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Numerous empirical studies show that portfolio returns are generally asymmetric, and investors would
prefer a portfolio return with larger degree of asymmetry when the mean value and variance are same. In
order to measure the asymmetry of fuzzy portfolio return, a concept of skewness is defined as the third
central moment in this paper, and its mathematical properties are studied. As an extension of the fuzzy
mean-variance model, a mean-variance-skewness model is presented and the corresponding variations
are also considered. In order to solve the proposed models, a genetic algorithm integrating fuzzy simu-
lation is designed. Finally, several numerical examples are given to illustrate the modelling idea and
the effectiveness of the proposed algorithm.
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1. Introduction

Modern portfolio selection theory is derived from the seminal work of Markowitz [19,20] which considered trade-off between return
and risk. Since then, numerous portfolio selection models are developed by considering the return and risk such as mean-variance mode
and so on. Several researchers like Sharpe [26,27], Stone [28], Sengupta [25], Best and Grauer [3], etc. have done some articles by using
various approximation scheme.

Most of the reasonable works on portfolio selection have been done based on only the first two moments of return distributions. How-
ever, there is a controversy over the issue of whether higher moments should be considered in portfolio selection. Many researchers (e.g.
Arditti [1], Samuelson [24], Kraus and Litzenberger [10], Konno et al. [18], Konno and Suzuki [9], Liu et al. [17], Prakash et al. [21]) argued
that the higher moments cannot be neglected unless there are reasons to trust that the returns are symmetrically distributed (e.g. normal)
or that higher moments are irrelevant to the investors’ decisions.

Samuelson [24] also showed that higher moments are relevant for investors to make decisions in portfolio selection and almost all
investors would prefer a portfolio with a larger third order moment if first and second moments are same. Chunhachinda et al. [5], Mach-
ado-Santos and Fernandes [18] provided evidence of skewness by using the data of stock markets. All the above discussions motivated us to
add the third moment of return distribution of a portfolio selection into a general mean-variance model.

All the above literatures assume that the security returns are random variables. However, if there is not enough historical data, it is more
reasonable to assume them as fuzzy variables. Fuzzy portfolio selection has been undertaken in the literature such as Parra et al. [2], Terol
et al. [4], Tanaka and Guo [29,30] and Vercher et al. [31]. In 2002, Liu and Liu [15] defined the expected value and variance for measuring
the portfolio return and the risk, respectively. Within the framework of credibility theory, several models for fuzzy portfolio selection were
proposed such as, mean-semivariance model [7] and cross-entropy minimization model [23] and so forth. In addition, Qin and Li [22] con-
sidered option pricing problem in fuzzy environment which is another hottest area in finance.

In fuzzy environment, investors also face to construct a portfolio selection from the potential securities with asymmetric returns. Sim-
ilar to stochastic approaches, Huang [7] employed semivariance to describing asymmetry of fuzzy returns. Different from Huang’s ap-
proach, we used skewness of fuzzy returns to characterize the corresponding asymmetry as alternative approach. The purpose of this
paper is to establish and analyze fuzzy mean-variance-skewness models.
009 Published by Elsevier B.V. All rights reserved.
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The remainder of this paper is organized as follows. In Section 2, a concept of skewness is defined for fuzzy variable as the third central
moment and some important properties are proved. Section 3 proposes three mean-variance-skewness models and proves an equivalent
form for the first model. Section 4 briefly introduces fuzzy simulation-based genetic algorithm to solve the proposed models and Section 5
gives several numerical examples and finally some conclusions are listed. In addition for better understanding of the paper, some basic
definitions and useful results of fuzzy variables are given in Appendix.

2. Skewness of fuzzy variables

In this section, we define a concept of skewness for fuzzy variables and discuss its basic properties.

Definition 1. Let n be a fuzzy variable with finite expected value. The skewness of n is defined as
S½n� ¼ E½ðn� E½n�Þ3�: ð1Þ
Example 1. Let n ¼ ða; b; cÞ be a triangular fuzzy variable. Then it is easy to prove that
S½n� ¼ ðc � aÞ2

32
½ðc � bÞ � ðb� aÞ�;
which implies that if c � b P b� a, then S½n�P 0 and if c � b 6 b� a, then S½n� 6 0. Especially, if n is symmetric, then we have b� a ¼ c � b
and S½n� ¼ 0. Furthermore, for fixed a and c, if b ¼ a, then S½n� obtains its maximum value ðc � aÞ3=32; and if b ¼ c, then S½n� obtains its min-
imum value �ðc � aÞ3=32 (see Fig. 1)

Example 2. Let n be a normally distributed fuzzy variable with membership function lðxÞ ¼ 2 1þ exp pjx� ej=
ffiffiffi
6
p

r
� �� �h i�1

(see Appen-
dix). For any real number r, it follows from the credibility inversion theorem that
Crfn 6 rg ¼ 1þ exp
pðe� rÞffiffiffi

6
p

r

� �� ��1

; Crfn P rg ¼ 1þ exp
pðr � eÞffiffiffi

6
p

r

� �� ��1

:

It follows from Definition 1 that
S½n� ¼ E½ðn� eÞ3� ¼
Z þ1

0
Crfðn� eÞ3 P rgdr �

Z 0

�1
Crfðn� eÞ3 6 rgdr ¼ 3

Z þ1

0
r2Crfn P r þ egdr � 3

Z 0

�1
r2Crfn 6 r þ egdr

¼ 3
Z þ1

0
r2 1þ exp

prffiffiffi
6
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r

� �� ��1

dr � 3
Z 0

�1
r2 1þ exp � prffiffiffi

6
p

r

� �� ��1

dr

¼ 3
Z þ1

0
r2 1þ exp

prffiffiffi
6
p

r

� �� ��1

� r2 1þ exp
prffiffiffi
6
p

r

� �� ��1
 !

dr ¼ 0:
Example 3. Let n be an exponentially distributed fuzzy variable with membership function lðxÞ ¼ 2 1þ exp px=
ffiffiffi
6
p

m
� �� �h i�1

(see Appen-
dix). For any r P 0, it follows from the credibility inversion theorem that
Crfn 6 rg ¼ 1� 1þ exp
prffiffiffi
6
p

m

� �� ��1

; Crfn P rg ¼ 1þ exp
prffiffiffi
6
p

m

� �� ��1

:

Then we have E½n� ¼ e. It follows from Definition 1 that
S½n� ¼ E½ðn� E½n�Þ3� ¼ 3
Z þ1

E½n�
ðu� E½n�Þ2 Crfn P rgdr � 3

Z E½n�

0
ðu� E½n�Þ2 Crfn 6 rgdr

¼ 18
ffiffiffi
6
p

m3

p3

Z þ1

ln 2

ðr � ln 2Þ2

1þ expðrÞdr �
Z ln 2

0

ðr � ln 2Þ2 expðrÞ
1þ expðrÞ dr

 !
¼ 18

ffiffiffi
6
p

m3

p3

Z þ1

0

ðr � ln 2Þ2

1þ expðrÞdr � 6
ffiffiffi
6
p

m3 ln 8
p3 ¼ am3;
where a ¼ 3
ffiffiffi
6
p
ð9fð3Þ þ 12 ln 2� p2 ln 2Þ=p3 � 2:914: Note that fðwÞ ¼

P1
k¼1k�w.

Theorem 1. Let n be a fuzzy variable with finite expected value. For any real numbers a and b, we have
S½anþ b� ¼ a3S½n�:
Fig. 1. Membership functions of several particular triangular fuzzy variables.
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Proof. It can easily shows that E½anþ b� ¼ aE½n� þ b (see Appendix). It follows from Definition 1 that
S½anþ b� ¼ E½ðanþ b� ðaE½n� þ bÞÞ3� ¼ E½a3ðn� E½n�Þ3� ¼ a3E½ðn� E½n�Þ3� ¼ a3S½n�:
The proof is complete. h

Theorem 2. Let n be a symmetric fuzzy variable with finite expected value. Then we have
S½n� ¼ 0:
Proof. Let l be the membership function of n. Since n is symmetric, there is a real number e such that
lðeþ rÞ ¼ lðe� rÞ; 8r 2 R:
Furthermore, it is obtained that
sup
sPrþe

lðsÞ ¼ sup
sPr

lðsþ eÞ ¼ sup
sPr

lðe� sÞ ¼ sup
s6e�r

lðsÞ:
It follows from the credibility inversion theorem that
Crfn P r þ eg ¼ 1
2

sup
sPrþe

lðsÞ þ 1� sup
s<rþe

lðsÞ
� �

¼ 1
2

sup
r6e�x

lðrÞ þ 1� sup
r>e�x

lðrÞ
� �

¼ Crfn 6 e� xg:
First, we prove that E½n� ¼ e. In fact, according to the definition of expected value, we have
E½n� ¼
Z þ1

0
Crfn P rgdr �

Z 0

�1
Crfn 6 rgdr ¼
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e
Crfn 6 e� rgdr ¼

Z 0

�e
Crfn P r þ egdr þ
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0
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P r þ eg dr �
Z þ1

0
Crfn 6 e� rgdr þ

Z e

0
Crfn 6 e� rgdr ¼

Z 0

�e
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Z e

0
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Z e

0
ðCrfn

P e� rg þ Crfn 6 e� rgÞdr ¼ e:
Furthermore, it follows from the definition of skewness that
S½n� ¼
Z þ1

0
Crfðn� eÞ3 P rgdr ¼

Z þ1

0
3r2Crfn� e P rgdr �

Z 0

�1
3r2Crfn� e 6 rgdr ¼

Z þ1

0
3r2Crfn� e 6 �rgdr

�
Z þ1

0
3r2Crfn� e 6 �rgdr ¼ 0:
The proof is complete. h
3. Mean-variance-skewness models

Let ni be a fuzzy variable representing the return of the ith security, and let xi be the proportion of the total capital invested in security i.
In general, ni is given as ðp0i þ di � piÞ=pi where pi is the closing price of the ith security at present, p0i is the estimated closing price in the next
year, and di is the estimated dividends during the coming year.

When minimal expected return and maximal risk are given, the investors interested in the use of skewness prefer a portfolio with large
skewness. Therefore, we proposed the following mean-variance-skewness model:
maximize S½n1x1 þ n2x2 þ � � � þ nnxn�;
subject to : E½n1x1 þ n2x2 þ � � � þ nnxn�P a;

V ½n1x1 þ n2x2 þ � � � þ nnxn� 6 c;
x1 þ x2 þ � � � þ xn ¼ 1;
xi P 0; i ¼ 1;2; . . . ;n:

8>>>>>><
>>>>>>:

ð2Þ
The first constraint ensures the expected return is no less than some target value a, and the second one assures that risk does not exceed
some given level c the investor can bear. The last two constraints imply that all the capital will be invested to n securities and short-selling
is not allowed.

The first variation of model (2) is the following,
minimize V ½n1x1 þ n2x2 þ � � � þ nnxn�;
subject to : E½n1x1 þ n2x2 þ � � � þ nnxn�P a;

S½n1x1 þ n2x2 þ � � � þ nnxn�P b;

x1 þ x2 þ � � � þ xn ¼ 1;
xi P 0; i ¼ 1;2; . . . ;n:

8>>>>>><
>>>>>>:

ð3Þ
The aim of this model is to minimize risk when expected return and skewness are both no less than some given target values a and b, respec-
tively. If the second constraint does not exist, then the above model degenerates to mean-variance model proposed by Huang [6].



242 X. Li et al. / European Journal of Operational Research 202 (2010) 239–247
The second variation of model (2) is the following,
maximize E½n1x1 þ n2x2 þ � � � þ nnxn�;
subject to : S½n1x1 þ n2x2 þ � � � þ nnxn�P b;

V ½n1x1 þ n2x2 þ � � � þ nnxn� 6 c;
x1 þ x2 þ � � � þ xn ¼ 1;
xi P 0; i ¼ 1;2; . . . ;n:

8>>>>>><
>>>>>>:

ð4Þ
The aim of this model is to maximize the expected return. Similarly, if the first constraint does not exist, then it degenerates to the other
mean-variance model considered by Huang [6].

The final variation of model (2) is the following multi-objective nonlinear programming,
maximize E½n1x1 þ n2x2 þ � � � þ nnxn�;
minimize V ½n1x1 þ n2x2 þ � � � þ nnxn�;
maximize S½n1x1 þ n2x2 þ � � � þ nnxn�;
subject to : x1 þ x2 þ � � � þ xn ¼ 1;

xi P 0; i ¼ 1;2; . . . ;n:

8>>>>>><
>>>>>>:

ð5Þ
When the membership functions of n1; n2; . . . ; nn are symmetric, it follows from Theorem 2 that S½n1x1 þ n2x2 þ � � � þ nnxn� ¼ 0 for any
xi P 0; i ¼ 1;2; . . . ;n, which implies the third objective vanishes. Model (5) degenerates a bi-objective mean-variance model.

Theorem 3. Suppose that ni ¼ ðai; bi; ciÞ are independent triangular fuzzy variables for i ¼ 1;2; . . . ;n. Then model (2) degenerates to the
following deterministic programming,
max
Pn
i¼1

xiðci � aiÞ
� �2

�
Pn
i¼1

xiðci þ ai � 2biÞ;

s:t:
Pn
i¼1

xiðai þ 2bi þ ciÞP 4a;

11
Pn
i¼1

xiðci � aiÞ
� �2 Pn

i¼1
xið2bi � ai � ciÞ

����
����

þ2 8
Pn
i¼1

xiðci � aiÞ þ 3
Pn
i¼1

xið2bi � ai � ciÞ
����

����
� � Pn

i¼1
xiðci � biÞ

� �2

þ
Pn
i¼1

xiðbi � aiÞ
� �2

 !

6 192c
Pn
i¼1

xiðci � aiÞ þ
Pn
i¼1

xið2bi � ci � aiÞ
����

����
� �

;

x1 þ x2 þ � � � þ xn ¼ 1;
xi P 0; i ¼ 1;2; . . . ;n:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ
Proof. Since ni ¼ ðai; bi; ciÞ are all triangular fuzzy variables, it follows from Extension Principle of Zadeh that
Xn

i¼1

nixi ¼
Xn

i¼1

xiai;
Xn

i¼1

xibi;
Xn

i¼1

xici

 !
;

which is also a triangular fuzzy variable. Furthermore, we obtain E½x1n1 þ x2n2 þ � � � þ xnnn� ¼
Pn

i¼1ðai þ 2bi þ ciÞxi=4 and
S½x1n1 þ x2n2 þ � � � þ xnnn� ¼

Pn
i¼1xiðci � aiÞ

� 	2 �
Pn

i¼1xiðci þ ai � 2biÞ: Meanwhile, we have
V ½x1n1 þ x2n2 þ � � � þ xnnn� ¼
11

Pn
i¼1xiðci � aiÞ

� 	2 Pn
i¼1xið2bi � ai � ciÞ

�� ��
192

Pn
i¼1xiðci � aiÞ þ

Pn
i¼1xið2bi � ci � aiÞ

�� ��� 	

þ
2 8

Pn
i¼1xiðci � aiÞ þ 3

Pn
i¼1xið2bi � ai � ciÞ

�� ��� 	 Pn
i¼1xiðci � biÞ

� 	2 þ
Pn

i¼1xiðbi � aiÞ
� 	2

� �
192

Pn
i¼1xiðci � aiÞ þ

Pn
i¼1xið2bi � ci � aiÞ

�� ��� 	 :
Substituting these equations into model (2), the theorem is proved. h

Remark 1. When security returns are all independent triangular fuzzy variables, models (3) and (4) are also converted into deterministic
mathematical programming problems using a similar way to Theorem 3.
4. Genetic algorithm

If the security returns are general fuzzy variables, then it is difficult to obtain the exact values of the expected value, variance and skew-
ness of the portfolio return. Therefore, we employ fuzzy simulation to calculate these values. Fuzzy simulation technique was first intro-
duced by Liu and Iwamura [14], and then was successfully applied to solving fuzzy optimization problems by Liu [12]. In addition, Liu [16]
proved the convergence of fuzzy simulation, which shows its effectiveness in approximating exact values.

Assume that ni are fuzzy variables with membership functions li, and xi are decision variables for all 1 6 i 6 n. In order to calculate the
expected value, variance and skewness of n1x1 þ n2x2 þ � � � þ nnxn, we must calculate the value of Crfn1x1 þ n2x2 þ � � � þ nnxn P rgwhere r is
a nonnegative real number. Randomly generate real numbers wji such that ljðwjiÞP e; j ¼ 1;2; . . . ; k; i ¼ 1;2; . . . ;N, respectively, where e is
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a sufficiently small number, and N is a sufficiently large integer. Then, the value of Crfn1x1 þ n2x2 þ � � � þ nnxn P rg can be estimated by the
formula
Table 1
Fuzzy r

Security

1
2
3
4
5

1
2

max
16i6N

min
16j6n

ljðwjiÞ
Xn

j¼1

wjixj P r

�����
( )

þ 1�max
16i6N

min
16j6n

ljðwjiÞ
Xn

j¼1

wjixj < r

�����
( ) !

:

In addition, we write q ¼ E½n1x1 þ n2x2 þ � � � þ nnxn� which may be calculated by fuzzy simulation [12].
The following algorithm is used to calculate S½n1x1 þ n2x2 þ � � � þ nnxn�.

Step 1. Set b ¼ 0.
Step 2. Randomly generate v jk such that ljðv jkÞP e for j ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;K , where e is a sufficiently small number.
Step 3. Set two numbers
a ¼ min
16k6K

ðv1kx1 þ v2kx2 þ � � � þ vnkxn � qÞ3; b ¼ max
16k6K

ðv1kx1 þ v2kx2 þ � � � þ vnkxn � qÞ3:
Step 4. Randomly generate a real number r from ½a; b�.
Step 5. If r P 0, then b bþ Crfn1x1 þ n2x2 þ � � � þ nnxn P rg.
Step 6. If r < 0, then b b� Crfn1x1 þ n2x2 þ � � � þ nnxn 6 rg.
Step 7. Repeat the fourth to sixth steps for K times.
Step 8. Return a _ 0þ b ^ 0þ bðb� aÞ=K as the target value.

If we want to calculate V ½n1x1 þ n2x2 þ � � � þ nnxn�, then we only need replace a; b in the above algorithm by
a ¼ min
16k6K

ðv1kx1 þ v2kx2 þ � � � þ vnkxn � qÞ2; b ¼ max
16k6K

ðv1kx1 þ v2kx2 þ � � � þ vnkxn � qÞ2:
4.1. Genetic algorithm

Genetic algorithm is an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. Since
Holland first proposed it in 1975, genetic algorithm has been widely studied, experimented and applied in many fields such as industrial
engineering, finance, operations research and so on. Especially, Liu [12] has successfully applied genetic algorithm to solve many optimi-
zation problems with fuzzy parameters.

In this work, a solution x ¼ ðx1; x2; . . . ; xnÞ is encoded by a chromosome c ¼ ðc1; c2; . . . ; cnÞ, where the genes c1; c2; . . . ; cn are restricted as
nonnegative numbers. Then the decoding processes are determined by the link xi ¼ ci=ðc1 þ c2 þ � � � þ cnÞ, which ensures that
x1 þ x2 þ � � � þ xn ¼ 1 always holds. In addition, a chromosome is called feasible if it satisfies the corresponding constraint conditions.

In GA, we employ the rank-based-evaluation function to measure the likelihood of reproduction for each chromosome. The rank-based
evaluation function is defined by EvalðciÞ ¼ vð1� vÞi�1

; i ¼ 1;2; . . . ; pop size where v 2 ð0;1Þ. Especially, i ¼ 1 indicates the best individual,
and i ¼ pop size indicates the worst one.

The procedures of the genetic algorithm is summarized as follows:

Step 1. Initialize pop size feasible chromosomes, in which fuzzy simulation is used to check the feasibility of the chromosomes.
Step 2. Employ fuzzy simulation to compute the objectives for all chromosomes, and then give an order of the chromosomes based on

the objective values.
Step 3. Evaluate the evaluation function of each chromosome according to the rank-based-evaluation function. Then calculate the fitness

of each chromosome by the evaluation function.
Step 4. Select the chromosomes according to spinning the roulette wheel.
Step 5. Update the chromosomes by crossover operation and mutation operation where fuzzy simulation is utilized to check the feasi-

bility of each child.
Step 6. Repeat Steps 2–5 for a given number of generations.
Step 7. Report the best chromosome, and then decoded into the optimal solution.

5. Numerical examples

In this section, mean-variance-skewness models are applied to the data from Huang [7]. The data is composed of membership functions
of 10 security returns, which is shown in Table 1. The returns of first seven securities are triangular fuzzy variables, and the others are fuzzy
eturns of 10 securities (units per stock).

i Fuzzy return Security i Fuzzy return

ð�0:3;1:8;2:3Þ 6 ð�0:8;2:5;3:0Þ
ð�0:4;2:0;2:2Þ 7 ð�0:6;1:8;3:0Þ
ð�0:5;1:9;2:7Þ 8 ð1þ ðr � 1:6Þ4Þ�1

ð�0:6;2:2;2:8Þ 9 ð1þ ð5r � 7:4Þ2Þ�1

ð�0:7;2:4;2:7Þ 10 expð�ðr � 1:6Þ2Þ



Table 2
Comparison of results.

1 2 3 4 5 6 7 Mean Variance Semivariance Skewness

Model (6) 20.00% – – 80.00% – – – 1.60 0.7019 0.6141 �0.6823
Model (7) 0 47.06% – 35.28% 17.66% – – 1.60 0.7232 0.6124 �0.7532

Table 3
Investment proportion of 10 securities (%).

Security i 1 2 3 4 5 6 7 8 9 10

Allocation of money 4.04 5.52 8.22 9.47 8.17 0.20 16.55 17.47 21.22 9.14
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variables with membership functions li; i ¼ 8;9;10. For example, the return of the first security is fuzzy variable ð�0:3;1:8;2:3Þwhich rep-
resents about 1.8 units per stock.

Example 4. Assume that an investor wishes to create a portfolio from the first seven securities. In order to use the proposed models, the
investor need to set two parameters: the minimum expected return a and the bearable maximum risk c. Here, let a ¼ 1:6 and c ¼ 0:8. Since
the first seven returns are all triangular fuzzy variables, we can use model (6) to search for optimal portfolio.

Since the returns are asymmetric, the investor also employs mean-semivariance model to create an optimal portfolio. In order to
compare the results of mean-variance-skewness model and mean-semivariance model, we consider model 8 of Huang [7].
maximize Sv ½n1x1 þ n2x2 þ � � � þ n7x7�;
subject to : E½n1x1 þ n2x2 þ � � � þ n7x7�P 1:6;

x1 þ x2 þ � � � þ x7 ¼ 1;
xi P 0; i ¼ 1;2; . . . ;7;

8>>><
>>>:

ð7Þ
where Sv is the semivariance operator of fuzzy variable.
We use MATLAB to solve models (6) and (7) and the computational results are shown in Table 2. The two models obtain different

optimal portfolios which have the same mean 1.60 and almost the same semivariance. However, the first portfolio has lower variance, and
higher skewness than the second one, which is desired by the investor.

Example 5. If an investor chooses securities from the whole 10 securities, then all the mean-variance-skewness models cannot be con-
verted into deterministic models. Therefore, we use genetic algorithm to solve the proposed models. Assume that the minimum expected
return the investor can accept is 1.5 and the bearable maximum risk is 1.2. Based on the optimization model, we obtain the following
model,
maximize S½n1x1 þ n2x2 þ � � � þ n10x10�;
subject to : E½n1x1 þ n2x2 þ � � � þ n10x10�P 1:5;

V ½n1x1 þ n2x2 þ � � � þ n10x10� 6 1:2;
x1 þ x2 þ � � � þ x10 ¼ 1;
xi P 0; i ¼ 1;2; . . . ;10:

8>>>>>><
>>>>>>:

ð8Þ
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Fig. 2. The convergence of objective value of Example 5.
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Fig. 3. Allocations of capital for mean-variance model and mean-variance-skewness model.
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We choose the following parameters in the GA: Pc ¼ 0:3; Pm ¼ 0:2; pop size ¼ 50. A run of genetic algorithm (500 generations and 3000
cycles for fuzzy simulation) shows that the allocation of money should be based on Table 3. The corresponding maximum skewness is 1.72.
In addition, the convergence of maximum skewness of portfolio is shown in Fig. 2 which indicates genetic algorithm is effective to solve the
proposed model.

Example 6. Suppose that an investor wishes that the skewness of his portfolio is at least �1:0, and the minimal expected return is 1.5. If he
accepts variance as risk, then the model is formulated as follows,
Table 4
Compar

No.

1
2
3
4
5
6
7

minimize V ½n1x1 þ n2x2 þ � � � þ n10x10�;
subject to : E½n1x1 þ n2x2 þ � � � þ n10x10�P 1:5;

S½n1x1 þ n2x2 þ � � � þ n10x10�P �1:0;
x1 þ x2 þ � � � þ x10 ¼ 1;
xi P 0; i ¼ 1;2; . . . ;10:

8>>>>>><
>>>>>>:

ð9Þ
First note that if we do not consider skewness of the portfolio, then the model generates mean-variance model. The parameters of GA are
chosen as follows: Pc ¼ 0:4; Pm ¼ 0:3;pop size ¼ 60. Here, we compare the allocation of capital between this model and mean-variance model
by Fig. 3. The minimum risk of mean-variance-skewness model is 0.383, and the minimum risk of mean-variance model is 0.285,
respectively.

Example 7. Assume that an investor wishes that the skewness of his portfolio is at least �1:0, and the maximal risk does not exceed 1.2.
Meanwhile, if the investor wants to maximize the expected return, then the model is formulated as follows,
minimize E½n1x1 þ n2x2 þ � � � þ n10x10�;
subject to : S½n1x1 þ n2x2 þ � � � þ n10x10�P �1:0;

V ½n1x1 þ n2x2 þ � � � þ n10x10� 6 1:2;
x1 þ x2 þ � � � þ x10 ¼ 1;
xi P 0; i ¼ 1;2; . . . ;10:

8>>>>>><
>>>>>>:

ð10Þ
In order to test the robust of the proposed algorithm, we solve the model by setting the different parameters in the GA. In order to compare
the results, we employ the relative error which is defined by ð Maximal objective� Actual objectiveÞ=Maximal objective� 100%, where the
maximal objective is the maximum of all the computational results obtained. The detailed results are shown in Table 4. Obviously, the
ison of solutions in Example 6.

pop size Pc Pm Simulation times Generation Expected value Relative error (%)

50 0.3 0.2 2500 200 1.6855 0.38
30 0.4 0.3 2500 200 1.6856 0.37
80 0.8 0.3 2300 150 1.6879 0.24
90 0.6 0.7 2500 100 1.6905 0.08

110 0.7 0.8 2500 100 1.6812 0.63
130 0.5 0.2 2200 100 1.6919 0

70 0.2 0.1 2500 200 1.6871 0.28
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relative errors do not exceed 1%. That is, the proposed algorithm is robust to set parameters and effective for solving the mean-variance-
skewness models.
6. Conclusions

In this paper, a concept of skewness for fuzzy variable was proposed, and several useful theorems were proved. In addition, a mean-
variance-skewness model was formulated for fuzzy portfolio selection problem and two variations of this model were also discussed.
To solve the proposed model, a genetic algorithm was designed and fuzzy simulation technique was employed. Finally, several numerical
examples were illustrated to show the effectiveness of the proposed algorithm. The methodology presented here is quite general and can
be extended to the portfolio selection problems in hybrid and uncertain environments.
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Appendix. Credibility theory

Credibility theory was founded by Liu in 2004 and refined by Liu [13] as a branch of mathematics for studying fuzzy phenomena. In this
part, some main results of credibility theory are recalled for the convenience of reading the paper.

Let n be a fuzzy variable with membership function l. For any B � R, the credibility measure of n 2 B was defined by Liu and Liu [15] as
Crfn 2 Bg ¼ 1
2

sup
x2B

lðxÞ þ 1� sup
x2Bc

lðxÞ
 !

: ð11Þ
To rank fuzzy variables, Liu and Liu [15] defined the expected value of n as follows,
E½n� ¼
Z þ1

0
Crfn P rg dr �

Z 0

�1
Crfn 6 rgdr ð12Þ
provided that at least one of the two integrals is finite. If fuzzy variables n and g are independent, then we have
E½anþ bg� ¼ aE½n� þ bE½g� for any a; b 2 R: ð13Þ
Since a fuzzy variable n and a constant are clearly independent, we have E½anþ b� ¼ aE½n� þ b.
Suppose that n is a fuzzy variable with finite expected value. Then its variance was defined by Liu and Liu [15] as
V ½n� ¼ E½ðn� E½n�Þ2�: ð14Þ
It is easy to prove that V ½n� ¼ 0 if and only if Crfn ¼ E½n�g ¼ 1.

Example 8. A triangular fuzzy variable n is fully determined by the triplet ða; b; cÞ of crisp numbers with a < b < c and its membership
function is given by
lðxÞ ¼
ðx� aÞ=ðb� aÞ; if a 6 x 6 b;

ðx� cÞ=ðb� cÞ; if b 6 x 6 c;
0; otherwise:

8><
>: ð15Þ
In what follows, we write n ¼ ða; b; cÞ (see Fig. 4). It is easy to prove that E½n� ¼ ðaþ 2bþ cÞ=4 and V ½n� ¼ ð33a3 þ 21a2bþ 11ab2 � b3Þ=ð384aÞ
where a ¼maxfb� a; c � bg and b ¼minfb� a; c � bg. In particular, if b� a ¼ c � b, then we have E½n� ¼ b and V ½n� ¼ ðc � aÞ2=24.

Example 9. If n is a normally distributed fuzzy variable with the following membership function
lðxÞ ¼ 2 1þ exp
pjx� ejffiffiffi

6
p

r

� �� ��1

; x 2 R; ð16Þ
then Li and Liu [11] proved that E½n� ¼ e and V ½n� ¼ r2 (see Fig. 5).

Example 10. A fuzzy variable n is called exponentially distributed if it has the following membership function
Fig. 4. Membership functions of triangular fuzzy variable n ¼ ða; b; cÞ.



Fig. 5. Membership functions of normally distributed fuzzy variable with e ¼ 1 and r ¼ 1.

Fig. 6. Membership functions of exponentially distributed fuzzy variable with m ¼ 1.
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lðxÞ ¼ 2 1þ exp
pxffiffiffi
6
p

m

� �� ��1

; x P 0; ð17Þ
where m > 0. Li and Liu [11] proved that E½n� ¼
ffiffiffi
6
p

m ln 2
� �

=p (see Fig. 6).
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