging window ℓj; that is, she receives
Qj

ℓj
in each period t∈ {aj, . . . , aj + ℓj − 1}.

(b) (Violation of Monotonicity in T̆ ). The utility’s total energy cost may increase in T̆ .

(c) (Relaxation of the Feasible Set). Let TLM(T̆ ) and TLM(T̆ ′), for some T̆ ′ ≥ T̆ ≥ 1, be

constructed at the same period. If hi ≥ λU, for all i, an optimal solution to TLM(T̆ ) is a feasible

solution to TLM(T̆ ′).

(d) (Truncation Error). If ft(y) = cy3, for all t and y ≥ 0, and for some c > 0, S = G = 1,

and only one EV driver exists who participates in AMH and has one charging event with ℓj = 2,

truncating the horizon to T̆ = 1 increases the utility’s energy cost by at most 86.6%. This worst-case

error bound is tight.

In part (a), by setting T̆ = 1, the utility supplies each participant’s load uniformly over her

charging window. This solution is nice and consistent with the main purpose of AMH programs,

which is to distribute the EV loads across the participants’ charging windows; however, it is done

myopically and without requiring any optimization. If T̆ ≥ 2, this restriction is relaxed in the

following two ways. First, TLM(T̆ ) freely assigns the load to any periods within TH. For example,

it may assign no supply to a participant in the first period, implying the supply decision to this

participant is postponed until the next period. Second, if T̆ ≥ 2, in the solution of TLM(T̆ ),

we discard the supply decisions beyond the current period. In essence, we reevaluate our supply

decisions on an hourly basis. TLM(1) does not have this advantage. Part (b) investigates whether

the utility benefits from increasing T̆ . Using larger T̆ implies discarding less information, and

hence, one would expect the utility’s energy cost to be non-increasing in T̆ . Interestingly, and

inconsistent with intuition, we show in part (b) that if the forecast has low accuracy beyond, say,

T̆ ′ periods, increasing T̆ beyond T̆ ′ may worsen the solution. By contrast, part (c) supports the

monotonicity in T̆ . Part (c) implies larger T̆ provides more flexibility to achieve better solutions.

In short, parts (b) and (c) respectively refute and support monotonicity in T̆ . In a real-world

setting, because the forecast of the near future is highly accurate, instances such as that in part

(b) are less likely to happen. Motivated by these arguments, in part (d), we conduct our worst-case

analysis of truncation for the case of T̆ = 1. In this special case, we show truncation can increase

the utility’s energy cost by at most 86.6%. Other assumptions of part (d) are mild and reasonable.

Our numerical experiments show truncation with T̆ ≥ 15 produces near-optimal solutions.
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An optimal special case for truncation. We provide a theoretical justification of why trun-

cation is likely to produce near-optimal solutions in the context of this paper. We create a special

case by imposing some assumptions that are motivated by our observations from practice. We show

a reasonably small T ∗ exists such that truncating the horizon to T̆ ≥ T ∗ periods is optimal.

Theorem 3 (Truncation Optimality). Assume |Tφ,d|= 1, for all φ, d, ft(y) = ft′(y) for all t

and t′, ft(y) is strictly convex over y ≥ 0, and the horizon {1, . . . , T} consists of non-overlapping

intervals in the form of {ṫ, . . . , ẗ} that contain AMH participants’ charging windows, and satisfy

ẗ− ṫ+ 1 ≤ TNOI, for some TNOI ∈ {1,2, . . .}. If
∑

g∈i′ (λs,g,t −λs,g,t+1) ≥ (J + 2)q⋄, for all s, i′ ∈
{i}∪ {1, . . . ,G}, and t∈ {ṫ, . . . , ẗ− 1}, truncating the horizon to T̆ ≥ T ∗ is optimal, where

T ∗ ≜min

{
TNOI,max

j

{
⌈γj⌉,

⌈
⌈γj⌉+1

⌈γj⌉+1− γj

⌉}}
.

The assumption that the horizon consists of the non-overlapping intervals is motivated by the

observation that most drivers arrive home in the evening, plug in their EVs, and leave for work

the next morning. In other words, most charging windows are between afternoon and the morning

of the next day. Thus, the horizon seems to consist of non-overlapping intervals, which contain

charging windows. Furthermore, we find consumption usually sharply reduces during the time

interval between evening and the next pre-morning (i.e., before people wake up). This pattern is

common both in summer and winter. Motivated by this observation, we assume a sharp reduction

in consumption over the non-overlapping intervals. These two assumptions enable us to characterize

T ∗. In the definition of T ∗, the first term TNOI is a consequence of the non-overlapping intervals.

Because the intervals do not overlap, we show in the proof that only the current interval is relevant;

hence, one needs to consider at most TNOI periods. The second term in the definition of T ∗ is due

to imposing the assumption of sharp reduction in consumption. In the proof, we note that under

this assumption, supplying each participant’s load requirement in the latest hours of her charging

window is optimal. Therefore, we determine the smallest horizon for which the load supply is not

assigned to the first period unless the first period is sufficiently close to the end of her charging

window. This analysis leads to the second term in the definition of T ∗. For example, if TNOI = 24

and γj ≤ 4, for all j, then T ∗ ≤ 5, meaning the horizon could be truncated to five hours with no

loss in optimality. In short, Theorem 3’s assumptions are motivated by practical cases and the

proposed T ∗ is reasonably small. In our numerical experiments, the assumptions of Theorem 3 do

not hold; however, we find T̆ ≥ 15 produces near-optimal solutions.

4.3. Linearization: Linearizing the Objective Function

We partition the domain of ft(·), which is the total hourly load, into intervals of length δ. The zth

interval is ((z − 1)δ, zδ], for z ∈ {1,2, . . .}. Interval 0 is a singleton consisting of 0. For each ys,t,
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we define an integer variable yint
s,t that indicates the interval to which ys,t belongs. For example, if

yint
s,t = 1, then ys,t belongs to the first interval; that is, ys,t ∈ (0, δ]; if yint

s,t = 2, then ys,t ∈ (δ,2δ]; and

so forth. To compute the objective value of a solution, we round up each ys,t to the largest value in

the corresponding interval; that is, we approximate ft(ys,t) by ft(δy
int
s,t ). Because we increase ys,t’s,

our approximation provides an upper bound on the optimal value of LM. The following theorem

outlines our linearization and bounds its error.

Theorem 4. (a) (Linearization). Let δ > 0 be a given scalar, define Z ≜
⌈
1
δ
λU +1

⌉
, and let

σt,z ≜ ft(zδ) − 2ft((z − 1)δ) + ft((z − 2)δ), for all t ∈ {1, . . . , T} and z ∈ {1, . . . ,Z}. An optimal

solution of the following MILP problem (LLM) is a feasible solution to LM, and an optimal value

of LLM is an upper bound on the optimal value of LM:

(LLM) : min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,zεs,t,z (13)

s.t. 0≤ εs,t,z −
(
yint
s,t − z+1

)
≤Z (1− υs,t,z) , ∀s, t, z, (14)

0≤ εs,t,z ≤Zυs,t,z, υs,t,z ∈ {0,1}, ∀s, t, z, (15)

ys,t ≤ δyint
s,t ≤ ys,t + δ, yint

s,t ∈Z+, ∀s, t, (16)

and constraints (3)-(12).

(b) (Linearization Error). The error of linearization is at most TΘ(δ).

In Theorem 4(a), we introduce σt,z, which enables us to evaluate the value of ft(·) on 0, δ, 2δ,

and so forth. Then, we are able to formulate a mixed-integer program, referred to as LLM, by

introducing new variables yint
s,t , υs,t,z, and εs,t,z, as well as new constraints (14)-(16). Because the

total hourly loads ys,t are increased, the optimal value of LLM is a bound for LM. This feature is

used in part (b) to obtain an upper bound on the error of linearization. Intuitively, as we increase

the load in each period by at most δ, we introduce at most Θ(δ) error in each period; hence, the

total error is at most TΘ(δ). Observe the error increases in δ and T , as one would expect.

Our linearization is similar to the classical approach of approximating a nonlinear function with

a piecewise linear function (see, e.g., Bertsimas and Tsitsiklis 1997), which partitions the domain

into subsets and assumes the function is linear over each subset. We too partition the domain

into intervals of length δ. However, we assume the function is constant over each interval; that is,

we are not sensitive within δ of the hourly load. This assumption enables us to model our linear

approximation by introducing ST integer variables and STZ binary variables to determine the

index of the interval for the total hourly load. We also introduce STZ continuous variables and

4STZ+2ST constraints. Obviously, we obtain a better approximation by decreasing δ. However, as

δ decreases, the number of variables and constraints grow, because Z =
⌈
1
δ
λU +1

⌉
. In our numerical
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experiments in Online Appendix F, we change the value of δ from 0.01% to 10% of the maximum

load, and LLM is solved quickly in all cases. We find the error is small if δ≤ 1%.

In short, we formulated an approximation model LLM, which is an MILP. MILPs are known to

be difficult to solve; however, as we previously stated, our numerical experiments indicate LLM

is quickly solvable using commercial solvers, such as Cplex. This observation motivated us to

further investigate the properties of LLM. In the following theorem, we show LLM has a desirable

formulation, because its linear-programming relaxation error is conveniently small.

Theorem 5 (Worst-Case Error of LP Relaxation). If |Tφ,d|= 1, for all φ, d, the error of the

linear programming relaxation of LLM is at most

T∑
t=1

Z∑
z=1

{
[σt,z]

+ +
1

2
[−σt,z]

+

(
Z − 1

δ
λL + z− 2

)}
.

The above error bound includes a term for each combination of t and z, which is defined depend-

ing on the sign of σt,z. An interesting special case happens when the hourly cost functions are

convex, implying σt,z ≥ 0 for all t and z, in which case, the error bound becomes

T∑
t=1

Z∑
z=1

σt,z =

T∑
t=1

ft(δZ)− ft(δ(Z − 1)),

which is similar to the error of linearization TΘ(δ). We conclude our approximation LLM is an

effective model for finding near-optimal solutions to large instances of our problem in a reasonable

amount of time. In the remainder, we present our numerical study.

5. Numerical Experiments

We present our numerical analysis of PD and managerial insights in §5.1 and §5.2, respectively.

Robustness and generalizations are discussed in Online Appendix E. The details of our numerical

study on LM are provided in Online Appendix F, with an overview of key findings summarized as

follows: (i) aggregation error increases in ϵ and in the AMH participation level, (ii) truncation error

significantly reduces when we increase T̆ from 2 hours to 14 hours, and the error is negligible beyond

14 hours, (iii) linearization error is small when δ ≤1%, (iv) the CPU time of our approximation

model is small for large instances, and (v) ϵ = 0.5, T̆ = 15, and δ =1% are appropriate choices,

leading to fast computation times and near-optimal solutions.

5.1. Numerical Analyses of PD

We conduct a numerical study using CAISO data to demonstrate the application of PD.

Daily Consumption Profiles. We let the season consist of July-August 2022. Then, D = 62.

We construct a representative daily-consumption profile based on CAISO system demand in July-

August 2022 and assume this daily profile repeats every day in the season. For this purpose, we
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Figure 1 A simplified daily consumption and cost function using CAISO data (July-August 2022)

compute the average daily consumption during July-August 2022, which is plotted using a dotted

line in Figure 1(a). We let a day consist of eight three-hour intervals: [0 a.m., 3 a.m.), [3 a.m., 6

a.m.), and so forth. During each interval, we let the consumption be constant and equal to the

average demand during the interval. This procedure creates our simplified daily profile, which is

shown using a solid line in Figure 1(a). We assume this profile occurs every day in the season.

Cost Function. We downloaded the CAISO real-time prices for the period of July-August 2022

from www.energyonline.com and computed hourly costs, which are shown in Figure 1(b). Each

data point represents the total hourly cost of supplying electricity during some hour in July-August

2022. We have 62×24=1,488 data points. We fitted a cost curve in the form of f(y) = cy3 and

obtained f(y) = 7.73× 10−8y3 $/MWh.

Charging Behavior of the EV Drivers. For simplicity, we assume only one driver type exists.

All EV drivers arrive home at 6 p.m. and leave at 6 a.m. the next morning; that is, each EV driver

has a 12-hour charging window starting at 6 p.m. Each driver has a charging speed limit of 3.7 KW

and a normalized load requirement of three hours each day. An NMH driver charges her EV at full

charging speed during the interval [6 p.m., 9 p.m.), which coincides with the existing evening peak.

The utility needs to shift this EV consumption to off-peak times through offering its AMH and

PMH programs. An AMH driver allows the utility to decide her charging time during her 12-hour

charging window. In PMH, the utility decides the timing of the low-rate episode, and each PMH

driver starts charging her EV at her full charging speed as soon as the low-rate episode starts.

For simplicity, we assume the utility always starts the low-rate episode at midnight. We discuss

customizing the low-rate episode in §5.2.

EV Drivers’ Expected Costs. A driver’s total load requirement during the season is Q =

62× 11.1 = 688.2 KWh. Let the electricity rate during the season be µ̄ = 26 ¢/KWh. An NMH

driver’s total expected cost is ENMH = 688.2× 0.26 =$178.93. Similarly, the total expected cost for

an AMH driver and a PMH driver are EAMH = $178.93− β and EPMH = 688.2µL, respectively. For

illustration, let the AMH bonus and PMH low rate be β =$50 and µL=20 ¢/KWh (we endogenize

these variables shortly). Thus, EAMH =$128.93 and EPMH =$137.64.

http://www.energyonline.com/Data/GenericData.aspx?DataId=18&CAISO___Actual_Load
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Figure 2 Attractiveness and choice probabilities

Attractiveness. Recall the utility estimates ρ̂π and ρπ, for each option π, offline. We normalize

ρ̂NMH to 1 (see Figure 2(a)); that is, the attractiveness of NMH would be 1 if we assume its cost

is zero. The attractiveness of AMH and PMH when their costs are zero may be smaller or larger

than ρ̂NMH; hence, we let ρ̂AMH, ρ̂PMH ∈ [0,∞). Let Ā ∈ [0,1] denote the attractiveness of NMH

when its cost is ENMH =$178.93; that is, Ā could be interpreted as the attractiveness-reduction

coefficient when the cost increases from $0 to $178.93. We let the attractiveness of AMH and PMH

reduce using the same coefficient to Āρ̂AMH and Āρ̂PMH when their cost is $178.93. In this example,

quantities Ā, ρ̂AMH, and ρ̂PMH are sufficient to fully characterize the attractiveness functions. Here,

Ā indicates the drivers’ cost sensitivity, and ρ̂AMH and ρ̂PMH indicate the drivers’ interest in AMH

and PMH, compared with NMH, ignoring the costs. For illustration, we let Ā= 0.1, ρ̂AMH = 0.25,

and ρ̂PMH = 0.75. The attractiveness functions are plotted in Figure 2(a). Using the expected costs

EAMH =$128.93 and EPMH =$137.64, we obtain the attractiveness of AMH and PMH as AAMH =

0.09 and APMH = 0.23. Also, ANMH = Ā= 0.1. These attractiveness values are shown in Figure 2(a)

using filled circles.

Choice Probabilities. In Figure 2(b), we plot the choice probabilities for different charging

options, when the low rate µL changes, keeping AMH bonus β fixed at $50. Similarly, in Figure

2(c), we plot the choice probabilities when the AMH bonus β changes, while the PMH low rate is

kept fixed at 20 ¢/KWh. Using the current attractiveness values, we compute the current choice

probabilities as PNMH = 0.24, PAMH = 0.21, and PPMH = 0.55. Observe a driver is highly likely to

choose PMH with probability 0.55, whereas AMH is less attractive and is selected with probability

0.21. These choice probabilities are shown in Figure 2(b)-(c) using filled circles.

Expected Participation. We expect Kπ = PπK drivers to sign up for program π, where K

denotes the total number of EV drivers. For illustration, let K be 10 million. Thus, we expect

2.4 million, 2.1 million, and 5.5 million participants in NMH, AMH, and PMH, respectively. The

expected consumption of the participants of each program is shown in Figure 3(a). The cumulative

demand is plotted in Figure 3(b). The charging times of the NMH and PMH drivers are respectively
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Figure 3 Expected EV consumption and the cumulative electricity demand
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Figure 4 Minimizing cost and the variability in consumption

[6 p.m., 9 p.m.) and [0 a.m., 3 a.m.). The utility assigns the charging times of the AMH drivers

to the low-consumption intervals, taking into account the existing load and the EV load by NMH

and PMH drivers. Observe the utility assigns the majority of the AMH drivers to [3 a.m., 6 a.m.),

and the remaining to [9 p.m., 0 a.m.).

Cost Minimization. We compute the cost of the above solution (Figure 3) and compare it

with the cost if only NMH is available. Our computations indicate this solution has a 30.07% lower

cost. Recall, for illustration, we let the AMH bonus and PMH low rate be β =$50 and µL=20

¢/KWh. One could repeat the above steps for all practical values of β and µL to identify an optimal

combination. The heatmap in Figure 4(a) shows this step. Using this heatmap, the best solution

is β =$50 and µL=25 ¢/KWh. If we use this optimal solution, the expected cost of an AMH

driver and a PMH driver are respectively $128.93 and $172.05. Recalling the choice probabilities,

the utility needs to provide a significantly higher incentive to the AMH participants, because we

assume (ignoring costs) PMH is three times more attractive than AMH. If we assume AMH is

more attractive and set, for example, ρ̂AMH = 0.75 and ρ̂PMH = 0.25, the optimal solution would be

β =$20 and µL=22 ¢/KWh, with an optimal cost saving of 33.54%. One could similarly obtain an

optimal solution for any set of inputs.

The cost reductions shown in Figure 4(a) result from (i) the availability of AMH and PMH and
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Figure 5 Trade-off between cost and demand variability

(ii) optimizing AMH. In Figure 4(b), the impact of optimizing AMH is demonstrated by comparing

solutions to a heuristic implementation of AMH. In line with the primary objectives of AMH pro-

grams, an intuitive practical heuristic is to evenly distribute EV loads across participants’ charging

windows. This heuristic is applied myopically, without optimization. Notably, this practical heuris-

tic is theoretically related to our optimization methodology, as detailed in Theorem 2(a). The value

added by optimizing AMH beyond this practical heuristic is depicted in Figure 4(b). For instance,

with β =$50 and µL=25 ¢/KWh, optimizing AMH contributes 4.74% to the total cost reduction

(32.40%), with the remainder attributed to the availability of AMH and PMH.

5.2. Managerial Insights

We investigate the trade-off between cost and demand variability, evaluate customizing the low-rate

episode in PMH, and study the impact of charging frequency on utilities’ total cost and demand

variability. Online Appendix D presents insights on the amount and timing of the improvements

achievable in cost and demand variability by MH programs.

Trade-off Between Cost and Coefficient of Variation (CV). Besides minimizing cost,

utilities are concerned with reducing the variability of demand. In Figure 4(c) and (d), we compute

the reduction in the CV of expected demand and the contribution of optimizing AMH, respectively.

Using the cost-minimizing solution (β =$50 and µL=25 ¢/KWh), CV reduces 57% compared with

the case in which only NMH is available. Optimzing AMH contributes 18.95% of the CV reduction

beyond the practical heuristic. Observe the cost-minimizing solution does not minimize CV. An

explanation is as follows. Minimizing cost incorporates the bonus paid to the participants, whereas

minimizing CV solely concentrates on the final consumption curve. Thus, a trade-off exists between

cost and demand variability. If the utility is interested in simultaneously minimizing cost and

demand variability, one could compute the efficient frontier as follows. Recall from Figure 4(a) that

the cost-minimizing solution is β =$50 and µL=25 ¢/KWh, which results in a 57% reduction in

CV. Assume the utility is not convinced the demand variability is reasonably low and requires a
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Figure 6 Effects of customizing PMH

solution that achieves at least a 60% or higher reduction in CV. Imposing this additional constraint

eliminates some combinations of β and µL. The combinations that are still feasible are shown in

Figure 5(a). Among the feasible combinations, the best combination is β =$70 and µL=24 ¢/KWh,

which leads to a 32.11% reduction in cost and a 60% reduction in CV. Note that if the utility

decides to use this solution, it slightly increases the cost to achieve a smaller variability in demand.

We repeat the above procedure for different limits on the CV reduction and create a trade-off

curve, shown in Figure 5(c). The corresponding efficient solutions are shown in Figure 5(b).

Figure 5(c) provides detailed insights on the significance of the trade-off between cost and CV.

For example, compared with the cost-minimizing solution (the upper-left solution in Figure 5(c)),

the utility could achieve an additional 9.8% reduction in CV if it is willing to sacrifice 5.4% of the

cost saving. This result is similar to findings in supply-chain management where slight flexibility in

cost can significantly mitigate risks. For example, in the newsvendor problem, the optimal solution

balances a trade-off between understocking and overstocking (see, e.g., Porteus 1990, Petruzzi and

Dada 1999). Overstocking results in increased ordering and inventory holding costs but decreases

the likelihood of shortages. Similarly, in Figure 5(c), the 9.8% reduction in CV could account

for significant increases in grid reliability. In short, our methodology can effectively be used as a

decision support tool to identify an appropriate trade-off between cost and demand variability.

Customizing PMH. To demonstrate the benefits that could be achieved by customizing the

timing of the low-rate episode in PMH, we assume the utility assigns a starting time of 0 a.m. to

half of its PMH participants and a starting time of 3 a.m. to the remaining half. Figure 6 shows the

additional improvements in cost and demand variability for different numbers of EVs (β =$50 and

µL=20 ¢/KWh). Observe that in this instance, customization is always beneficial, and its benefits

increase as the number of EVs grows. Thus, because the number of EVs will significantly increase

in the next decades, utilities need to customize PMH.

Charging Frequency. So far, we have assumed each driver charges her EV every night. Some

EV drivers may skip some nights, due to various work-/life-related circumstances and to improve

the lifespan of their batteries, whereas others may prefer charging every night to ensure they do
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Figure 7 Effects of charging frequency

not run out of power. A household with two EVs may find it economical to alternate the use of

a single charger to charge each EV every other night. Utilities may benefit if AMH participants

charge more frequently, because of the increased flexibility to manage their EV loads. Thus, we

investigate whether utilities would benefit from all EV drivers charging more frequently. We con-

sider a simple stationary model as follows. We assume if a driver skips a night, she will charge

her EV (with a normalized load requirement of six hours) the following night with probability 1;

that is, P (“charge tonight”|“skipped last night”) = 1. Also, given that a driver charged her EV last

night, she charges tonight with probability p̂; that is, p̂≜ P (“charge tonight”|“charged last night”).

We assume an i.i.d. skipping distribution across the drivers. With some algebra, one could show

p̄ ≜ P (“skip tonight”) = 1−p̂
2−p̂

; for example, if p̂ = 0.75, then p̄ = 0.2, meaning, on any night, 20%

of the drivers skip charging. With some algebra, one could show the skipping probability satisfies

p̄ ∈ [0,0.5]. Figure 7(a)-(b) shows how the skipping probability affects the total cost and demand

variability. Inconsistent with intuition, we observe a higher skipping probability is more benefi-

cial. An explanation is as follows. An NMH or a PMH driver who skips tonight has a normalized

load requirement of six hours tomorrow, and hence, she naturally shifts half of her charging to

off-peak times. Thus, the utility will be worse off if it promotes a culture of charging EVs every

night. We further investigate the effects of driver type on this insight. The driver type influences

the participation levels in MH programs through the attractiveness functions. Thus, we plot two

heatmaps in Figure 7(c)-(d), considering different attractiveness parameters. According to this fig-

ure, a higher skipping probability becomes more advantageous as AMH becomes less attractive

and PMH becomes more attractive. We conclude promoting a culture of charging EVs every night

may significantly increase utilities’ total cost if NMH and/or PMH have high participation levels.

In short, in this section, we presented our numerical analysis of PD and managerial insights.

Robustness and generalizations are discussed in Online Appendix E.

6. Concluding Remarks

We present mathematical models and solution approaches to jointly design and execute MH pro-

grams. A summary of our main results and insights is provided in §1.1. We offer the following
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directions for future research.

• Because MH programs are still in the design and pilot stages, real data depicting the behavior

of EV drivers under large-scale implementations are currently unavailable. Therefore, our numerical

study of LM relies on a limited number of simulated scenarios. Further analysis of the scenarios

using real data, once such datasets become available, is an important avenue for future research.

• We scaled down the number of EV drivers in our numerical study of LM to ensure manageable

experimentation times. In real-world implementations, more computational resources will be nec-

essary for processing inputs and outputs. Subsequent research endeavors could explore innovative

techniques to optimize the data-processing steps.

• Last, in Online Appendix G, we extend our methodology to cases where (i) drivers’ requested

loads are uncertain and (ii) grid capacity is uncertain. We offer further analyses on these exten-

sions and study other decisions utilities face alongside EVs, such as capacity investment decisions

(renewable vs. conventional), as directions for future research.
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Utilities’ Managed Home Charging Programs
for Electric Vehicles

(Online Appendix)

Appendix A: An illustrative example of PD

Assume a utility is planning to execute its MH programs in July-August. Assume it has set I◦ = 600 hours

and L= 6 hours, and it has identified that the worthwhile starting times (in terms of shifting the EV load)

are 9 p.m., 10 p.m., 11 p.m., and 12 a.m. on each day (i.e., Td is the same for different d). Table 1 is an

example of the input data that we need to construct and solve PD. We assume 10 EV drivers exist. The

last four columns of Table 1 need to be collected for all d, and one could consider day types rather than

individual days, for example, weekdays and weekends. Table 2 shows three driver types that we have formed

by partitioning the 10 drivers. The members of each type are homogeneous. Observe types 1 and 2 have

lower flexibility than the threshold (I◦ = 600 hours), and hence, they are not qualified for AMH. By contrast,

type-3 drivers have high flexibility, meaning they qualify for AMH, but because none of the potential starting

times are compatible with their driving routines, they are not qualified for PMH. In short, the utility offers

PMH and NMH to types 1 and 2, and it offers AMH and NMH to type 3.

Let the common electricity rate be µ̄ = 26 ¢/KWh. In Table 3, assuming µL = 20 ¢/KWh and β =$50,
we compute the choice probabilities and the corresponding offer sets. For example, the type-1 drivers select

PMH and NMH with probabilities 0.43 and 0.57, respectively.

One could compute H(β,µL) using the choice probabilities. To estimate F(β,µL), one could simulate

several participation scenarios, denoted by index sP, using the choice probabilities; in each participation

scenario sP, each customer belongs to a program AMH, PMH, or NMH. For each sP, one could use LM

to estimate F(β,µL|sP). Last, the expected energy cost of the solution (µL = 20 ¢/KWh and β =$50) is

F(β,µL) = EsP [F(β,µL|sP)]. By repeating the above steps for all practical values of µL and β, the utility

finds an optimal solution for PD.

Table 1 Input data of EV drivers
Qj Ij ρ̂π

j ρπ
j Does τ ∈ Td work?

j (KWh) (hours) AMH PMH NMH AMH PMH NMH 9pm 10pm 11pm 12am

1 600 500 0.25 0.75 1 0.001 0.001 0.001 No Yes Yes Yes
2 600 500 0.25 0.75 1 0.001 0.001 0.001 No Yes Yes Yes
3 600 500 0.25 0.75 1 0.001 0.001 0.001 No Yes Yes Yes
4 400 500 0.75 0.25 1 0.001 0.001 0.001 Yes Yes Yes Yes
5 400 500 0.75 0.25 1 0.001 0.001 0.001 Yes Yes Yes Yes
6 400 500 0.75 0.25 1 0.001 0.001 0.001 Yes Yes Yes Yes
7 400 500 0.75 0.25 1 0.001 0.001 0.001 Yes Yes Yes Yes
8 400 700 0.75 0.25 1 0.001 0.001 0.001 No No No No
9 400 700 0.75 0.25 1 0.001 0.001 0.001 No No No No
10 400 700 0.75 0.25 1 0.001 0.001 0.001 No No No No

Table 2 Forming driver types
Qφ Iφ ρ̂π

φ ρπ
φ

φ Kφ members (KWh) (hours) AMH PMH NMH AMH PMH NMH Tφ,d

1 3 1,2,3 600 500 0.25 0.75 1 0.001 0.001 0.001 {10pm, 11pm, 12am}
2 4 4,5,6,7 400 500 0.75 0.25 1 0.001 0.001 0.001 {9pm, 10pm, 11pm, 12am}
3 3 8,9,10 400 700 0.75 0.25 1 0.001 0.001 0.001 {}

Table 3 Choice probabilities and offer sets if µL = 20 ¢/KWh and β =$50
Eπ
φ ($) Aπ

φ Pπ
φ

φ AMH PMH NMH AMH PMH NMH AMH PMH NMH menu

1 — 120 156 — 0.63 0.84 — 0.43 0.57 Π1 ={PMH,NMH}, T1,d ={10pm, 11pm, 12am}
2 — 80 104 — 0.17 0.90 — 0.16 0.84 Π2 ={PMH,NMH}, T2,d={9pm, 10pm, 11pm, 12am}
3 54 — 104 0.70 — 0.90 0.44 — 0.56 Π3 ={AMH,NMH}
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Appendix B: An illustrative example for scenarios

The existing data could be used to form scenarios, as we explain through the following toy example. Assume

the first three days of the season are Tuesday, Wednesday, and Thursday. Assume the current time is 10 a.m.

on Thursday (the third day). Assume we are using a truncated horizon of 24 hours, meaning LM’s horizon

has 24 periods, starting at 10 a.m. on Thursday and ending at 9 a.m. on Friday (i.e., the starting and ending

periods are [10 a.m., 11 a.m.) on Thursday and [9 a.m., 10 a.m.) on Friday, respectively). One could use the

two observations from Tuesday and Wednesday as two scenarios to construct LM. Assume AMH has two

participants, referred to as A and B. Assume in the first observation (Tuesday), both participants plugged

in at 6 p.m. and requested 10 KWh to be charged until 5 a.m. (the next morning). Assume in the second

observation (Wednesday), both participants plugged in at 5 p.m. and requested 9 KWh to be charged until

5 a.m. To construct LM at 10 a.m. on Thursday, we use the following two scenarios: (s1) both participants

will plug in at 6 p.m. and request 10 KWh to be charged until 5 a.m. on Friday, and (s2) both participants

will plug in at 5 p.m. and request 9 KWh to be charged until 5 a.m. on Friday. Ignoring weather and other

external factors, both scenarios are equally likely because they are observations from similar workdays; hence,

one could assume each scenario occurs with probability 0.5.

We also explain how the scenarios are updated over time. In the above example, by solving LM at 10

a.m. on Thursday (assuming none of the participants show up until then), no supply is assigned to the first

hour, and hence, no supply is made. We repeat the above steps to construct and solve LM at 11 a.m., 12

p.m., 1 p.m., and so forth. As long as no participant shows up, LM assigns no supply to the first period.

Assume participant A plugs in at 4 p.m. on Thursday and requests 9 KWh to be charged until 5 a.m. on

Friday. Because we have full information about A, we update her information in both scenarios. The updated

scenarios follow: (s′1) participant A plugged in at 4 p.m. and requested 9 KWh to be charged until 5 a.m.

on Friday, and B will plug in at 6 p.m. and request 10 KWh to be charged until 5 a.m. on Friday, and (s′2)

participant A plugged in at 4 p.m. and requested 9 KWh to be charged until 5 a.m. on Friday, and B will

plug in at 5 p.m. and request 9 KWh to be charged until 5 a.m. on Friday.

In short, the above toy example illustrates how the existing data could be used to form scenarios. In a

real application, one could use more sophisticated approaches to form scenarios, which is beyond the scope

of our paper. If the existing data are large, one could cluster them, in which case, the centers of clusters

would be the scenarios and their sizes would be the probabilities of the scenarios. High-dimensional clustering

techniques could be used in such settings (see, e.g., Mettu and Plaxton 2004, Feldman et al. 2007). To use

LM in the program-design phase, if no data exist, one could simulate multiple participation scenarios using

the choice probabilities (as we discuss in Online Appendix A), and for each participation scenario, one could

simulate multiple scenarios based on the driving routines of the EV drivers.

Scenario-based modeling offers multiple advantages. First, it directly uses the existing (clustered) data, as

we explained above. Second, the stochastic model is formulated as a standard (deterministic) optimization

model using scenarios. Last, correlations among the EV drivers are automatically incorporated in the model

through scenarios.

Appendix C: Proofs

Proof of Theorem 1(a). Suppose we repeat our disaggregation procedure for all qs,m,t’s as follows: for

each j ∈Mm, let qs,j,t ≜
Q̂j

Q̂m
qs,m,t. We first analyze the feasibility of these qs,j,t’s and then reduce the values

of some of these variables and investigate the consequences of these reductions. The total load supplied to

group m in period t, under scenario s, is
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∑
j∈Mm

qs,j,t =
∑

j∈Mm

Q̂j

Q̂m

qs,m,t = qs,m,t.

Therefore, our disaggregation does not violate constraints (6)-(12). We skip constraint (3) for now. Our

disaggregation satisfies constraint (4) because

qs,j,t =
Q̂j

Q̂m

qs,m,t ≥ 0,

and

qs,j,t =
Q̂j

Q̂m

qs,m,t ≤
Q̂j

Q̂m

qUm =
γm,Uq

U
j

Q̂m

∑
j′∈Mm

qUj′ =
qUj

Q̂m

∑
j′∈Mm

γm,Uq
U
j′ =

qUj

Q̂m

∑
j′∈Mm

Q̂j′ = qUj ,

where γm,U ≜maxj∈Mm
γj for all m. Also note Q̂j = γm,Uq

U
j for all j ∈Mm.

Constraint (5) is for the arrivals in the first period. We partition such arrivals with equal time windows

into groups. Because arrivals at t= 1 are common in all scenarios, we create groups that are also common

across scenarios. Our disaggregation procedure works identically for the members of these groups, and hence,

constraint (5) is satisfied. Now, let us revisit qs,j,t ≜
Q̂j

Q̂m
qs,m,t and note each participant j may receive more

than her actual requirement. By starting from the latest assignment to this participant, let us reduce the

values of qs,j,t’s until the total load supplied to this participant becomes equal to her actual load. Because

we are reducing the values of some qs,j,t’s, constraints (4)-(12) remain feasible. We perform such reductions

to satisfy constraint (3), and hence, our disaggregation creates a feasible solution.

Proof of Theorem 1(b). Similar to part (a), let our disaggregation procedure consist of two steps.

In the first step, for each s, t, m, and j ∈Mm, we let qs,j,t ≜
Q̂j

Q̂m
qs,m,t. In the second step, we reduce the

values of some qs,j,t’s to ensure we do not supply more than a participant’s actual load requirement. These

two steps create our AD solution with an objective value of vAD.

Because we increase the required loads of some participants when forming groups, after the first step, we

create a solution for a synthetic problem (with increased load requirements), denoted by SLM, in which each

participant requests at least as much as that in LM. Note the solution is optimal for SLM because ALM is

a relaxation of SLM, and the optimal value of ALM is equal to the objective value of the solution for SLM;

hence, vSLM = vALM (note vP denotes the optimal value of problem P).

In the optimal solution of SLM, by decreasing the supply to some participants (the second step), we create

the AD solution, which is feasible for LM and has an objective value of vAD. Thus, vLM ≤ vAD. Moreover,

in the generated AD solution, the total hourly loads (ys,t) are less than or equal to the hourly loads in the

optimal solution of SLM. Recall we assume ft(y) is non-decreasing in y≥ 0 for all t. Therefore, vAD ≤ vSLM.

In short,

vLM ≤ vAD ≤ vSLM = vALM.

Let q◦s,j,t and y◦s,t denote an optimal solution for LM. For each s and j, we have
∑aj+ℓj−1

t=aj
q◦s,j,t = Qj ,

because of constraint (3). We arbitrarily increase the values of some of these q◦s,j,t to q△s,j,t, for t∈ {aj , . . . , aj+
ℓj − 1}, such that the following three conditions hold: (i) q△s,j,t ≤ qUj ; (ii) for each s and j, the total increase

is equal to Q̂j −Qj ; and (iii) q△s,j,1 = q△s′,j,1 for all s ̸= s′ and j ∈ Js ∩ Js′ . Achieving properties (i) and (ii)

is feasible because when we were creating groups, we increased each participant’s load to Q̂j as long as her

synthetic load is satisfiable within her charging window. Moreover, condition (iii) is feasible because the

participants who arrive in the first period exist in all Js’s, and hence, one needs to employ the same increases
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for all such participants. Furthermore, because hi ≥ λU ≜ J̌q⋄ +maxs,t λ
U
s,t, for all i, and J̌q⋄ ≥

∑
j∈Js q

U
j ≥∑

j∈Js q
△
s,j,t, for all s and t, we obtain

hi ≥
∑
j∈Js

q△s,j,t +max
s,t

λU
s,t

≥
∑
j∈Js

q△s,j,t +λU
s,t

=
∑
j∈Js

q△s,j,t +
∑
g

λEXI
s,g,t +λNMH

s,g,t +
∑

φ: PMH∈Πφ

max
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τ


≥
∑
j∈Js

q△s,j,t +
∑
g

λEXI
s,g,t +λNMH

s,g,t +
∑

φ: PMH∈Πφ

∑
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τϑ

△
s,τ,φ,d(t)


=
∑
g

 ∑
j∈Js: gj=g

q△s,j,t +λEXI
s,g,t +λNMH

s,g,t +
∑

φ: PMH∈Πφ

∑
τ∈Tφ,d(t)

λPMH
s,g,t,φ,τϑ

△
s,τ,φ,d(t)


=
∑
g

x△
s,g,t,

for all s, t, and i; hence, the grid constraints remain feasible with the increases in the participants’ require-

ments. Note ϑ△
s,τ,φ,d ≜ ϑ◦

s,τ,φ,d, for all s, φ : PMH∈Πφ, τ ∈ Tφ,d, and d. Also, x△
s,g,t’s are the corresponding

values in the solution that we created for SLM. Now we have
∑aj+ℓj−1

t=aj
q△s,j,t = Q̂j ; that is, constraint (3) is

satisfied for SLM. All other constraints are also satisfied, and hence, q△s,j,t is a feasible solution for SLM. Let

y△s,t denote the corresponding values for ys,t’s in this feasible solution. Observe we have created a feasible

solution for SLM. Let v△ denote the objective value of this feasible solution. We have v△ ≥ vSLM. Thus, in

short,

vLM ≤ vAD ≤ vSLM = vALM ≤ v△.

Therefore, the error is upper bounded as

vAD − vLM ≤ v△ − vLM

=
∑
s

ps
∑
t

(
ft(y

△
s,t)− ft(y

◦
s,t)
)

=
∑
s

ps
∑
t

(
ft(y

◦
s,t + εs,t)− ft(y

◦
s,t)
)
,

where εs,t ≜ y△s,t − y◦s,t ≥ 0 is the increase in y◦s,t in period t, under scenario s. Recalling y◦s,t is optimal for

LM, we have λL
s,t ≤ y◦s,t ≤ λU

s,t+ J̌q⋄, for all s and t, because AMH participants can increase each hourly load

by at most J̌q⋄. Thus,

vAD − vLM ≤
∑
s

ps
∑
t

{
max

λL
s,t≤y≤λU

s,t+J̌q⋄
(ft(y+ εs,t)− ft(y))

}

≤
∑
s

ps
∑
t

max
s,t

[fix εs,t]

{
max

λL
s,t≤y≤λU

s,t+J̌q⋄
(ft(y+ εs,t)− ft(y))

}

=
∑
s

ps
∑
t

Θ(εs,t).

The first maximization in the second line keeps the value of εs,t fixed. In the remainder, we bound the value
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of εs,t. In each scenario, the total increase in the values of q◦s,j,t’s is upper bounded by Jϵq⋄. Thus, the

worst-case error is upper bounded as

vAD − vLM ≤
∑
s

ps

 max∑
t εs,t≤Jϵq⋄

εs,t≥0, ∀t

∑
t

Θ(εs,t)


= max∑

t εt≤Jϵq⋄

εt≥0, ∀t

∑
t

Θ(εt)

= Ψ(Jϵq⋄),

which completes the proof.

Proof of Theorem 2(a). First, receiving Qj/ℓj in a period is within her charging speed limit, because

otherwise, if
Qj

ℓj
> qUj , then

Qj

qU
j
> ℓj , implying γj =

Qj

qU
j
> ℓj , which is a contradiction.

Consider problem TLM(1), which is constructed and solved at the beginning of her arrival time t= aj . We

consider a
(

1
ℓj

)
-fraction of her load to be supplied within the truncated horizon of one period. Observe no

optimization is required, and we supply
Qj

ℓj
to participant j in period t= aj . Also recall we assume TLM(1)

is feasible. At the beginning of the next period t= aj +1, she needs
(ℓj−1)Qj

ℓj
to be supplied in the next ℓj −1

periods. Consider constructing TLM(1) at the beginning of period t= aj +1. We consider a
(

1
ℓj−1

)
-fraction

of her remaining load, which is (
1

ℓj − 1

)(
(ℓj − 1)Qj

ℓj

)
=

Qj

ℓj
,

to be supplied within the truncated horizon of one period. Again, no optimization is required, and we

supply
Qj

ℓj
to participant j in period t = aj + 1. Similarly, one could show she receives

Qj

ℓj
in each period

t∈ {aj , . . . , aj + ℓj − 1}, which completes the proof.

Proof of Theorem 2(b). Let STLM(T̆ ) denote the rolling-horizon solution (i.e., supply amounts made

over the horizon) achieved by solving TLM(T̆ ) on an hourly basis over the horizon. We construct an example

to show STLM(1) can have a strictly better objective value than STLM(2).

Let the horizon consist of two periods. Assume only one EV driver exists and she participates in AMH;

she arrives at the beginning of t= 1 and requests Q> 0 to be supplied in the next two periods (ℓ= 2). We

drop index j to simplify our notations. Assume Q ≤ qU , meaning her requirement can be supplied in one

period. Assume f1(·) = f2(·) = f(·), and f(y) is strictly convex in y ≥ 0. Assume G = 1, and the region is

served by one substation with capacity h1 = 2Q. Assume the actual existing load in the first and second

periods are Q and 0.

We compare the solutions of STLM(1) and STLM(2).

• STLM(1): The solution of TLM(1) assigns Q
2

to the first and second periods; hence, the total cost is

f
(
3
2
Q
)
+ f

(
1
2
Q
)
.

• STLM(2): Consider constructing TLM(2) at the beginning of the first period. Assume only one scenario

exists in which the existing load is λEXI
1,1,1 =Q and λEXI

1,1,2 = 2Q. Observe the forecast of the second period at

the beginning of the first period is inaccurate. The solution of TLM(2) assigns the supply of Q to the first

period, and hence, it is implemented. Thus, the total cost of this solution is f(2Q)+ f(0).

Before we proceed, note the solution of TLM(2) assigns the supply of Q to the first period because of

the following property (also known as increasing marginal return): for all y′′ > y′ ≥ 0 and α > 0, we have

f(y′ +α)− f(y′)< f(y′′ +α)− f(y′′), because
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f(y′ +α) = f

(
y′′ − y′

y′′ − y′ +α
y′ +

α

y′′ − y′ +α
(y′′ +α)

)
<

y′′ − y′

y′′ − y′ +α
f(y′)+

α

y′′ − y′ +α
f(y′′ +α), and

f(y′′) = f

(
α

y′′ − y′ +α
y′ +

y′′ − y′

y′′ − y′ +α
(y′′ +α)

)
<

α

y′′ − y′ +α
f(y′)+

y′′ − y′

y′′ − y′ +α
f(y′′ +α),

and hence, by combining these inequalities, we obtain

f(y′ +α)+ f(y′′)< f(y′)+ f(y′′ +α)

⇔ f(y′ +α)− f(y′)< f(y′′ +α)− f(y′′), ∀y′′ > y′ ≥ 0, ∀α> 0. (17)

Moreover, if either α= 0 or y′′ = y′, inequality (17) holds as an equality.

Next, we compare the objective values of the solutions of STLM(1) and STLM(2). Because we assume

f(0) = 0 and f(·) is strictly convex, we have f(y′) + f(y′′) < f(y′ + y′′) for all y′, y′′ > 0. To see why this

inequality holds, in inequality (17), let y′ = 0 and α= y′′′ > 0; then,

f(y′′′)− f(0)< f(y′′ + y′′′)− f(y′′)

⇔ f(y′′′)+ f(y′′)< f(y′′ + y′′′), ∀y′′, y′′′ > 0. (18)

Therefore, using inequality (18), we have f
(
3
2
Q
)
+ f

(
1
2
Q
)
< f(2Q), which completes the proof.

Proof of Theorem 2(c). We prove this part for T̆ ′ = T̆ + 1, and it can readily be extended to any

T̆ ′ ≥ T̆ . Note truncation is only applied to the AMH participants, meaning λEXI
s,g,t, λ

NMH
s,g,t , and λPMH

s,g,t,φ,τ in the

two problems are equal in periods t∈ {1, . . . , T̆}.
Consider an optimal solution to TLM(T̆ ). In this optimal solution, for participant j, let q◦s,j,t denote the

amount of load supplied to this participant in period t ∈ {1, . . . , T̆}, under scenario s. Consider increasing

the horizon to T̆ + 1 periods. In problem TLM(T̆ + 1), let us use the same q◦s,j,t for t ∈ {1, . . . , T̆}, and for

t= T̆ +1, let qs,j,t be as follows: if participant j’s charging window ends before t= T̆ +1, then qs,j,T̆+1 = 0;

otherwise, let qs,j,T̆+1 be equal to the additional load to be considered when going from T̆ to T̆ + 1. This

additional load can be shown to satisfy the charging-speed constraint (4) and demand-satisfaction constraint

(3). The grid constraints (11) are also satisfied following the assumption hi ≥ λU, for all i (because the supply

quantities in period T̆ +1 satisfy the charging speed constraints, i.e., qs,j,T̆+1 ≤ qUj , for all s and j, similar

to the proof of Theorem 1(b), one could show the grid constraints are satisfied). Thus, an optimal solution

of TLM(T̆ ) is feasible for TLM(T̆ +1), completing the proof.

Proof of Theorem 2(d). With some abuse of notation, let λt ≥ 0 denote the existing load in period

t ∈ {1, . . . , T} (before truncation), recalling S = G = 1. Let periods t̂ and t̂+ 1 be the two periods in the

participant’s charging window, and let Q> 0 denote her requirement (note if Q= 0, the error is zero; hence,

we assume Q> 0 in the rest of the proof). Because T̆ = 1, Q
2
is assigned to each period t̂ and t̂+1 (following

part (a)). Let qt̂ and qt̂+1 denote the optimal amounts supplied to this participant in periods t̂ and t̂+ 1,

respectively. The worst-case relative error is

ρT ≤ max
Q>0, λt≥0, ∀t


∑

t′ ̸∈{t̂,t̂+1} λ
3
t′ +

∑
t′∈{t̂,t̂+1}

(
Q
2
+λt′

)3
min

qt̂, qt̂+1≥0, qt̂+qt̂+1=Q

∑
t′ ̸∈{t̂,t̂+1} λ

3
t′ +

∑
t′∈{t̂,t̂+1} (qt′ +λt′)

3

− 1

= max
Q>0, λt̂, λt̂+1≥0


∑

t′∈{t̂,t̂+1}

(
Q
2
+λt′

)3
min

qt̂, qt̂+1≥0, qt̂+qt̂+1=Q

∑
t′∈{t̂,t̂+1} (qt′ +λt′)

3

− 1
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= max
Q>0,

λ
t̂

Q
,

λ
t̂+1
Q

≥0


∑

t′∈{t̂,t̂+1}

(
1
2
+

λt′
Q

)3
min

q
t̂

Q
,

q
t̂+1
Q

≥0,
q
t̂

Q
+

q
t̂+1
Q

=1

∑
t′∈{t̂,t̂+1}

(
qt′
Q

+
λt′
Q

)3
− 1.

To obtain the second line, the outer maximization sets
∑

t′ ̸∈{t̂,t̂+1} λ
3
t′ to zero because both the numerator

and denominator of the fraction are positive, and the denominator is less than or equal to the numerator.

To obtain the third line, we divide the objective functions and constraints by Q3 and Q, respectively (note

Q3 > 0). To simplify our notations, let A≜ λt̂

Q
, B ≜

λt̂+1

Q
, C ≜ qt̂

Q
, and D≜

qt̂+1

Q
. Then,

ρT ≤ max
A, B≥0


(
A+ 1

2

)3
+
(
B+ 1

2

)3
min

C, D≥0, C+D=1
(A+C)3 +(B+D)3

− 1

= max
A, B≥0


(
A+ 1

2

)3
+
(
B+ 1

2

)3
min

0≤C≤1
(A+C)3 +(B+1−C)3

− 1.

We provide an intuition before we proceed. We have normalized the load requirement of the EV driver to

Q̌= 1. Quantities A and B are the existing loads in the first and second periods (t̂ and t̂+1), respectively,

after normalization, and C and (1−C) are the fractions of Q̌ that we assign to the first and second periods,

respectively. We will consider two cases. In Case (i), either B > A+ 1 or A > B + 1 (these sub-cases are

equivalent, if one switches A and B). Consider B >A+1 and note that the existing load in the second period

is so high that assigning Q̌ to the first period is optimal (because the objective function is strictly convex);

that is, C∗ = 1. Then, the denominator becomes (A+ 1)3 + B3. Next, we show the value of the fraction

decreases in A, and hence, we set A to 0. The resulting fraction is
( 1

2 )
3
+(B+ 1

2 )
3

1+B3 . The maximum value of this

fraction is 1.866, which occurs at B = 1.366. In Case (ii), A≤B+1 and B ≤A+1. We assign some fraction

of Q̌ to each period, such that the cumulative load is equal across the two periods (because the objective

function is strictly convex). In other words, the total load in the two periods is A+B+1 (including Q̌), and

after assigning Q̌, half of A+B + 1 must be in the first period and the other half must be in the second

period. Thus, the denominator becomes 1
4
(A+B+1)3. Intuitively, the myopic solution in the numerator is

worst when A and B have the maximum difference; hence, we let A = B + 1. We obtain
(B+ 3

2 )
3
+(B+ 1

2 )
3

1
4
(2B+2)3

.

This fraction is decreasing in B, and hence we set B to 0. Thus, the maximum value of the fraction is 1.75.

Combining Cases (i) and (ii), the maximum error is 86.6%.

We provide a detailed proof below. The minimization problem in the denominator is

min
0≤C≤1

G(C)≜ (A+C)3 +(B−C +1)3 .

Moreover,

∂

∂C
G(C) = 3(A+C)2 − 3(B−C +1)2,

∂2

∂C2
G(C) = 6(A+B+1)> 0,

meaning G(C) is strictly convex. Using ∂
∂C

G(C) = 0, we obtain C∗ = 1
2
(B −A+ 1). Consider the following

two cases.

Case (i): C∗ > 1 or C∗ < 0. If C∗ > 1, then C = 1 is optimal and the optimal value of the denominator is
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G(1) = (A+ 1)3 +B3. In other words, if B >A+ 1, assigning the customer’s load to t̂ is optimal (because

the existing load in this period is much lower than that in period t̂+1). In this case, we have

ρT ≤ max
A, B≥0,
B>A+1

{(
A+ 1

2

)3
+
(
B+ 1

2

)3
(A+1)3 +B3

}
− 1. (19)

On the other hand, if C∗ < 0, then C = 0 is optimal and the optimal value of the denominator is G(0) =
A3 +(B+1)3. This scenario results in an inequality that is identical to (19) (except one needs to switch A

and B). Thus, consider inequality (19) and note

∂

∂A

(
A+ 1

2

)3
+
(
B+ 1

2

)3
(A+1)3 +B3

=
3
(
A+ 1

2

)2
((A+1)3 +B3)− 3(A+1)2

((
A+ 1

2

)3
+
(
B+ 1

2

)3)
((A+1)3 +B3)2

.

Moreover, because of inequality (17) (let y′ =A+ 1
2
, α= 1

2
, and y′′ =B), we have

(A+1)3 +B3 <

(
A+

1

2

)3

+

(
B+

1

2

)3

, and

3

(
A+

1

2

)2

< 3 (A+1)2

⇒ 3

(
A+

1

2

)2 (
(A+1)3 +B3

)
< 3 (A+1)2

((
A+

1

2

)3

+

(
B+

1

2

)3
)

⇒ ∂

∂A

(
A+ 1

2

)3
+
(
B+ 1

2

)3
(A+1)3 +B3

< 0,

meaning the fraction is always decreasing in A (for any value of B). Thus, setting A to its smallest value 0

is optimal. In this case, inequality (19) reduces to

ρT ≤ max
B>1

{(
1
2

)3
+
(
B+ 1

2

)3
1+B3

}
− 1.

The maximum value of the fraction is 1.866, which occurs at B = 1.366. This result implies ρT ≤ 86.6%. Note

this case happens if Q= 1 and the existing load in periods t̂ and t̂+1 is respectively 0 and 1.366, meaning

this worst-case error bound is tight.

Case (ii): 0≤C∗ ≤ 1. In other words, 0≤ 1
2
(B−A+1)≤ 1, implying A≤B+1 and B ≤A+1. Then,

ρT ≤ max
A, B≥0,
A≤B+1,
B≤A+1

{(
A+ 1

2

)3
+
(
B+ 1

2

)3
1
4
(A+B+1)3

}
− 1.

Observe by switching A and B, the right-hand side remains identical. Thus, without loss of generality, we

restrict the feasible set of the maximization to B ≤ A. Then, the feasible set becomes 0≤ B ≤ A≤ B + 1.

Keeping B fixed,

∂

∂A

(
A+ 1

2

)3
+
(
B+ 1

2

)3
1
4
(A+B+1)3

=

3
4

(
A+ 1

2

)2
(A+B+1)3 − 3

4
(A+B+1)2

((
A+ 1

2

)3
+
(
B+ 1

2

)3)
1
16

(A+B+1)6

=

3
4

(
A+ 1

2

)2 − 3
4

((
A+ 1

2

)2 − (A+ 1
2

) (
B+ 1

2

)
+
(
B+ 1

2

)2)
1
16

(A+B+1)3
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=

3
4

((
A+ 1

2

) (
B+ 1

2

)
−
(
B+ 1

2

)2)
1
16

(A+B+1)3
≥ 0.

To obtain the second line, we apply a3 + b3 = (a+ b)(a2 − ab+ b2) to the last term in the numerator of the

right-hand side of the first line — that is,
(
A+ 1

2

)3
+
(
B+ 1

2

)3
. The last fraction is non-negative because

A≥B. Thus, if B is fixed, the fraction is non-decreasing in A; hence, setting A to its largest value B + 1

would be optimal. Therefore,

ρT ≤ max
B≥0

{(
B+ 3

2

)3
+
(
B+ 1

2

)3
1
4
(2B+2)3

}
− 1,

and

∂

∂B

(
B+ 3

2

)3
+
(
B+ 1

2

)3
1
4
(2B+2)3

=

3
4

((
B+ 3

2

)2
+
(
B+ 1

2

)2)
(2B+2)3 − 6

4
(2B+2)2

((
B+ 3

2

)3
+
(
B+ 1

2

)3)
1
16

(2B+2)6

=

3
4

((
B+ 3

2

)2
+
(
B+ 1

2

)2)− 6
4

((
B+ 3

2

)2 − (B+ 3
2

) (
B+ 1

2

)
+
(
B+ 1

2

)2)
1
16

(2B+2)3

=
− 3

4

(
B+ 3

2

)2
+ 6

4

(
B+ 3

2

) (
B+ 1

2

)
− 3

4

(
B+ 1

2

)2
1
16

(2B+2)3

=
− 3

4

((
B+ 3

2

)
−
(
B+ 1

2

))2
1
16

(2B+2)3

=
−12

(2B+2)3
< 0.

Once again, to obtain the second line, we apply a3 + b3 = (a + b)(a2 − ab + b2) to the last term in the

numerator of the right-hand side of the first line. Thus, the fraction is decreasing in B, and hence, setting

B to its smallest value 0 is optimal. In summary, an optimal solution for Case (ii) is B = 0 and A= 1 (or

B = 1 and A= 0), and the optimal value is 1.75. Thus, in Case (ii), ρT ≤ 75%. In short, using Cases (i) and

(ii), we have ρT ≤ 86.6%. Furthermore, this bound is tight. Hence, the proof is complete.

Proof of Theorem 3.

Note {i} denotes the set of all substations. The horizon {1, . . . , T} decomposes into mutually exclusive and

collectively exhaustive intervals, where ςth interval is {ṫς , . . . , ẗς}. We use index ς to refer to these intervals;

ς = 1 refers to the first interval that contains the current period, that is, ṫ1 = 1; and ṫς+1 = ẗς +1, for all ς

(except the last one). Correspondingly, we decompose Js into mutually exclusive and collectively exhaustive

subsets Js,ς . For participant j ∈ Js,ς , we have ṫς ≤ aj ≤ aj + ℓj − 1 ≤ ẗς (also because ℓj ≥ 1). Therefore,

following such a decomposition, LM can equivalently be stated as

DTLM: min
∑
ς

∑
s

ps

ẗς∑
t=ṫς

f(ys,t)

s.t.

aj+ℓj−1∑
t=aj

qs,j,t =Qj , ∀s, ς, j ∈ Js,ς ,

0≤ qs,j,t ≤ qUj , ∀s, ς, t∈ {ṫς , . . . , ẗς}, j ∈ Js,ς ,

qs,j,1 = qs′,j,1, ∀s ̸= s′, j ∈ Js,1 ∩ Js′,1,
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xs,g,t = λs,g,t +
∑

j∈Js,ς : gj=g

qs,j,t, ∀s, g, ς, t∈ {ṫς , . . . , ẗς},∑
g∈i

xs,g,t ≤ hi, ∀s, ς, t∈ {ṫς , . . . , ẗς}, i,

ys,t =
∑
g

xs,g,t, ∀s, ς, t∈ {ṫς , . . . , ẗς}.

Note we drop constraints (7)-(10) because |Tφ,d|= 1, for all φ, d (the values of λs,g,t are pre-computed and

not impacted by truncation). Also, for each j ∈ Js,ς , we discarded the decision variable qs,j,t if t ̸∈ {ṫς , . . . , ẗς},
because its value is 0 in the optimal solution. Moreover, the third constraint is written only for the first

period of the first interval ς = 1. In this reformulation of LM, the objective function is additive in ς and all

constraints are written separately for different ς’s. This observation implies LM decomposes into subproblems

(one subproblem for each non-overlapping interval ς) such that an optimal solution for LM is created by

combining the optimal solutions of these subproblems. Consider the first subproblem (corresponding to

ς = 1). The horizon for this subproblem is {ṫ1, . . . , ẗ1}, where ṫ1 = 1. Because of the above decomposition,

the decisions corresponding to the first period (which are the ones that are implemented) are not affected by

the other subproblems. Therefore, solving the first subproblem is equivalent to solving LM. Now, consider

solving TLM(T̆ ) for some T̆ ≥ TNOI ≥ ẗ1 − ṫ1 +1; then, TLM(T̆ ) decomposes into one or more subproblems

such that the first-period decisions depend on only the first subproblem. Thus, we proved solving LM is

equivalent to solving TLM(T̆ ) for T̆ ≥ TNOI. This proof establishes the first term in the definition of T ∗,

which is solely a result of assuming the non-overlapping intervals (NOI).

In the remainder, we further impose the following assumption:
∑

g∈i′ (λs,g,t −λs,g,t+1)≥ (J +2)q⋄, for all

s, i′ ∈ {i}∪{1, . . . ,G}, and t∈ {ṫ, . . . , ẗ−1}. This assumption implies a sharp reduction in consumption over

the non-overlapping intervals. We refer to this assumption as SRC. First, we establish the following property.

Optimality of Delaying Supply (ODS). For each participant j ∈ Js,ς , for arbitrary s and ς, delaying

her supply to the last T̂j ≜ ⌈γj⌉ periods of her charging window is optimal.

To prove ODS, consider an arbitrary NOI interval {ṫς , . . . , ẗς}, and let j ∈ Js,ς . Let her charging window

{aj , . . . , aj + ℓj − 1} consist of two parts: (i) T′
j : the first ℓj −⌈γj⌉ periods and (ii) T′′

j : the last ⌈γj⌉ periods.

Because ℓj ≥ ⌈γj⌉, the first part T′
j may be empty, and the second part T′′

j always consists of ⌈γj⌉ periods. If
ℓj = ⌈γj⌉, then T′

j is empty, meaning in an optimal solution, her load is assigned to T′′
j , completing our proof;

thus, assume T′
j is nonempty. Let q∗s,j,t, x

∗
s,g,t, and y∗s,t denote an optimal solution. Assume to the contrary

that in this optimal solution, q∗s,j,t′ > 0 for some t′ ∈ T′
j . Then, t

′′ ∈ T′′
j exists whereby q∗s,j,t′′ < qUj . Define

e ≜min{q∗s,j,t′ , qUj − q∗s,j,t′′}. We introduce a new solution as follows: q◦s,j,t′ = q∗s,j,t′ − e, q◦s,j,t′′ = q∗s,j,t′′ + e,

and all other variables q◦s,j,t are equal to those in the optimal solution q∗s,j,t. Then, x
◦
s,gj ,t′

= x∗
s,gj ,t′

− e

and x◦
s,gj ,t′′

= x∗
s,gj ,t′′

+ e. Moreover, y◦s,t′ = y∗s,t′ − e and y◦s,t′′ = y∗s,t′′ + e. Consider problem DTLM that we

introduced above. The first two constraints are feasible. The third constraint is feasible if t′ ̸= 1; otherwise,

we repeat the above modification for all scenarios (in this case, e≜mins es, where es is defined as we did

above for scenario s). Without loss of generality, assume t′ ̸= 1. The fourth and sixth constraints are feasible

too. For the fifth constraint, if gj ∈ i, we have∑
g∈i

x◦
s,g,t′′ =

∑
g∈i

λs,g,t′′ +
∑

j∈Js,ς : gj∈i

q◦s,j,t′′

≤ −(J +2)q⋄ +
∑
g∈i

λs,g,t′ +
∑

j∈Js,ς : gj∈i

q∗s,j,t′′ + e

= −(J +2)q⋄ +
∑
g∈i

λs,g,t′ +
∑

j∈Js,ς : gj∈i

q∗s,j,t′′ + e±
∑

j∈Js,ς : gj∈i

q∗s,j,t′
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= −(J +2)q⋄ +
∑
g∈i

x∗
s,g,t′ +

∑
j∈Js,ς : gj∈i

q∗s,j,t′′ + e−
∑

j∈Js,ς : gj∈i

q∗s,j,t′

≤ −(J +2)q⋄ +hi +
∑

j∈Js,ς : gj∈i

(
q∗s,j,t′′ − q∗s,j,t′

)
+ e

≤ −(J +2)q⋄ +hi +(J +1)q⋄

≤ hi.

To obtain the second line, we use
∑

g∈i λs,g,t′′ ≤
∑

g∈i λs,g,t′ − (J + 2)q⋄, because of SRC and t′′ > t′. To

obtain the third line, we add and subtract the last term. To obtain the fifth line, we use
∑

g∈i x
∗
s,g,t′ ≤ hi.

In the fifth line, we note ∑
j∈Js,ς : gj∈i

(
q∗s,j,t′′ − q∗s,j,t′

)
≤

∑
j∈Js,ς : gj∈i

q⋄ ≤ |Js,ς |q⋄ ≤ Jq⋄,

and e≤ q⋄, which leads to the sixth line. Thus, our solution satisfies the grid constraints. In short, we have

created a feasible solution for DTLM. In this solution,

y∗s,t′′ + e =
∑
g

λs,g,t′′ +
∑

j∈Js,ς

q∗s,j,t′′ + e

≤ −(J +2)q⋄ +
∑
g

λs,g,t′ +
∑

j∈Js,ς

q∗s,j,t′′ ±
∑

j∈Js,ς

q∗s,j,t′ + e

= −(J +2)q⋄ + y∗s,t′ +
∑

j∈Js,ς

(q∗s,j,t′′ − q∗s,j,t′)+ e

≤ −(J +2)q⋄ + y∗s,t′ +(J +1)q⋄

< y∗s,t′ ,

or y∗s,t′′ < y∗s,t′ − e. To obtain the last line, we note q⋄ > 0.

Last, we compare the objective values of the two solutions.

∑
ς

∑
s

ps

ẗς∑
t=ṫς

f(y◦s,t)−
∑
ς

∑
s

ps

ẗς∑
t=ṫς

f(y∗s,t) = ps
(
f(y◦s,t′)+ f(y◦s,t′′)− f(y∗s,t′)− f(y∗s,t′′)

)
= ps

(
f(y∗s,t′ − e)− f(y∗s,t′)+ f(y∗s,t′′ + e)− f(y∗s,t′′)

)
< 0.

To see why the second line is negative, note ps > 0, and in inequality (17), set y′ = y∗s,t′′ , y
′′ = y∗s,t′ − e, and

α= e. Thus, we have created a feasible solution that is strictly better than the optimal solution, which is a

contradiction; hence, our proof of ODS is complete.

So far, we have shown that for each participant j ∈ Js,ς , for arbitrary s and ς, delaying her supply to the

last T̂j ≜ ⌈γj⌉ periods of her charging window is optimal. Thus, the length of the truncated horizon must be

long enough that no load of participant j is assigned to the first period unless the first period is one of her

last T̂j periods in her charging window.

If a participant arrives at t > 1, her load supply is not assigned to the first period. Thus, consider a

participant with an arrival time aj = 1. Recalling ℓj ≥ ⌈γj⌉, exactly one of the following two cases happens.

Case 1: ℓj ≥ ⌈γj⌉+1. In this case, no supply must be assigned to the first period. If T ∗ ≥ ℓj , because of

ODS, no supply is assigned to the first period. If T ∗ < ℓj , we must have

T ∗

ℓj
Qj ≤ (T ∗ − 1)qUj .
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The left-hand side is the fraction of participant j’s load that must be satisfied in periods 1, . . . , T ∗, and

the right-hand side is the maximum load that can be supplied in periods 2, . . . , T ∗. If this inequality holds,

because of ODS, no supply is assigned to the first period. The left-hand side of this inequality grows as ℓj

decreases; hence, the worst case for this inequality occurs if ℓj = ⌈γj⌉+1. Therefore, we must have

T ∗

⌈γj⌉+1
γj ≤ T ∗ − 1, ∀j

⇔ T ∗
(
1− γj

⌈γj⌉+1

)
≥ 1, ∀j

⇐ T ∗ ≥
⌈

⌈γj⌉+1

⌈γj⌉+1− γj

⌉
, ∀j

⇐ T ∗ ≥max
j

⌈
⌈γj⌉+1

⌈γj⌉+1− γj

⌉
.

If the last inequality holds, no supply of participant j is assigned to any time prior to the last ⌈γj⌉ periods

in her charging window.

Case 2: ℓj = ⌈γj⌉. In this case, if γj is integral, regardless of the value of T ∗, the EV will be charged

at a full speed in the first period (similar to the uniform supply property that we showed earlier). If γj is

fractional, only the fractional part of γj must be assigned to the first period; in this case, we show T ∗ must

be at least ⌈γj⌉. The fractional part of γj is 1+ γj −⌈γj⌉. We must have

T ∗

ℓj
Qj ≤ (T ∗ − 1)qUj +(1+ γj −⌈γj⌉)qUj , ∀j

⇔ T ∗

⌈γj⌉
γj ≤ (T ∗ − 1)+ (1+ γj −⌈γj⌉), ∀j

⇔ γj
⌈γj⌉

T ∗ ≤ T ∗ +(γj −⌈γj⌉), ∀j

⇔ γj −⌈γj⌉
⌈γj⌉

T ∗ ≤ γj −⌈γj⌉, ∀j

⇐ T ∗ ≥ ⌈γj⌉, ∀j

⇐ T ∗ ≥max
j

⌈γj⌉.

Note we drop participant j if γj = 0, which is optimal, because the utility does not supply any load to this

participant; thus, assume γj > 0 for all j. If γj is integral, the first line holds regardless of the value of T ∗.

Otherwise, if γj is not integral, the first line holds if T ∗ ≥maxj⌈γj⌉. Thus, T ∗ ≥ ℓj , implying the charging

window of participant j is completely inside the truncated horizon of T ∗ periods. Therefore, because of ODS,

we assign her total requirement to the first ℓj periods. Because of ODS, we charge her EV at the full charging

speed in periods 2, . . . , ℓj , and the leftover is assigned to the first period.

Therefore, if T ∗ ≥maxj

{
⌈γj⌉,

⌈
⌈γj⌉+1

⌈γj⌉+1−γj

⌉}
, because of ODS, each participant’s requirement is satisfied

in the latest periods of her charging window. This solution is optimal, and hence, the proof is complete.

Proof of Theorem 4(a). We first show

ft(δb) =

Z∑
z=1

σt,z [b− z+1]+ , ∀b∈ {0,1,2, . . . ,Z}, (20)

where [x]+ ≜ max{0, x}. Fattahi et al. (2023) prove a similar equation holds for the case of integral load

values; we do not impose such a restriction. Recall ft(y) = 0 for y ≤ 0, and hence, we have σt,1 ≜ ft(δ),
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σt,2 ≜ ft(2δ)− 2ft(δ), and σt,z ≜ ft(zδ)− 2ft((z − 1)δ) + ft((z − 2)δ), for all z ≥ 3. If b = 0, equation (20)

holds; hence, assume b∈ {1, . . . ,Z}. Then,

Z∑
z=1

σt,z [b− z+1]+ =

b∑
z=1

σt,z (b− z+1)

=

(
b∑

z=1

ft(zδ) (b− z+1)

)
− 2

(
b∑

z=2

ft((z− 1)δ) (b− z+1)

)
+

(
b∑

z=3

ft((z− 2)δ) (b− z+1)

)

=

(
b∑

z=1

ft(zδ) (b− z+1)

)
− 2

(
b−1∑
z=1

ft(zδ) (b− z)

)
+

(
b−2∑
z=1

ft(zδ) (b− z− 1)

)
= 2ft((b− 1)δ)+ ft(bδ)− 2ft((b− 1)δ)

= ft(bδ).

To obtain the fourth line, note the three summations in the third line cancel out for all z ∈ {1, . . . , b− 2}.
Thus, the first two terms in the fourth line are the terms of the first summation in the third line corresponding

to z = b− 1 and z = b, respectively. The last term in the fourth line is the term corresponding to z = b− 1 in

the second summation in the third line.

Using equation (20), the objective function (2) is

min
∑
s

ps

T∑
t=1

ft(ys,t)

≤ min
∑
s

ps

T∑
t=1

ft(δy
int
s,t) s.t. ys,t ≤ δyints,t ≤ ys,t + δ, yints,t ∈Z+, ∀s, t

= min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,z

[
yints,t − z+1

]+
s.t. ys,t ≤ δyints,t ≤ ys,t + δ, yints,t ∈Z+, ∀s, t

= min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,zεs,t,z

s.t. 0≤ εs,t,z −
(
yints,t − z+1

)
≤Z (1− υs,t,z) , ∀s, t, z,

0≤ εs,t,z ≤Zυs,t,z, υs,t,z ∈ {0,1}, ∀s, t, z,

ys,t ≤ δyints,t ≤ ys,t + δ, yints,t ∈Z+, ∀s, t.

The second line holds because ft(·) is non-decreasing in the hourly load. Note that, in the second line,

yints,t ≤ 1
δ
ys,t + 1 ≤ 1

δ
λU + 1 ≤

⌈
1
δ
λU +1

⌉
= Z. Thus, the third line follows directly from equation (20). To

obtain the last line, we introduce continuous variables εs,t,z =
[
yints,t − z+1

]+
. The first two constraints

ensure εs,t,z =
[
yints,t − z+1

]+
. If

(
yints,t − z+1

)
> 0, then υs,t,z = 1; if

(
yints,t − z+1

)
< 0, then υs,t,z = 0; and if(

yints,t − z+1
)
= 0, then υs,t,z could take either value. Therefore, LLM is an upper bound for LM. Moreover,

because LLM includes constraints (3)-(12), its optimal solution is feasible to LM.

Proof of Theorem 4(b). Let y◦s,t, q
◦
s,j,t, x

◦
s,g,t, and ϑ◦

s,t,φ,d denote an optimal solution to LM. We use

this optimal solution to create a feasible solution for LLM as follows. We keep the values for y◦s,t, q
◦
s,j,t, x

◦
s,g,t,

and ϑ◦
s,t,φ,d, and hence, constraints (3)-(12) will be satisfied. Let yints,t be the smallest integer number that

satisfies δyints,t ≥ y◦s,t for all s and t. Define εs,t,z ≜
[
yints,t − z+1

]+
and υs,t,z ≜ I(εs,t,z > 0) for all s, t, and z.

This solution is feasible to LLM, and hence, its objective value is an upper bound on the optimal value of

LLM.
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We have δyints,t ≤ y◦s,t + δ for all s and t, and hence, the absolute error of linearization is upper bounded as

vLLM − vLM ≤
∑
s

ps
∑
t

ft(y
◦
s,t + δ)−

∑
s

ps
∑
t

ft(y
◦
s,t)

≤
∑
s

ps
∑
t

max
s,t

{
max

λL
s,t≤y≤λU

s,t+J̌q⋄
ft(y+ δ)− ft(y)

}
=
∑
s

ps
∑
t

Θ(δ)

= TΘ(δ),

completing the proof.

Proof of Theorem 5. The LP relaxation of LLM is equivalently written as

RLLM : min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,zεs,t,z

s.t. max{0,
(
yints,t − z+1

)
} ≤ εs,t,z

≤min{Zυs,t,z, Z (1− υs,t,z)+
(
yints,t − z+1

)
}, ∀s, t, z,

ys,t ≤ δyints,t ≤ ys,t + δ, yints,t ≥ 0, ∀s, t,

0≤ υs,t,z ≤ 1, ∀s, t, z,

and constraints (3)-(12).

Let y◦s,t denote an optimal solution for RLLM. If we fix ys,t = y◦s,t, the resulting problem is

RLLM′ : min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,zεs,t,z

s.t. max{0,
(
yints,t − z+1

)
} ≤ εs,t,z

≤min{Zυs,t,z, Z (1− υs,t,z)+
(
yints,t − z+1

)
}, ∀s, t, z,

y◦s,t ≤ δyints,t ≤ y◦s,t + δ, yints,t ≥ 0, ∀s, t,

0≤ υs,t,z ≤ 1, ∀s, t, z.

The optimal values of RLLM and RLLM′ are equal. The following problem provides a lower bound on the

optimal value of RLLM.

LRLLM : min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,zεs,t,z

s.t. min
1
δ
y◦
s,t≤y≤ 1

δ
y◦
s,t+1

{max{0, (y− z+1)}} ≤ εs,t,z

≤ max
1
δ
y◦
s,t≤y≤ 1

δ
y◦
s,t+1

υ∈R

{min{Zυ, Z (1− υ)+ (y− z+1)}} , ∀s, t, z,

y◦s,t ≤ δyints,t ≤ y◦s,t + δ, yints,t ≥ 0, ∀s, t,

0≤ υs,t,z ≤ 1, ∀s, t, z.

The second and third constraints in LRLLM are redundant; hence, we drop them in the rest of the proof.

The resulting problem is

LRLLM′ : min
∑
s

ps

T∑
t=1

Z∑
z=1

σt,zεs,t,z
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s.t. min
1
δ
y◦
s,t≤y≤ 1

δ
y◦
s,t+1

{max{0, (y− z+1)}} ≤ εs,t,z

≤ max
1
δ
y◦
s,t≤y≤ 1

δ
y◦
s,t+1

υ∈R

{min{Zυ, Z (1− υ)+ (y− z+1)}} , ∀s, t, z.

The optimal value of LRLLM′ is equal to the optimal value of LRLLM. Observe LRLLM′ decomposes into

some subproblems (one subproblem for each s, t, z). Each subproblem has one continuous variable εs,t,z,

which is restricted to take a value within the specified limits. In an optimal solution, εs,t,z will be at either

its lower limit (if σt,z > 0) or upper limit (if σt,z < 0). If σt,z = 0, εs,t,z could take any value. Thus, an optimal

solution for LRLLM′ is

ε◦s,t,z ≜


min 1

δ
y◦
s,t≤y≤ 1

δ
y◦
s,t+1[y− z+1]+ if σt,z ≥ 0,

max 1
δ
y◦
s,t≤y≤ 1

δ
y◦
s,t+1

υ∈R

{min{Zυ, Z (1− υ)+ (y− z+1)}} if σt,z < 0.

In the first case (σt,z ≥ 0), the minimization assigns 1
δ
y◦s,t to its decision variable y. In the second case

(σt,z < 0), considering the maximization problem, for any value of υ, it would be optimal for y to take its

upper limit 1
δ
y◦s,t +1. Therefore,

ε◦s,t,z ≜

[ 1
δ
y◦s,t − z+1]+ if σt,z ≥ 0,

maxυ∈R
{
min{Zυ, Z (1− υ)+

(
1
δ
y◦s,t − z+2

)
}
}

if σt,z < 0.

In the second case, both terms inside the minimization are linear in υ. The first term (Zυ) increases in υ,

and the second term (Z (1− υ)+
(
1
δ
y◦s,t − z+2

)
) decreases in υ. These two lines intersect at

υ◦
s,t,z ≜

1

2
+

1

2Z

(
1

δ
y◦s,t − z+2

)
.

Observe υ◦
s,t,z optimizes the maximization. Thus,

ε◦s,t,z ≜

[ 1
δ
y◦s,t − z+1]+ if σt,z ≥ 0,

1
2
Z + 1

2

(
1
δ
y◦s,t − z+2

)
if σt,z < 0.

Therefore, we obtain a lower bound on the optimal value of the LP relaxation:

vRLLM ≥
∑
s

ps

T∑
t=1

Z∑
z=1

σt,z

{
[
1

δ
y◦s,t − z+1]+I(σt,z ≥ 0)+

(
1

2
Z +

1

2

(
1

δ
y◦s,t − z+2

))
I(σt,z < 0)

}

=
∑
s

ps

T∑
t=1

Z∑
z=1

{
[σt,z]

+[
1

δ
y◦s,t − z+1]+ − 1

2
[−σt,z]

+

(
Z +

(
1

δ
y◦s,t − z+2

))}
,

noting σt,zI(σt,z ≥ 0) = [σt,z]
+ and σt,zI(σt,z < 0) =−[−σt,z]

+. To simplify our notations, let Bs,t,z ≜ 1
δ
y◦s,t−

z+1, for all s, t, z. Thus,

vRLLM ≥
∑
s

ps

T∑
t=1

Z∑
z=1

{
[σt,z]

+[Bs,t,z]
+ − 1

2
[−σt,z]

+ (Z +Bs,t,z +1)

}
.

Next, we create an upper bound on the optimal value of LLM. Let y◦s,t, q
◦
s,j,t, x

◦
s,g,t, and ϑ◦

s,t,φ,d denote

an optimal solution to RLLM. We use this optimal solution to create a feasible solution for LLM as follows.

We keep the values for y◦s,t, q
◦
s,j,t, x

◦
s,g,t, and ϑ◦

s,t,φ,d, and hence, constraints (3)-(12) will be satisfied (also

because we assume |Tφ,d|= 1, for all φ,d). Let yints,t be the smallest integer number that satisfies δyints,t ≥ y◦s,t
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Figure 8 Potential cost savings and CV reductions for different offerings of MH programs.

for all s and t. Define εs,t,z ≜
[
yints,t − z+1

]+
and υs,t,z ≜ I(εs,t,z > 0) for all s, t, and z. Note this solution is

feasible to LLM, and hence, its objective value is an upper bound on the optimal value of LLM. Moreover,

because yints,t ≤ 1
δ
y◦s,t +1, we have

vLLM ≤
∑
s

ps

T∑
t=1

Z∑
z=1

σt,z

[
1

δ
y◦s,t − z+2

]+
=
∑
s

ps

T∑
t=1

Z∑
z=1

(
[σt,z]

+ − [−σt,z]
+
)
[Bs,t,z +1]+ ,

noting σt,z = [σt,z]
+ − [−σt,z]

+, for all t and z. Thus, by subtracting the upper bound of LLM minus the

lower bound of RLLM, the absolute error of the LP relaxation of LLM is bounded as

vLLM − vRLLM ≤
∑
s

ps

T∑
t=1

Z∑
z=1

{(
[Bs,t,z +1]+ − [Bs,t,z]

+
)
[σt,z]

+ − 1

2
[−σt,z]

+
(
2 [Bs,t,z +1]+ −Z −Bs,t,z − 1

)}

≤
∑
s

ps

T∑
t=1

Z∑
z=1

{
[σt,z]

+ − 1

2
[−σt,z]

+ (2Bs,t,z +2−Z −Bs,t,z − 1)

}

=
∑
s

ps

T∑
t=1

Z∑
z=1

{
[σt,z]

+ +
1

2
[−σt,z]

+ (Z −Bs,t,z − 1)

}

=

T∑
t=1

Z∑
z=1

{
[σt,z]

+ +
1

2
[−σt,z]

+

(
Z −

∑
s

psBs,t,z − 1

)}

≤
T∑

t=1

Z∑
z=1

{
[σt,z]

+ +
1

2
[−σt,z]

+

(
Z − 1

δ
λL + z− 2

)}
.

To obtain the second line, we use [B+1]+ − [B]+ ≤ 1 and B + 1≤ [B+1]+, for B ∈ R. To obtain the last

line, we note Bs,t,z =
1
δ
y◦s,t − z+1≥ 1

δ
λL − z+1, for all s, t, z, and

∑
s ps = 1. Thus, the proof is complete.

Appendix D: Predicting Cost Saving and CV Reduction.

Our methodology provides detailed managerial insights on the amount and timing of the improvements

achievable in cost and demand variability by offering AMH, PMH, and both. We illustrate using the following

example. Figures 8(a) and (b), respectively, show the expected cost savings and CV reductions for offering

AMH, PMH, and both, for different numbers of EVs in CAISO. The inputs for this figure are the same as

Figure 3 and ρ̂π = 1, for all π. Figure 8(c) shows the predicted EV sales in California, which we use for

illustration. We downloaded the EV sales forecast from EV-Adoption (2023) and computed the cumulative

forecast using the sales forecast. Combining Figures 8(a) and (c), we produce Figure 8(d), which shows the
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Figure 9 Robustness of cost saving and CV reduction

amount and timing of the improvements achievable in cost saving by different offerings of MH programs.

Similarly, we produce Figure 8(e) by combining (b) and (c). For example, by 2028, California will have 4.96

million EVs and the utilities could achieve (i) 14.8% cost saving and 50.4% reduction in CV by offering

AMH, (ii) 12.5% cost saving and 35.3% reduction in CV by offering PMH, and (iii) 16.2% cost saving and

53.3% reduction in CV by offering both AMH and PMH. In this illustrative example, offering both AMH

and PMH optimizes the cost and CV. Not offering AMH leads to high participation in NMH and PMH,

increasing cost and CV by, for example, 4.4% and 38.6%, respectively, in 2028. In short, our methodology

produces a cost-saving and CV-reduction profile, across different years, for various offerings of MH programs.

These detailed predictions enable utilities to make informed decisions on whether to launch MH programs,

which ones, and when.

Similar to Figure 8, combined with a forecasting model, Figure 6 maps to a cost-saving and CV-reduction

profile, across different years. For example, recalling the forecast of 4.96 million EVs in 2028, customizing

PMH reduces the cost and CV by 0.95% and 10.11%, respectively, in 2028. These detailed predictions enable

utilities to make informed decisions about whether and when to customize PMH.

Our predictions in Figure 8(d)-(e) depend on the accuracy of the EV forecast shown in Figure 8(c). Fur-

thermore, for simplicity, we assume the existing load and cost function remain the same across years, and

we do not account for the consumption of non-home charging EVs. Our methodology and results extend to

incorporate the evolving factors such as the existing load, renewable power generation sources, energy pro-

curement costs, and the non-home charging EVs. Additional analyses of these factors and their corresponding

impacts would be of great value.

Appendix E: Robustness and Generalizations

We evaluate the robustness of cost saving and CV reduction with respect to ρ̂AMH and ρ̂PMH. Figure 9 presents

the histograms of cost savings and CV reductions for 100 combinations of values associated with ρ̂AMH and

ρ̂PMH, under two scenarios: 10% and 20% errors. We let β = $50, µL = 20 ¢/KWh, and K= 10 millions. For

the case of 10% error, we let ρ̂AMH, ρ̂PMH ∈ {0.91,0.93, . . . ,1.09}, which results in 100 combinations of values

for ρ̂AMH and ρ̂PMH. Similarly, for the case of 20% error, we let ρ̂AMH, ρ̂PMH ∈ {0.82,0.86, . . . ,1.18}. As
expected, the histograms for the 20% errors exhibit greater variability in the objective values. Interestingly,

the cost saving’s variability falls within the range of 32.0% to 32.9%, and the CV reduction’s variability

ranges from 64.1% to 68.6%. These ranges are quite reasonable, demonstrating the robustness of both cost

saving and CV reduction concerning variations in the inputs for the attractiveness functions.
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Figure 10 CAISO data scaled down to 1,000 households

Our numerical study of PD extends to multiple driver types and multiple day types. For example, one

could consider three day types to represent the days in the season: (i) cold weekday, (ii) hot weekday, and

(iii) weekend day. Fattahi et al. (2023) also use day types for a long-term forecast of energy-consumption

profiles.

Appendix F: Numerical Experiments of LM

In this section, we investigate the effectiveness and near optimality of our approximation through extensive

numerical experiments. We use real data from CAISO to simulate instances for our problem. The set-up of

our numerical analyses is given in §F.1. We present the result of our experiments in §F.2. Our numerical

results in this section indicate our approximation produces near-optimal solutions to the large instances of

our problem in a reasonable amount of time.

F.1. Numerical-Analysis Setup

To generate an instance for our problem, we need to simulate the existing load, the low-rate episodes for

PMH, and the EV drivers’ plug-in times, charging requirements, and charging windows. We explain our

approach in generating these inputs below.

Generating the Existing Load. We use CAISO system demand (www.energyonline.com) to generate the

existing load in our instances. To create computationally manageable instances, we scale down the CAISO sys-

tem demand to 1,000 households, assuming California has 13,044,266 households (see, e.g., www.census.gov).

For example, Figure 10(a) is the CAISO system demand during the first three days of February 2019. In

Figure 10(b), we multiply the total demand by 1,000/13,044,266, representing an instance with 1,000 house-

holds. Note the shape of the existing consumption profile and its peak and off-peak periods are preserved.

In the remainder, we use Figure 10(b) as the existing load. Our analysis can be repeated using the existing

load during other times.

PMH Tariffs. For the low-rate episode in PMH, we use TOU-D-PRIME Rates offered by SCE

(www.sce.com), in which, in winter, 9 p.m to 4 p.m. (next day) is the low-rate episode. Figure 10(b) uses

dotted lines to plot the timings of the low-rate episodes. For simplicity, we assume all PMH participants

have the same low-rate episode.

EV Owners’ Charging Requirements and Timings. We assume an EV driver leaves her home at t∼N (7

a.m., 2 hours); that is, her departure time is normally distributed around 7 a.m., with a standard deviation

of two hours. We assume she returns home at t∼N (6 p.m., 3 hours). Moreover, by driving her EV during the

http://www.energyonline.com/Data/GenericData.aspx?DataId=18&CAISO___Actual_Load
https://www.census.gov/quickfacts/CA
https://www.sce.com/residential/rates/electric-vehicle-plans
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Figure 11 Simulating EV drivers’ arrival and departure times and their load requirements (20% NMH, 20%

AMH, and 20% PMH)

 

0

500

1000

1500

2000

2500

3000

0 1 2 3

co
ns

um
pt

io
n 

(K
W

h)

days

(a) Existing load and EV load 

existing load
NMH
AMH
PMH

0

500

1000

1500

2000

2500

3000

0 1 2 3

cu
m

ul
at

iv
e 

co
ns

um
pt

io
n 

(K
W

h)

days

(b) Cumulative load

existing load
NMH
AMH
PMH 0

500

1000

1500

2000

2500

3000

0 1 2 3

to
ta

l c
on

su
m

pt
io

n 
(K

W
h)

days

(c) Total Load with Only AMH Participants

existing load
20% AMH
60% AMH
100% AMH

Figure 12 Total load after the addition of EV load: (a) EV load for 20% NMH, 20% AMH, and 20% PMH; (b)

cumulative consumption; and (c) total consumption if all EV drivers participate in AMH.

day (e.g., to/from work), she consumes l∼U [0, 22] KWh (note 22 KWh is determined based on the average

daily driving distance in the U.S. and the average EV consumption per mile). Figure 11 shows the simulated

arrivals, departures, and load requirements for an instance of our problem with 20% NMH, 20% AMH, and

20% PMH (the remaining 40% of households do not own EVs). We generate arrivals and departures only

for days 1 and 2, which are respectively Friday and Saturday; hence, our instance consists of a weekday and

a weekend day.

We assume an EV driver’s charging window consists of all times that she is at home. An NMH driver

starts charging her EV at the full charging speed after she arrives home in the evening; an AMH participant

plugs in her EV after she returns home in the evening and leaves it plugged in until she leaves for work the

next morning; and a PMH participant assigns her charging hours to the hours with the lowest tariffs within

her charging window (if alternative optimal solutions exist, she minimizes her secondary objective, which is

her charging completion time, to avoid uncertainty). Figure 12(a)-(b) shows integration of the total EV load

to the existing load for the instance given in Figure 11. NMH drivers’ load is distributed over the first few

hours of their arrival time, which happens naturally because of their charging speed limit. AMH participants’

load is assigned to before- and after-peak periods, which is obtained by solving LM. PMH participants start

charging at their full speed after the low-tariff begins, which creates a sharp peak after 9 p.m. every day.

In Figure 12(c), we show how the total load changes if all EV drivers participate in AMH; for example,
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Figure 13 Numerical analysis of aggregation; impact on error and CPU times

the solid (dashed and dotted) line represents the case in which all (20% and 60%) of the households own

EVs and participate in AMH. Figure 12(c) represents an ideal case in which the utility manages the EV load

for all EV drivers. Observe the total load is nicely balanced for different EV adoption rates.

In our instances, we consider two scenarios to incorporate stochasticity. We also assume two substations

exist, and we uniformly assign the 1,000 participants to these substations to incorporate grid constraints.

Moreover, we use a cost function in the form of ft(y) = cy3, for y≥ 0. Because we only report relative changes

in cost, the value of c is inconsequential, and hence, we set c= 1. We extend our numerical experiments to

non-convex cost functions in F.2.3.

F.2. Numerical Analysis of Our Approximation

Recall our solution approach for LM consists of aggregation, truncation, and linearization. Next, we perform

an extensive numerical study to investigate the effectiveness of these approximations.

F.2.1. Aggregation. Figure 13 summarizes our numerical results and shows our aggregation is near

optimal and significantly reduces the CPU time. We compute the errors in Figure 13(a) by comparing the

increase in cost when the aggregate model ALM is used with when the original model LM is used. Each data

point is the average of 10 randomly generated instances. Because we solve the exact model for each instance,

solving larger instances with more than 50% AMH is not time-wise manageable, which explains why we only

consider up to 50% AMH participation. Figure 13(a) shows the error is always very small; the largest error

is for the case of 50% AMH and ϵ= 1.5, which is around 1.5%. We find the error increases in ϵ and in the

AMH participation level.

Figure 13(b) shows how the CPU time grows as we increase the number of participants. The CPU time

of the exact model grows rapidly, which makes it impractical for real-size instances (note because we have

scaled down our instances to 1,000 customers, the 50% participation corresponds to an instance with 500

EV drivers participating in AMH). The CPU time of the aggregate model modestly increases initially but

stays reasonable for large instances. The reason is that for initial increases in the number of participants, the

number of groups increases, whereas after all potential groups are formed, new participants join the existing

groups, and hence, the number of groups remains the same beyond some threshold.

In short, Figure 13 supports the appropriateness and effectiveness of our aggregation. This approximation

is essential to ensure our solution approach applies to practical cases with many participants. Motivated by

Figure 13, in the remainder, we use ϵ= 0.5. Observe the error is less than 0.13% when ϵ= 0.5.

F.2.2. Truncation. Figure 14 summarizes our numerical analysis of the truncation. We show in Figure

14(a) how the error changes as we increase the length of the truncated horizon, from two hours to 26 hours.
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Figure 14 Numerical analysis of truncation

Each data point is an average of 10 randomly generated instances. We compute these errors by comparing

them with the case in which the horizon is 26 hours (as a proxy for the optimal increase in cost); for example,

for 10% AMH, the increase in cost when we truncate the horizon to two hours is 19% higher than when we

truncate the horizon to 26 hours. Beyond 18 hours, the error is zero, meaning the objective value remains

the same. In other words, the objective value does not improve by further extending the horizon beyond 18

hours. This observation justifies the appropriateness of using the case of 26 hours as a proxy for the optimal

value. We find a significant reduction in error when we increase the length of the horizon from two to 14

hours, whereas the error is significantly small beyond 14 hours. Motivated by this numerical analysis, we use

T̆ = 15 in the remainder of this appendix.

Figure 14(b)-(c) shows the impact of truncating the horizon on integrating the EV load. For example,

a truncated horizon of two hours implies we have the flexibility to move the load only within a two-hour

interval each time we solve the problem on a rolling basis. Thus, as the length of the truncated horizon

increases, we have higher flexibility to move around the EV load; thus, we achieve a better load balance.

In short, truncation is an appropriate and effective approximation, which our theoretical and numerical

analyses support. This approximation is necessary because our problem can have a long horizon, in which

case, it cannot be constructed and solved in practice by known techniques/software. Truncation allows us to

find near-optimal solutions for the large instances of our problem in a reasonable amount of time.

F.2.3. Linearization. Figure 15(a) shows the error of our linearization for different values of δ. Recall

δ is a measure of our sensitivity to the variations in the hourly consumption when we compute the total

energy cost. Each data point is the average of 10 randomly generated instances. The horizontal axis is in

logarithmic scale. We find δ = 0.1 (i.e., 10% of the maximum hourly load) results in large errors, whereas

all δ-values less than 0.01 (meaning 1% variation in the hourly load is acceptable) provide negligible error.

Figure 15(b)-(c) shows how the choice of δ affects the consumption profile. We note huge fluctuations when

δ = 0.1, because the model is sensitive only within 10% of the hourly load. We observe an approximately

balanced consumption profile when δ is 0.01 and 0.0001. Motivated by these results, we set δ= 0.01.

So far in this appendix, we have considered a convex objective function. Some utilities may have concave

cost functions, for example, due to inflexible generation resources. To demonstrate the generality of our

method, we also consider a non-convex objective function f(y) =max{c′√y, c′′y3}, which is concave in the

interval [0,
(

c′

c′′

)−2.5

] and convex in [
(

c′

c′′

)−2.5

,+∞]. Considering CAISO’s existing load, we let
(

c′

c′′

)−2.5

=

25,000 MWh, implying the cost function is concave below 25,000 MWh and convex thereafter. Figure 16

shows our numerical results. We find the CPU time and the number of integer variables are small when
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Figure 15 Numerical analysis of linearization
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Figure 16 Numerical analysis of linearization with a non-convex objective

δ = 0.01 (Figure 16(a)). According to Figure 16(b), although the CPU time is larger for the non-convex

objective, it remains practically reasonable for different participation levels in AMH (we let δ= 0.01 in Figure

16(b)). We also repeat Figure 15(a) in Figure 16(c). We find the relative error is larger for the non-convex

objective. Nicely, the relative error decreases as the participation in AMH increases, and it is reasonably

small when δ= 0.01.

Thus, we find linearization with δ = 0.01 provides near-optimal solutions. As we previously stated, our

linearization is essential for practicality of our approach, because it converts our problem to a mixed-integer

linear program solvable in a few seconds (CPU times are provided in Figure 13(b)).

In summary, in this section, we performed extensive numerical experiments to demonstrate the solution

quality and computational efficacy of our approach. We find (i) aggregation error increases in ϵ and in the

AMH participation level, (ii) truncation error significantly reduces when we increase T̆ from 2 hours to 14

hours, and the error is negligible beyond 14 hours, (iii) linearization error is small when δ ≤1%, (iv) the

CPU time of our approximation model is small for large instances, and (v) ϵ= 0.5, T̆ = 15, and δ =1% are

appropriate choices, leading to fast computation times and near-optimal solutions.

Appendix G: Extensions and Generalizations

We extend and generalize our methodology to the cases where (i) the drivers’ requested loads are uncertain

within scenarios and (ii) the grid capacity is uncertain.
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G.1. Uncertainty in the Requested Loads within Scenarios

We extend our method to the case in which the realized charging deviates from the requested load, which

could happen due to, for example, uncertainty in the total load needed to fully charge the EV, inaccurate

driver estimates of the required load, and so forth.

Consider an AMH participant j. In her dth charging event, she plugs in her EV at the beginning of t̃Aj,d

and requests Q̃R
j,d to be charged until she leaves at the beginning of t̃Dj,d. Let Q̃N

j,d denote the amount of

load that the utility needs to supply to the EV driver in her dth charging event. We assume the conditional

cumulative distribution of Q̃N
j,d given Q̃R

j,d is known, which we denote by FQ̃N
j,d|Q̃

R
j,d
(·). We introduce a service

level Γ ∈ [0,1], which allows the utility to fully (respectively, partially) satisfy the load with probability

Γ (respectively, 1− Γ). We assume 0 ≤ F−1

Q̃N
j,d|Q̃

R
j,d

(Γ) < ∞. The utility prepares to supply any amount up

to Q̃U
j,d ≜ F−1

Q̃N
j,d|Q̃

R
j,d

(Γ). Finally, given the requested load Q̃R
j,d and the service level Γ, the utility ends up

supplying Q̃j,d in her dth charging event. For example, assume she requests Q̃R
j,d = 10 KWh, and the load that

is needed to be supplied is uniformly distributed around the requested load as Q̃N
j,d ∼U [9,11] KWh. Assume

the utility’s service level is Γ = 90%; hence, Q̃U
j,d = F−1

Q̃N
j,d|Q̃

R
j,d

(0.9) = 10.8 KWh. That is, the utility fully

satisfies the load if Q̃N
j,d ≤ 10.8 KWh; otherwise, if Q̃N

j,d > 10.8 KWh, the utility supplies Q̃j,d = 10.8 KWh,

meaning the load is partially satisfied. The expected value of Q̃j,d is E[Q̃j,d] =
∫ 10.8

9
1
2
QdQ+

∫ 11

10.8
1
2
10.8dQ=

9.99 KWh. PD readily extends by using Q̃j,d to estimate her total load requirement. In LM, under a given

scenario, the requested load QR
j is deterministic (recall we drop index d in LM). The utility computes QU

j

based on its service level and uses QU
j in the right-hand side of constraint (3). Our extension of LM is

similar to the robust optimization techniques, in which the solution is feasible with a high probability and

the optimal value is a bound (see, e.g., Bertsimas and Sim 2004). As a special case, if Γ = 1, our extended

LM would be similar to the robust modeling approach of Soyster (1973).

G.2. Uncertainty in the Grid Capacity

In LM, we assumed the capacity of a substation hi is deterministic and constant over time. Renewable

energy sources create randomness in the supply capacities. Let h̃i,s,t denote the capacity of substation i,

under scenario s, and in period t. Assume the cumulative distribution of h̃i,s,t is known, which we denote by

Fh̃i,s,t
(·). To extend LM, similar to §G.1, we introduce a service level Γ′, define hU

i,s,t ≜ F−1

h̃i,s,t
(1− Γ′), and

use hU
i,s,t in the right-hand side of constraint (11). We offer further analyses on this extension as a direction

for future research. With an increasing number of innovative business models and utility investments in

renewable energy sources, such an analysis could be of interest to researchers who study renewable energy

(see, e.g., Hu et al. 2015, Sunar and Birge 2019, Sunar and Swaminathan 2021).
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