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Abstract

This paper considers the problem of short to mid-term aircraft trajectory pre-

diction, that is, the estimation of where an aircraft will be located over a 10 to 30

minutes time horizon. Such a problem is central in decision support tools, espe-

cially in conflict detection and resolution algorithms. It also appears when an air

traffic controller observes traffic on the radar screen and tries to identify conver-

gent aircraft, which may be in conflict in the near future. An innovative approach

for aircraft trajectory prediction is presented in this paper. This approach is based

on local linear functional regression that considers data preprocessing, localizing

and solving linear regression using wavelet decomposition. This algorithm takes

into account only past radar tracks, and does not use any physical or aeronautical

parameters. This approach has been successfully applied to aircraft trajectories

between several airports on the data set that is one year air traffic over France.

The method is intrinsic and independent from airspace structure.
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Nomenclature

{Ω,F,N} = Probability space

Xω(t), Yω(s) = Hilbert random processes

Xn = predictor variable coming from Xω(t)

Yn = response variable coming from Yω(s)

τnX , τnY = time intervals related to Xn and Yn respectively

W k(R) = Sobolev space of order k

λn = local weight

Ψx,Ψy = Two different wavelet basis used for expansions

an,i, bn,j , ci,j = wavelet coefficients

{V}j∈Z = linear spaces generated by wavelet functions

β(t, s) = square-integrable matrix-valued function

t, s = time

i, j, k, n = waypoint
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1. Introduction

1.1. Basics of Air Traffic Control

Air Traffic Control (ATC) is a service provided by ground-based air traffic

controllers, who manage aircraft from departure until arrival. Air Traffic Manage-

ment (ATM) research and development has produced numerous Decision Support

Tools (DST) aimed at providing controllers with automated conflict detection and

resolution, trajectory planning, and aids for sequencing arrivals and departures

at airports. At a strategic level (that is several months before flights take place),

assessing controllers workload is a major concern in order to keep it within ac-

ceptable bounds and take mitigating actions if needed.

In many parts of the world, ATM induces a large amount of control workload

(for example, about 8000 aircraft per day fly in the French airspace). It is not

possible for a single or even a team of controllers to manage such a workload. To

cope with this problem, airspace is divided into polygonal cells called sectors. A

team of 2 controllers is in charge of a control sector and performs three essential

tasks: monitoring (that is checking compliance of the traffic with regulatory sep-

arations), conflict resolution, and coordination (which deals with aircraft transfer

from and to adjacent sectors. The first and second task heavily rely on the ability

to predict where an aircraft will be located in a 10 minutes time window. From this

observation, it is clear that controller’s workload can be reduced by an accurate

and automated forecast of aircraft trajectories, since the knowledge of whether

conflicts are to be expected or not helps in prioritize the actions to be taken.

A major concern when dealing with trajectory prediction is the robustness of

forecast with respect to unknown or partially known influential parameters. Many

different factors have an adverse impact on the accuracy of prediction and depend
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on the time horizon for the forecasting. In principle, the knowledge of the flight

dynamics equations for a given aircraft, the intended flight plan and exogenous

parameters like temperature, wind and ATC orders will be enough to accurately

model a trajectory from departure to destination. Unfortunately, many of these

factors are unknown or partially known only (as an example, the take-off mass

of the aircraft, or the wind during the flight can only be guessed). This is the

major limitation of model based predictors, and it explains why they perform quite

poorly on a real data).

Another approach is to assume that trajectories are realizations of some ran-

dom process and regression techniques applied to previous trajectories. Invoking

Takens theorem, it can be shown that a sufficient number of samples is enough

to reconstruct a dynamics conjugate to the real one based on flight equations and

thus that regression algorithms are in principle as powerful as model based pre-

dictors. Unfortunately, estimating the size of the sample to be used is a quite

difficult challenge, and we cannot oversize the number of samples since having

too long sequences has a detrimental effect on the numerical stability of the algo-

rithms. The approach proposed here removes some of the limitations of classical

regression by considering trajectories as functions (elements of a Sobolev space),

instead of considering temporal samples of them. We also use a convenient basis

for representing the so-used functions, and so limit the amount of computation.

1.2. Trajectory Prediction in decision support tools

As mentioned above, the knowledge of aircraft positions along time, termed

as the ’4D trajectory’ in the context of future ATM systems, is a key ingredient

for improving the capacity of the airspace and will ultimately allow the system to

cope with the anticipated two to three fold increase in the number of flights by
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2030.

Early conflict prediction. The objective of conflict prediction and resolution al-

gorithms is to anticipate conflict situations between two or more aircraft and to

propose mitigating actions to controllers (in the 2050 horizon, full automation is

also an option, with the presence of humans only for monitoring purposes). Let

us mention however that automated conflict resolution is a complicated task that

is not yet fully solved by algorithms. The question of whether a conflict will exist

with a high probability has to be answered before triggering the solver. Trajectory

prediction (TP) is obviously a key ingredient for the design of efficient automated

conflict solver. In such a context, the accuracy requirements stem from the need

of keeping the separation in early detection.

The assessment of TP performance will be made using a composite indicator:

• Evaluation of the level of false alarms and non-detection on a test data set;

• When detection is correctly triggered, the performance is the distance in

space and time between the forecast point of conflict and the real one.

The conflict prediction has the highest requirements among the two main uses of

TP, and is still an open issue. The problem is worsening by the need for wind

knowledge along the flight path that presently is unfortunately currently available

only through weather forecast services, with a quite coarse precision and resolu-

tion both in space and time. This topic is far from being solved yet, and speaks

in favor of regression based predictor since wind information can be taken into

account from past trajectories observed in the vicinity (in time and space) of the

area of interest.
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Landing sequence. According to EUROCONTROL’s statement, the general ob-

jective of management software is to assist, through dedicated automation, in the

management of the flow of arriving traffic in a particular airspace and to particular

points. It aims at optimizing the landing times of arrivals (sequence); regulate

and manage the flow of aircraft to improve predictability, reduce workload and

at the same time minimize the impact on the environment. Trajectory prediction

assists air traffic controllers of the arrival flow, particularly in the case of pertur-

bations (such as runway closure). Here, forecasting of arrival time is the relevant

objective. The spatial accuracy is less important since traffic is expected to merge

at a given entry point. The wind issue already mentioned has unfortunately the

same adverse effect as in the conflict detection problem since flight management

systems are not efficient at ensuring low along track error, and wind velocity will

have a direct impact on the time needed to reach a given point on the flight plan.

The performance assessments of TP on the problem of sequencing will easily be

done by comparing a predicted arrival time to the real one, for a global test data

set. It is clear that solving the first problem will in turn solve also the sequencing

one.

1.3. Summary

Despite the increasing autonomy in the future air traffic management systems,

especially 4D trajectory planning, the ability of trajectory prediction is still of high

importance. As known, 4D trajectory planning implies aircraft to be properly

located in certain place at certain time. But, such an approach is not realistic.

Presently, Flight Management Systems are not able to impose an aircraft keep a

given path or be at a given point at given time. Here the major factor is the wind.

For example, by the official information from Airbus, in 4D trajectory planning
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for one hour flight the along path error is about 15 Nautical miles (NM). Thus,

trajectory prediction problem can be stated as an crucial issue at least for near

future.

Several known methods to solve the problem of trajectory prediction are de-

scribed in part 2 of the paper (some of them in (C.Gong and D.McNally, 2004),

(Y.L.Fablec and Y.Alliot, 1999), (M.Serrurier and Prade, 2004), (H.Choi, August

2010). Part 3 outlines the new approach to dealing with aircraft trajectories, con-

sidering them to be functional data. Also, the wavelet theory in common has been

described there. The next part introduces the associated mathematical modeling

environment and describes the main results of the paper. Finally, the last part

shows simulation results and the efficiency of the method on a recorded one year

air traffic data over France.

2. State-of-the-Art

2.1. Trajectory Prediction based on Multiple Linear Regression

Firstly, the standard approach consisting of multiple linear regression for air-

craft trajectory prediction is applied to the same data set as in the main part of the

paper. Typically, standard linear regression can be seen a kind of Kalman filter,

since:

• Both Kalman filter and linear regression use measurements observed over

time to produce estimates as close as possible to the true value of the esti-

mated variables.

• In both cases the training set contains noise and other uncertainties.
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One difference is that the Kalman filter is a recursive method, whereas the

linear regression uses all past observation in batch mode to predict the future value

of the variable of interest.

The general linear regression model is defined as:

y = β0 + β1x1 + · · ·+ βmxm + ε (1)

where

• y is a dependent or response variable

• x1, . . . , xn are independent or predictor variables

• βj are parameters

• ε is an error with zero mean.

The linear least square estimator is written:

ŷ = β̂0 + β̂1x1 + · · ·+ β̂mxm (2)

where ŷ is the estimate of y and β̂i is an estimate of βi, i = 1, . . . ,m. Parameters

β̂0, . . . , β̂m can be obtained by minimizing the sum of squared residuals in Linear

Least Squares Method, that is, for a given set of n observations {yi, xi1, . . . , xim},

the estimated values β̂0, . . . , β̂m result from minimizing:

SSR =
n∑

i=1

(yi −
m∑

j=1

βjxij)
2 (3)

over the βj , j = 1, 2, . . .m. In order to simulate the regression we use a set of

n = 293 aircraft trajectories. We note the trajectory to be predicted as y and
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training set of predictor variables as xi, i = 1, ...,m. Figure 1 shows full 293

trajectories that are used to build the regression model. From now, the goal is to

forecast one of the trajectory from the training set and available trajectory data up

to the time at which the forecast is made.

Place figure 1 about training set for multiple linear regression here.

A simulated prediction can be seen from figures 2 and 3. On both figures

prediction starts from time t = 130 seconds. The predicted trajectory is shown

in dashdot and real trajectory of the aircraft is shown as normal line. The major

issue with this regression approach lies with the fact that to many parameters are

used as inputs to the regression model: in fact, all observations were used to solve

the regression. The result on figure 2 is that the model is overfitted to the data,

and it is highly sensitive to noise and variations of the input parameters. On the

other hand figure 3 illustrates the behavior of the linear regression method, when

the number of observations used in the training set is reduced to one-fourth of

the available data set, that is, for each trajectory from the same data set, as in

figure 1, 1 out of 4 points is used. It is clearly seen from the figures that too many

parameters entering the initial model produces big oscillations in prediction and a

poor generalization of the model, but a too small number of parameters can lead

to a poor description of the shape of the trajectory (G.Lebanon, 2010). No doubt,

data overfitting and model generalization can be stated as the main problem of

standard regression method, particularly multiple linear regression models.

Place figures 2 and 3 about altitude trajectory prediction and predicted trajec-

tory here.

In section IV below, the reader will see that we expand our approach by as-

suming the aircraft trajectories are functional data and by relying on methods
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that allow us to identify the optimal number of input parameters while conserv-

ing enough information on the shapes of the trajectories. One of such method is

called, in generally, Cross-Validation procedure. It also estimates the prediction

accuracy of statistical models and assesses how they generalize to an independent

data set. As it will be seen in section IV, solving the problem of choosing the

optimal number of parameters in the model can reduce the Mean Square Error to

the minimum. Before doing so, we turn our attention to other existing methods

available from existing literature.

2.2. Using Neural Networks to Predict Aircraft Trajectories

This section is based on the work of Yann le Fablec and Jean Marc Alliot - ”Us-

ing Neural Networks to Predict Aircraft Trajectories” (Y.L.Fablec and Y.Alliot,

1999). In this paper, the authors deal with the problem of aircraft trajectory pre-

diction in the vertical plane. They propose two steps: (i) examining the method

that depends on a small number of starting parameters; (ii) extend the method on

wide range of cases. The chosen method is based on neural networks that are well

known for having universal approximation property of continuous mappings (Kol-

mogorov theorem and variants). Since neural networks are able to approximate

arbitrary well any continuous mapping, there are good candidates for improving

over the multiple linear regression already described. The standard architecture

for such purpose is one hidden layer with sigmoid activation function and an out-

put layer, that is a single linear neuron. Given input xi, i = 1 . . . N , the output of

the neural network is given by:

y =
∑

j=1...M

ajfj

(
∑

i=1N

wjixi + bi

)
+ c (4)
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where the scalars wij , bi are respectively the weights and the biases of the hidden

neurons, and aj and c the weights and bias of the output neuron. The activation

functions fj are usually all equal, and in the present application, selected to be

the hyperbolic tangent. Finding the parameters wij, bi, ai, c of the neural network

is obtained by minimizing the prediction error over the learning database: given

samples (x1k, . . . xNk, yk), k = 1 . . .M , one has to solve the least mean square

problem:

min
wij ,bi,ai,c

M∑

k=1

(
yk −

∑

j=1...M

ajfj

(
∑

i=1N

wjixik + bi

)
+ c

)2

(5)

A popular algorithm for finding the optimal parameter is the steepest descent,

efficiently computed by the so-called back propagation of the gradient. As usual

with this kind of method, quite a huge number of iterations are needed to reach

the optimum value (in order of several thousands).

The data set used in (Y.L.Fablec and Y.Alliot, 1999) consists of aircraft trajec-

tories with discrete time and represented with points sampled every 10 seconds.

Some of the notation used in (Y.L.Fablec and Y.Alliot, 1999) includes:

• z0, z1, . . . : the sequence of altitudes, where z0 corresponds to the altitude at

time t0 = 0 sec. and zi corresponds to the altitude at time ti = 10 ∗ i sec.

• Input the neural network: [zi] - current altitude, [zi−n+1−zi−n, . . . , zi−zi−1]

- n past vertical speeds.

• [zi+1 − zi] is speed to predict.

The authors also propose to use a sliding window in order to improve the

algorithm and forecast positions in far future (when prediction can be changed
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after flight path modifications). Author proposes to include the real points in the

patterns in order to anticipate further positions with a slight delay. The method

with sliding windows has been applied with a neural network with included 142

trajectories and 50 non-learnt flight. Figures below, taken from (Y.L.Fablec and

Y.Alliot, 1999), show examples of prediction.

Place figure 4 about prediction of the state-of-the-art here.

Results are not as good as expected, and show an oversmoothing of the trajec-

tory. The reasons why neural networks do not seem to perform well on this spe-

cific problem are unclear as several parameters are interacting. A possible issue

(which is also observed in the case of linear regression) is that the small number

of samples used to forecast is not able to capture the variations of the trajectories

shapes, ending with something that behaves much like a low-pass filter.

2.3. Imprecise Regression Modeling

This section provides a discussion of the imprecise regression and regression

on fuzzy data based on work of M. Serrurier and H. Prade (M.Serrurier and Prade,

2004). The authors’ goal is to find a model as precise as possible that provides

the most faithful description of the data. They suggest a precision function and

define it for trapezoidal and triangular fuzzy sets and the description of the lin-

ear and non-linear imprecise functions. The authors also compare the imprecise

regression with other types of fuzzy regression. According to (M.Serrurier and

Prade, 2004), ”the goal of the framework for imprecise regression is to overcome

the learning biases by considering them as factors that have impact on the preci-

sion of the models rather than as a boundary to the effectiveness of the learning

process”.

Generally, the problem solved in (M.Serrurier and Prade, 2004) can be stated
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as follows: A regression data consists of m pairs (−→x i, yi), where −→x i ∈ X is a

vector of n input variables and yi ∈ R is the real output variable. An imprecise

function F associates the distribution on the possible values of the output to the

inputs −→x i. Since (M.Serrurier and Prade, 2004) considers normalized possibility

distributions and views them as fuzzy sets, they can denote the function F as

F (−→x i) = πi. In order to keep notation we give here the definitions as given in the

original paper:

Definition 1. Possibility distribution surface.

Given π : R → [0, 1] a possibility distribution, the surface S(π) of this func-

tion is given by:

S(π) =

∫ 1

0

l(πα)dα (6)

with for α > 0, l(πα) = µ({y ∈ R, π(y) ≥ α}). Here µ is a Lesbeque

measure and l(π0) = limα→0 l(πα)

Definition 2. Precision measure properties.

Given π : R → [0, 1] a possibility distribution under π and Pr a precision

function:

• Pr : R → [0, 1]

• Pr(π) = 1 if ∃!y ∈ R such that π(y) = 1 and π(y′) = 0 for y′ 6= y.

• Pr(π) = 0 if ∀y ∈ R, π(y) = 1.

• Pr(π) ≥ Pr(π′) if S(π) ≥ S(π′).
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Definition 3. Imprecise regression.

Given a data set of m pairs (−→x i, yi) and precision function Pr. The goal of

imprecise regression is to find such F that maximizes the following:

R(F ) =

∑m
i=1 πi(yi) ∗ Pr(πi)

m
(7)

where πi = F (−→x i).

Thus, authors consider two types of imprecise function: triangular sets and

trapezoidal sets. More precisely, after applying to the sets the function have the

following forms:

Pr(Il,m,r) =
ln(1 + C ∗ (r − l))

C ∗ (r − l)
(8)

Pr(Ta,b,c,d) =
ln(1 + C ∗ (b− a+ d− c) + C(c− b))

C ∗ (b− a+ d− c)
(9)

To find the function F that maximize R(F ) in Equation 7 they propose to

use simulated annealing algorithm ((C.G.S.Kirkpatrick and M.P.Vecci, 1983)). In

order to use that technique they also define the neighborhood V of a function

F . It is obtained by randomly adding and removing a fixed small value to all

coefficients. It is due to the fact that simulated annealing is designed for discrete

exploration of the space.

2.4. Summary

Summarizing the section, we can say that all of the methods described in State-

of-the-Art give correct results. At the end of the paper the reader will be able to

see a comparison between these methods and our algorithm. Our new approach
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of forecasting is based on functional regression and gives much better results than

the multiple linear regression. This can be seen from the figures at the end of the

paper as well as from the errors. The second method, based on neural networks

shows a similar result to our work. In this paper we do not present the numeral

comparison to that method, but we intend to do so in future work. The last method

is based on solving the regression equation with imprecise modeling and shows

bigger forecasting errors, which can be seen from the figure 18 at the end of the

paper.

3. Functional Nature of Aircraft Trajectories

3.1. What are functional data?

In mathematical and applied statistics, most of the analyses involve more than

one observation for each observed object. In an increasing number of fields these

observations are curves. Curves are often graphs of functions, since an observed

intensity is available at each point on a line segment, a sector of a plane or por-

tion of space. For this reason we assume that observed curves are functional data;

statistical methods for analyzing such data are known under the name ”functional

data analysis” (FDA). One can find more information in Ramsay and Silverman’s

”Functional data analysis” (J.Ramsay and B.Silverman, 2005) including exam-

ples, methods and further references. Functional data analysis is also a general

way of thinking, where the basic unit of information is the entire observed func-

tion rather than a string of numbers.

The main goal of functional data analysis is to study, most of the time, infinite

- dimensional spaces of functions. Functional data analysis is related to statistics

theory and is a branch of it. Functional regression, Principal component analysis
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(PCA), canonical analysis, least square problems lie in the heart of FDA. FDA has

to cope with the following issues:

• formulation of the problem in a way amenable to statistical thinking and

analysis;

• definition and representation of qualitative and quantitative characteristics

of the data;

• expansion and decomposition of the data into basis functions;

• development of criteria and evaluation of the effectiveness of statistical

methods;

• construction of models for observed data that capture relations between ob-

servation variables.

In general, we consider a collection of functions, rather than just a single func-

tion. Since we cannot get continuous observations of aircraft trajectories, we as-

sume that trajectories are sampled approximations of the real functions. We illus-

trate that fact in the next section. The observations f of the real function consist of

m pairs of recordings, such as f = {f(tj)}mj=1. Here, {tj}j=1 is a sample of [a, b]

which is a time interval over which f is observed. The samples tj , 1 ≤ j ≤ m do

not need to be evenly spaced. Considering the process of altitude sampling, the

corresponding data is assumed to originate from the process:

Alt(t) = f(t) + ǫ(t) (10)

where f(t) is deterministic function and ǫ is an error with zero mean.
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Figure 5 shows an example of the type of data that will be considered in sim-

ulation studies below. Here the data consist of the observation of 20 aircraft tra-

jectories altitude during take-off in Toulouse airport. The samples are not evenly

spaced over time, and they were obtained from ATC radar with time increments

from 3 to 30 seconds. The data consist of the sample of 20 functional observations

of aircraft altitude Alti(t) during take-off.

Place the figure 5 about example of altitude of 20 aircraft trajectories during

take-off here.

The standard mathematical statistics applied to functional data (J.Ramsay and

B.Silverman, 2005) is similar to the classical summary of statistics for discrete

data. The mean function defined by:

x(t) =
1

N

N∑

k=1

xk(t), (11)

and it is the average of the functions point-wise across duplications. Similarly the

variance is:

varx(t) = (N − 1)−1

N∑

k=1

(xk(t)− x(t))2, (12)

and the standard deviation is the square root of the variance function.

Figures 6 and 7 show complete 50 trajectories altitude and the mean of them.

Letus mention that the mean curve is not a real trajectory. Each value of the mean

corresponds to the mean of the observations of the trajectories at a given time.

Place figures 6 and 7 aircraft trajectories and their mean here.

The covariance function summarizes the dependence of records across differ-

ent argument values and is computed as:
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covx(t1, t2) = (N − 1)−1
N∑

k=1

(xk(t1)− x(t1))(xk(t2)− x(t2)) (13)

The associated correlation function is given by:

corrx(t1, t2) =
covx(t1, t2)√

varx(t1)varx(t2)
(14)

These are functional analogues to the variance, covariance and correlation ma-

trices, respectively in multivariate data analysis.

3.2. Aircraft Trajectories as Functional Data

In this section we propose a new approach to describe aircraft trajectories

determined by the flight plan, but it also depends on many other factors, such as

weather conditions, behavior of pilots and dispatchers instructions, the physical

properties of the aircraft ; we will consider these factors as random variables. This

gives us a reason to is why we will consider the trajectory as a random vector-

function of time. Moreover, the vector-function is at least twice differentiable

and has bounded energy because of the physical properties and the presence of

velocity and acceleration. In particular, a model of observations for the set of

aircraft altitudes, described in the previous section, is based on samples as follows:

Alt(tj) = f(tj), j = 1, . . . ,m (15)

where f(tj) is a radar sample of altitude at time tj . Let t0 be a point in the

future. We would like to forecast the position of the aircraft at t0, or in other

words, we want to evaluate the value of the regression function at time t0. Denote

this value as f ∗(t0). Predicted value f ∗(t0) has to be sufficiently close to the

real value Alt(t0) to be of any practical value. The response of the model at any
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point of time is a random variable, because of the randomness of ǫ and therefore

the randomness of the sample. Moreover, different samples will lead to different

models and therefore to a different response at t0.

In a probabilistic sense, saying that the estimator f ∗(t0) is close to Alt(t0)

means that the Mean Square Error (MSE) is small:

MSE = E|f ∗(t0)− Alt(t0)|2. (16)

In terms of Bias/Variance, the MSE can be shown as in (G.Lebanon, 2010):

MSE = ||Bias(f ∗(t0))||2 + trace(Variance(f ∗(t0)) (17)

Let us now give an intuitive description of Bias/Variance dilemma. The Bias

parameter measures the deviation of predicted value f ∗(t0) of the model to the

real value of function Alt(t0). The Variance measures the sensitivity of predicted

value to the sample. The Bias/Variance dilemma is very important problem in

data modeling. Another one issue is model complexity. High model has a low

Bias, but a large Variance, while low complexity model has a high Bias, but a low

Variance. As a consequence of it, there exists an optimal number of degree of

freedoms, which has to be used for working on the best possible model.

For theoretical description of estimation of error via Bias/Variance dilemma

we address to R.Doursat et al ((S.R.Doursat and E.Bienenstock, 1992)):

E [f ∗(t)− E[Alt|f(t)]]2 = Bias + Variance2 (18)

where Bias = (E [f ∗(t)− E[Alt|f(t)]])2 and Variance = E [f ∗(t)− E[f(t)]].

As we said above, an unbiased estimator can have a high MSE if variance is

large and f ∗(t) can be highly sensitive to the data and be far from the regression.
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One of the methods of model parameters selection is cross-validation procedure,

particularly k-fold cross-validation and leave-one-out cross-validation.

Place figure 8 about leave-one-out cross validation procedure here.

Cross-validation procedure is a technique for generalization assessing of sta-

tistical models to an independent data set. Mainly it uses prediction algorithms to

estimate the prediction accuracy of the model. k-fold cross-validation is a tech-

nique which takes a set of m examples and then partitions them into K sets (or

folds) of size m/K. Then, each fold is retained as the validation data for test-

ing the model and the remaining k − 1 folds are then used as training data. The

cross-validation process is then repeated k times. The advantage of k-fold cross-

validation is that all the examples from the data set are eventually used for both

training and testing. Particular case of k-fold cross-validation is leave-one-out

cross-validation, where k = 1 (figure 8).

Another important point is the following one: the data are long term discrete

observations coming from ATC radars. We need preprocessing the data by doing

interpolation, in order all trajectories are sampled at same times. Moreover, the

data we have consists of 3D space coordinates, it means that we are dealing with

multivariate interpolation, which is interpolation of function of more than one

variable. So, the kernel idea of assuming aircraft trajectories as functions can be

summarized on figure 9.

Place figure 9 about the benefits of the algorithm here.

All previous aspects turn us to consider the aircraft trajectories as functions,

moreover as a set of random functions of a random process, which is the topic of

the next chapter.
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3.3. Aircraft Trajectories as a sample of Hilbert Stochastic Process

Let us begin from the definition of random process. A lot of literature has been

written about stochastic processes, we recommend (I.Gikhman and A.Skorokhod,

1996), (J.Doob, 1990),(A.Papoulis and S.Pillai, 2001).

Definition 4. Given a probability space (Ω,F,P). A function of two variables

X(t, ω), t ∈ T, ω ∈ Ω taking values in a metrical space X, F measurable as a

mapping of ω for each t ∈ T is called a random process.

The definition of a Hilbert random process can be given as in (I.Gikhman and

A.Skorokhod, 1996).

Definition 5. Let (Ω,F,P) be a probability space. The Hilbert space L2 = L2{Ω,F,P}
is the set of complex random variables ζ = f(ω), ω ∈ Ω, f ∈ F, for which

E|ζ|2 <∞.

Inner product in L2 is defined as following:

< ζ, η >= E{ζη}, ζ, η ∈ L2 (19)

Corresponding norm ||ζ|| of the random variable ζ is defined by:

||ζ|| = {E|ζ|2}1/2 =
{∫

Ω

|ζ|2dP
}1/2

(20)

Two random variables ζ and η are orthogonal, iff

< ζ, η >= 0 (21)

For the real random variable ζ , the square of the norm ||ζ||2 coincides with the

second order moment, i.e. ||ζ||2 = Eζ2, and if Eζ = 0 it coincides with variation.
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Definition 6. Let ζ(t, ω), t ∈ T be a random process (of variable ω), and let us

denote ζt the function defined for any ω by ζt(ω) = ζ(t, ω). ζ is said to be a

random Hilbert process iff ζt ∈ L2 and, for any t ∈ T , :

E|ζt|2 <∞ (22)

i.e. a random Hilbert function can be regarded as a Hilbert space-valued func-

tion depending on t ∈ T .

In case of aircraft trajectories Ω plays a role of a set of flight identification

numbers (flight ID). Let us define an aircraft trajectory as a mapping from time

interval [a, b] to the space R
3. Assume, f(t, ω0) = f(t) = f(x(t), y(t), z(t)),

t ∈ [a, b] is aircraft trajectory function with flight ID corresponding to ω0 and

where x(t), y(t) and z(t) are longitude, latitude and altitude functions respec-

tively. Let us remind the reader that, as mentioned above, the aircraft trajectories

are at least twice differentiable and have bounded energy. et us now consider a

set of trajectories over a fixed time interval [a, b] as a set of random functions be-

longing to 3 dimensional Hilbert stochastic process. f should satisfy conditions of

Hilbert stochastic process and has finite energy (
∫ b

a
||f(t)||2dt)1/2 < ∞. Finally,

at time t ∈ [a, b] there exists a random variable ζ(χ), which is a set of coordinates

of trajectories at time t and E(||ζ(t)||)2 <∞.

Now, we also can define the trajectory by adding the ≪-dimensional speed.

In this case, the trajectory is a mapping from [a, b] to R
6. So, we will focus

on trajectories that belong to the Sobolev space of order 1 of square integrable

mappings with square integrable derivatives.
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3.4. Wavelets

Let us now give a brief introduction to the wavelets. We can construct a basis

for all functions on (−∞,∞) that are square-integrable by choosing a suitable

mother wavelet function φ and then considering all dilations and translation of the

form (see details for example in (J.Ramsay and B.Silverman, 2005), (Daubechies,

1992), (Daubechies, 1990))

φjk(t) = 2j/2φ(2jt− k) (23)

for integers j and k. We construct the mother wavelet to ensure that the basis is

orthogonal in L2. Typically, the mother wavelet has compact support, and hence

so does all the basis functions. The wavelet basis idea is easily adapted to deal

with functions defined on a bounded interval, most simply if periodic boundary

conditions are imposed. The wavelet expansions of a function f gives a multires-

olution analysis in the sense that the coefficients of φjk yield information about f

near position 2−jk on scale 2−j , i.e. at frequencies near c2j for some constant c.

Thus, wavelets provide a systematic sequence of degrees of locality.

In contrast to Fourier series, wavelet expansions cope well with discontinuous

or rapid changes in behavior; only those basis functions whose support includes

the region of discontinuity or other bad behavior are affected. This property, as

well as a number of more technical mathematical results, means that it is often

reasonable to assume that an observed function is well approximated by an eco-

nomical wavelet expansion with few nonzero coefficients, even if it displays sharp

local features. Suppose a function x is observed without error at n = 2M regu-

larly spaced points on interval T . Just as with the Fourier transformation, there

is a discrete wavelet transform (DWT) which provides n coefficients closely re-
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lated to the wavelet coefficients of the function x. We can calculate the DWT and

its inverse in O(n) operations, even faster than the O(n log n) of the Fast Fourier

Transform (FFT). As a consequence, most estimators based on wavelets can be

computed extremely quickly, many of them in O(n) operations.

Place figures 10, 11 and 12 about aircraft coordinates ant theirs wavelet trans-

forms here.

Figures 10, 11 and 12 show an example of aircraft trajectory’s x, y and z co-

ordinates and the scalogram of theirs continuous wavelet transform (CWT) using

daubechies 4 wavelet. As it seen from these figures, there are picks of wavelet

decomposition at points when an aircraft makes turns (maneuvers). It means that

wavelets feel the major changes in directions of speed-vector of trajectory function

(singularity or discontinuity points). Thus, applying the wavelet decomposition in

our work helps us to avoid useless information in construction of the shape of the

trajectory. What is more, we can use as many points in our regression model as

we need in order to minimize the MSE and control the generalization behavior of

the model.

Wavelets in Sobolev space. Since we are using the speed of aircraft in our model-

ing, we need to define the norm of the wavelets contributed with the first derivative

of them or in other words define the norm in Sobolev space. Sobolev space is a

functional space consisting of functions from Lebesgue spaces Lp, having gen-

eralized derivatives of a given order in Lp. With 1 ≤ p ≤ ∞ Sobolev spaces

are Banach spaces, and when p = 2, the Sobolev spaces are Hilbert spaces. We

recommend following literature about wavelets in Soboloev space (R.Jia (2003),

Definition 7. Let s ∈ N. The function f ∈ L2(R) belongs to the Sobolev space

W s(R), if it is s-times weakly differentiable, and if f (j) ∈ L2(R), j = 1, 2, . . . , s.
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In a Sobolev space the norm is given by :

‖f‖2W s(R) = ‖f‖2L2(R)
+ ‖f (s)‖2L2(R)

. (24)

As shown in the previous section, any function f ∈ L2(R) can be represented

as a series (convergent in L2(R)):

f(·) =
∑

k∈Z

ckφ0,k(·) +
∞∑

j=0

∑

k∈Z

cjkψjk(·) (25)

where ck, cjk are wavelet expansion coefficients, and

‖f‖2L2(R)
=
∑

k∈Z

c2k +
∞∑

j=0

∑

k∈Z

c2jk. (26)

As shown in (R.Jia, 2003), (V.Meyer, 1992), a function f lies in W s(R) if and

only if

∑

k∈Z

c2k +
∞∑

j=0

∑

k∈Z

2sjc2jk < +∞. (27)

Moreover, the discrete equivalent norm of wavelets decomposition in Sobolev

space W s(R) is:

‖f‖2W s(R) ≈
∑

k∈Z

c2k +
∞∑

j=0

∑

k∈Z

2sjc2jk, (28)

where s is the smoothness order of the Sobolev space.

4. Trajectory Smoothing and Compressing using Wavelets.

As explained in previous chapter, the problem of bias/variance dilemma is a

critical issue in solving the linear regression. Another issue, arising when per-
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forming regression based prediction is the high level of correlation between suc-

cessive samples in a trajectory. Since most of the time aircraft are following piece-

wise straight line paths, nearly all samples are linearly dependent, thus add no

additional information to the model; in the same time, the dimension of the linear

system to be solved for regression estimation increases, which induces a corre-

sponding increase in computational effort and decrease in numerical accuracy. In

both cases, a clever reduction of redundancy will have a positive impact on the

outcome of the prediction. It exists an optimal way of reaching this goal: the

principal component expansion of Karhunen-Loeve. Given a set of P sampled

trajectories of size N , (Yi1, . . . yiN)i=1,...,P , principal components extraction starts

with the empirical correlation matrix:

Σ = (Σij = P−1

P∑

k=1

YkiYkj)i,j=1...,N (29)

where the trajectories are assumed to have zero mean.

The principal components are then obtained by finding the eigenvectors of Σ,

ordered by decreasing eigenvalues. It can be shown that truncating the principal

components expansion to a given order Q ≤ N yields an optimal representation

in the sense that no other expansion of the same length will have a lower residual

variance. Furthermore, apart from the mean that plays a special role, the principal

components represent salient features of the trajectory set.

Unfortunately, the process of finding eigenvectors and eigenvalues of a ma-

trix has complexity O(n3) and is not really usable for long trajectories. Wavelet

analysis gives a result close to optimal representation for a complexity of only

O(n log n) which is much more tractable. Actually, most of modern image com-

pression and denoising algorithms are based on wavelets. Choosing an optimal
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number of wavelet coefficients for the regression is a critical task to solve the

problem. It is possible to find such optimal number of wavelet coefficients, which

efficiently characterize trajectories curves, using different statistical methods like

Akaike information criterion, Bayesian information criterion or K-fold cross val-

idation procedure. In the work presented here, the optimal number of coefficients

had been chosen intuitively.

Place figure 13 about smoothing and compressing properties of wavelets here.

Figure 13 shows the effect of using a different number of wavelet coefficients.

The curve (regular line) of the original signal consists of 128 points. These data

are not experimental data, but artficial ones, made in order to explain the reader

the effect of using different number of wavelet in the decomposition of the func-

tion. This curve contains sharp turns and randomness, which is the case of aircraft

trajectories. The dashdot line (’-.’) shows the curve of the inverse wavelet decom-

position with only considering first 16 coefficients of discrete wavelet transform

(daubechies 4 wavelet) of the original signal. It is clearly seen, that considering

such number of coefficients extracts the tendency of the signal, which is relevant

in prediction problems. The dashed line (’–’) demonstrates the result of recon-

struction of the signal, only considering first 32 wavelet coefficients (daubechies

4 wavelet). In this example, signal reconstruction with 32 coefficients smoothes

the curve and removes sharp variations.

Now, having defined all the basic concepts and definitions related to our work-

ing field and explained the reasons of our approach with its benefits, we switch on

the constructing and solving the main prediction algorithm.
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5. Solving Functional Linear Regression Using Wavelets

5.1. A New Approach to Trajectory Prediction

We present here a new approach to the short to mid-term aircraft trajectory

prediction problem. It is based on modeling past trajectories, and doing local lin-

ear functional regression for finding a kind of probable standard trajectories for

the future of the present one, and solving so the short to mid-term Trajectory Pre-

diction (TP) problem ((C.Gong and D.McNally, 2004)). By definition, an aircraft

trajectory is a mapping from a time interval [a, b] to the space R3 (sometimes, it is

convenient to add speed, so that the resulting extended state space is R6). Such a

trajectory is the observed result of a complex evolution process that involves flight

dynamics, external actions (pilot, ATC) and atmospheric factors (wind, tempera-

ture . . . ). The complete description of the trajectory, using all these factors is

generally not possible, because many influencing factors are unknown (aircraft

mass, local wind, etc . . . ), so a less accurate but tractable model has to be chosen.

For the purpose of short term prediction, a linear controlled model :

X
′(t) = AX(t) + u(t) (30)

is accurate enough. In this model, X is the state vector, A is the matrix describing

the evolution of the system and u is the command. This last function u is modeled

as a point process, which is satisfied by real traffic. Based on this observation,

we will focus on trajectories that belong to the Sobolev space of square integrable

mappings with square integrable derivatives (in the sense of distributions) up to

order 3.
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5.2. Strengths and Weaknesses

Strengths. The algorithm we propose uses the combination of the latest advances

in applied mathematics and well developed techniques. It requires only past ob-

served data to build an efficient prediction model. One of the main advantages

of the method is localization of the data. It allows extracting the closest trajec-

tories with the similar characteristics and similar behavior. A longer time period

data will be the positive side of the algorithm, despite the different weather condi-

tions. As mentioned before, localization of the data allows extracting trajectories

with similar characteristics, which collaterally contains the similar weather con-

ditions. Moreover, later in this paper the reader can see that we assign the weights

to each trajectory in our model, which affects to pay more attention on closest

samples. Next critical task is to choose an appropriate space of functions. Such

space of functions should contain the basis with a fast decomposition in couple

with fast inverse transform. Using wavelet decomposition allows to extract all

necessary information about the shape of trajectory in a O(n log n) operations.

Moreover, wavelet coefficients decrease fast, which is a benefit when computing

a large amount of data.

Weaknesses. Certainly, like many other prediction methods, our approach has

its weaknesses. An important constraint is the need of past, not outdated data.

The method does not take into account important physical, aeronautical, or even

weather parameters of the various handled aircraft.

Actually, two different prediction approaches exist. First one is based on flight

dynamics equations and contains physical aspects of an aircraft. Such models use

mass of an aircraft; it’s centering, fuel consumption, etc. The lack of such kind

of approach is realistic impossibility of delivering the exact values of physical
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parameters presently. The second approach consists of regression based methods;

some of them described in ”State-of-the-Art”. No doubt, the main limitation of

the regression based algorithms is the fact, that they require enough amounts of

data, or statistics, to produce an efficient result. It must be remarked that with

only several days of traffic or on the routes with very low frequencies, regression

based algorithms fail with high probability. It can be explained by insufficiency

of the data for the model learning. One other issue of our approach is not taking

into account the weather conditions as a variable. But, for solving that problem it

is necessary to obtain weather observations over longer period, at least one year.

It is not obvious to operate with such amount of complicated data and to integrate

a new variable to the prediction model. Besides, the present algorithm should

be optimized from the computational point of view. Anyway, in the future work

seasonal weather conditions will be taking into account and the model will be

corrected using weather information.

5.3. Functional Linear Model for Functional Response

First, let us give a brief summary to the functional linear models with func-

tional response. This part considers an estimation procedure for a functional

linear regression model where both predictor (realizations of a functional pre-

dictor) and response (functional response) variables are functions (A.Aguilera

and M.Valderrama, 2005). This model has been studied by Yao, Muller and

Wang (B.F. Yao, 2005), (F.Ferraty and P.Vieu, 2006), who proposed an estima-

tion approach for sparse and irregular longitudinal data based on a nonparametric

estimation for the eigenfunctions of the sample covariance operators associated to

both predictor and response functional variables.

Let us consider a functional predictor variable {Xω(t), t ∈ T, ω ∈ Ω} and
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supposed to be a functional response {Yω(s), s ∈ S, ω ∈ Ω}, where {Ω,F,P} is

a probability space, T and S are compact time intervals in R, Xω(t) and Yω(s)

are Hilbert random processes. Samples consist of pairs of random trajectories

{xω(t), yω(s), ω = 1, ..., N}, that are realizations of the functional predictor and

functional response respectively.

The functional linear regression model used to estimate functional response

Y (s) from the functional predictor X(t) is:

Ŷω(s) = α(s) +

∫

T

Xω(t)β(s, t)dt+ ǫω(s), s ∈ S, (31)

where {ǫω, ω ∈ Ω} are independent and identically distributed random errors

with zero mean and E{ǫ2ω(s)} = σ2
Y , β(t, s) is a square integrable matrix valued

kernel. Without loss of generality, suppose that predictor and response variables

are centered (µ(X̂(t)) = µ(Ŷ (s)) = 0) by subtracting their sample average func-

tions xω(t) = xω(t) − µX(t) and yω(s) = yω(s) − µY (s). Then, the problem is

reduced to a well-known approximation which is formalized as estimation of the

conditional mean function:

E{Y (s)|xω} =

∫

T

β(t, s)xω(t)dt+ ǫω(s). (32)

So, the prediction (i.e. the determination of the response Y (s)) now only de-

pends on the arbitrary function β(t, s). Now, the goal is to estimate the parameter

kernel β(t, s). This is an ill-posed problem due to the infinite dimension of pre-

dictor and response realizations.
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5.4. Estimation of the Regression Function

The first estimation of parameter function β(t, s) can be obtained by assuming

that both predictor and response sample curves belong to a finite dimension space

generated by two different basis {φp, p = 1, ..., P} and {ψq, q = 1, ..., Q}. Such

sample trajectories can be expanded as:

xω(t) =
P∑

p=1

aωpφp(t), yω(s) =

Q∑

q=1

bωqψq(s) (33)

where {aωp, p ∈ P}, {bωq, g ∈ Q} are coefficients of decomposition. The

expression of the parameter kernel function considers as the double expansion as

follows:

β(t, s) =
P∑

p=1

Q∑

q=1

βpqφp(t)ψq(s) (34)

Then, the model in( 32) is equivalent to the following multivariate linear re-

gression model:

bωq =
P∑

p=1

bpq

P∑

r=1

aωrφpr + ǫωq, q = 1, ..., Q (35)

or in matrix form B = AΨβ +Υ.

Then, the estimation of the parameter function can be obtained from the least

mean squares estimation of its matrix of coefficients β̂ = ((AΨ)′(AΨ))−1(AΨ)′B:

β̂(t, s) =
P∑

p=1

Q∑

q=1

β̂pqφp(t)ψq(s). (36)
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5.5. Linear Regression Based on Weighted Distance-based Regression

This section considers the problem of non-parametrically predicting a func-

tional response variable Y from a functional predictorX . Let (X, Y ) be a random

element defined on compact time intervals T = [a, b] and S = [c, d] respectively,

where X and Y are random variables of a functional space. Consider the prob-

lem of predicting the functional response variable Y from the functional predictor

X . Assume that n independent and identically distributed observations (xi, yi),

i = 1, ..., n are given from (X, Y ) as a training set. The linear regression model,

defined as in (A.Aguilera and M.Valderrama, 2005), is:

m(X) = E{Y |X} = α(t) +

∫

T

X(t)β(t, s)dt, yi = m(X) + ǫi, (37)

where the ǫi are i.i.d. errors with zero mean. Parameter function β(t, s) is a square

integrable matrix valued mapping and α(t) is the square integrable mapping. Fer-

raty and Vieu ((F.Ferraty and P.Vieu, 2006)) consider this linear regression model

as parametric because we only need a finite number of functional elements to

describe it. They also address nonparametric functional regression model where

only a few regularity assumptions are made on the regression function m(x). For

a given Kernel K, they propose the following estimator of m(x):

m̂K(x) =

∑n
i=1K(d(x, xi)/h) yi∑n
i=1K(d(x, xi)/h)

=
n∑

i=1

ωi(x)yi, (38)

where ωi(x) = K(d(x, xi)/h)/
∑n

j=1K(d(x, xj)/h), K is a kernel function with

compact support, the bandwidth h is the smoothing parameter and d(x, xi) is a

semi-metric in the functional space F of the data xi. Authors prove that m̂(x)

is a consistent estimator (in the sense of almost complete convergence) of m(x)
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under regularity conditions on m, X , Y and K. In ”Nonparametric functional

data analysis” Ferraty and Vieu list several interesting open problems concerning

nonparametric functional regression. The first answer to such regression problem

is given by Baillo and Grane((A.Baillo and A.Grane, 2007)) as Boj, Delicado and

Fortiana mentioned. They propose a natural extension of the finite dimensional

local linear regression by solving the following problem:

min
α,β

n∑

i=1

ωi(x)

(
yi − α(t)−

∫

T

(xi(t)− x(t))β(t, s)dt

)2

, (39)

where local weights ωi(x) = K(||x− xi||/h)/
∑n

j=1K(||x− xj||/h) are defined

by means of L2 distances (assumed that all functions are from L2). The problem

that has to be addressed now is to find the right basis for representation. The

magnitude of the coefficients of the expansion has to decrease fast in order to

keep truncation efficient. Wavelets have proven to have such a property for a wide

class of functions.

5.6. The heart of the method: solving Local Linear Weighted-Distance based Re-

gression Using Wavelets in Sobolev Space

Let us remind the reader that aircraft trajectories belong to some Hilbert stochas-

tic process H , defined on time interval T . We assume that target trajectory to

predict belongs to H with ω0, in other words it is a function f0 ∈ L2(R
3), such

that for any t ∈ [a, b] f0 = f(ω0, t) for some f ∈ H . To predict future position of

the trajectory f0 on interval [c, d], where c ≥ b, we use past known observations

of the trajectories coming from H , i.e. it should be the same class of trajectories

going the same direction (Origin-Destination) in the past. All these observations

are samples of stochastic processH . Here and later we assume that all trajectories
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are synchronized by the time. Then, we need to divide all the trajectories into two

parts, predictor and response. Predictor consists of trajectories, defined on [a, b]

time interval and response on [c, d], respectively. For midterm forecasting, the

forecasting time interval [c, d] varies from 20 to 30 minutes. We define the general

functional linear regression model as follows:

Ŷ (s) = α(s) +

∫ b

a

β(s, t)X(t)dt+ ǫ(ω) (40)

where α(s) is a square integrable mapping, β(s, t) is a kernel function which is

a square integrable matrix-valued mapping defined on [a, b] × [c, d]. Xi(t) is a

trajectory from predictor part and ǫi is an error. The problem is to find the optimal

couple (f̂(t), β̂(t, s)) minimizing the mean square error between Y and Ŷ .

So, X(t) is a part of H on [a, b] and Y (s) is a part of H on [c, d]. In previous

section without loss of generality it has been assumed that H is centralized, i.e.

α(s) := 0 and E|ǫ| = 0. We start by solving the regression by expanding both X

and Y on wavelet basis:

Xi(t) = X(ωi, t) =
∑

j∈Z

ajψ
x
j (t), t ∈ [a, b] (41)

and

Yi(s) = Y (ωi, s) =
∑

k∈Z

bkψ
y
k(s), s ∈ [c, d], (42)

where {aj}j∈Z and {bk}k∈Z are wavelet coefficients corresponding to Ψx = {ψx
j }j∈Z

and Ψy = {ψy
k}k∈Z basis respectively. Different wavelet basis were used in nu-

merical computations. There are: Haar wavelet, Daubechies 4 and Coiflet 6. Since
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we are working in a Sobolev space, we also need to compute the norm of wavelets

considering the first derivatives. Here we again address to (R.Jia, 2003), (V.Meyer,

1992):

Definition 8. Function f lies in W s(R) if and only if

∑

k∈Z

c2k +
∞∑

j=0

∑

k∈Z

2sjc2jk < +∞.

Moreover, the discrete equivalent norm of wavelets in Sobolev space W s(R) is

given by:

‖f‖2W s(R) ≈
∑

k∈Z

c2k +
∞∑

j=0

∑

k∈Z

2sjc2jk

where s is the smoothness order of the Sobolev space.

Kernel function β(t, s) can be expanded as a double sum as following:

β(t, s) =
∑

j∈Z

∑

k∈Z

κjkψ
x
j (t)ψ

y
k(s). (43)

For each trajectory in regression we assign a weight λi = Λ(d(f0;Xi)), where

d is a semi-metric window function. Such window functions take into account

the distance between the trajectories from the learning data set to predicted one.

Using a window function we set the weights to the trajectories from training set

that have a similar behavior as the ”real” one. An example of such a function used

in this work is the Epanechnikov kernel:

Λ(t) =
3

4
(1− t2)I[−1;1](t). (44)

Another choice is Gaussian kernel:
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Λ(t) =
1√
2π
exp

(
−t

2

2

)
. (45)

Such an approach improves the efficiency of the trajectory selection from the

data set by the mean of the window function value.

Using basis orthonormality property, the regression problem becomes now to

find the minimum of the following sum, where the expansions have been truncated

to a fixed rank:

min
β(t,s)

{
N∑

i=1

λi

∥∥∥∥Yi(t)−
∫
β(t, s)Xi(s)ds

∥∥∥∥
2
}

=

min
kjk





N∑

i=1

λi

∥∥∥∥∥

P∑

j=1

bijψj(t)−
∫

τX

P∑

j=1

Q∑

k=1

kjkφk(s)ψj(t)

Q∑

k=1

aikφk(s)ds

∥∥∥∥∥

2


 =

min
kjk





N∑

ı=1

λi

∥∥∥∥∥

P∑

j=1

bijψj(t)−
P∑

j=1

Q∑

k=1

kjka
i
jψj(t)

∫

τX

φj(s)φk(s)ds

∥∥∥∥∥

2


 =

min
kjk





N∑

i=1

λi

∥∥∥∥∥

P∑

j=1

bijψj(t)−
P∑

j=1

Q∑

k=1

kjka
i
jψj(t)

∥∥∥∥∥

2


 =

min
kjk





N∑

i=1

λi

∥∥∥∥∥

P∑

j=1

[bij −
Q∑

k=1

kjka
i
j]ψj(t)

∥∥∥∥∥

2


 =

min
kjk

{
N∑

i=1

λi

P∑

j=1

(bji −
Q∑

k=1

akikjk)
2

}

This expression was solved using Singular value Decomposition (SVD) (J.Demmel,

1997).

Then, α̂(s) can be expressed by the following formula:
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α̂(s) = Y (t)−
∫

τX

β̂(t, s)X(s)ds =
P∑

j=1

[bj −
Q∑

k=1

k̂jkak]ψj(t). (46)

Where bk, aj are means of wavelet coefficients, β̂ is the result of minimization of

previous expression.

A brief description of the prediction process after localization (classification)

can be given as follows:

To compute the prediction of f0 we first expand both predictor and response

on the same wavelet basis ψx and ψy on [a, b] and [c, d] time intervals respectively.

Let A0 = {a0j}j∈Z and B0 = {b0k}k∈Z be the matrices of wavelet coefficients of an

expansion. B0 is used only for comparing the results of prediction with the real

values of trajectory. Then, we can compute the matrix K using expression above

and calculate predicted wavelet coefficients using k̂ij and A0:

B̂0 = β̂ × A0 (47)

The obtained results are now the predicted wavelet coefficients for the second

part of trajectory f0 on [c, d] time interval. Finally, inverse wavelet transform and

adding α gives the complete predicted positions of trajectory f0 on [c, d] time

interval:

{f̂0(si)}si∈[c,d] (48)

We now have predicted the aircraft trajectory and p we can compare it with the

real one on the experimental data set. One method we use is computing the relative

prediction error (RPE), i.e. computing the ratio of the norm of the differences
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between the predicted and the real trajectories by the variation of the given class.

Which gives the following formula:

RPEf0 =
||f̂0 − f0||√

1/(N − 1)
∑N

i=1 ||fi − f ||2
(49)

6. Simulation Results

Our approach may be resumed as follows:

1. First of all, the right data set has to be chosen. The data set used in our

research is one year air traffic observations over France. Moreover the ob-

servations have been cleaned from outliers and consist of only regular com-

mercial IFR flights, i.e. all the VFR flights, military flights and others had

been removed from the data set using operational ATM software. Some is-

sues can appear in data processing corresponding to the commercial flights,

like business jets that are flying on the same routes and the same altitude.

But we do not pay attention on such kind of flight due to theirs variabil-

ity, low frequency and variation from standard regular flights. Thus, in our

work we use only the data that contains only standard regular commercial

flights.

2. Then, all trajectories were classified into classes (or ’tubes’) according to

the origin/destination pairs (O/D pair). Before starting to build a regression

model, we determine to which class belongs the trajectory to be predicted.

In this paper we show several examples of predicted trajectories belonging

to Paris-Toulouse, Paris-Marseille and Paris-Nice O/D pairs.

3. Next step is for the prediction itself. Let us denote by the ”actual trajectory”

the trajectory to be predicted. We now select the k nearest neighbors to the
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’actual’ trajectory in terms of shape and time from O/D pair corresponding

to the ’actual’ trajectory. Such an approach allows defining the trajectories

with similar characteristics. The number k of nearest neighbors was cho-

sen using leave-one-out cross validation procedure, described in chapter 3

above.

4. Now, the ”actual trajectory together with it’s k nearest neighbors have to

be divided into two parts, Predictor and Response, by time. After, both

parts Predictor and Response of the selected k nearest neighbors are taken

as a learning data set to construct a model, which is a linear functional

regression model. Finally, Predictor part of an ’actual’ trajectory has been

used as an entry to the model. Predicted positions are then compared with

Response part of the ”actual” trajectory. Such comparisons can be seen

from the figures 15, 16, 17 and 18.

To evaluate the efficiency of the algorithm a series of observations of real

flights were used, with a different number of aircraft. The data set used in this

work is an ATC radar observations over France during one year (see figure 14)

and has original form of coordinates in Latitude, Longitude and Altitude. But,

due to the small size of observing surface, we transformed Latitude and Longi-

tude to standard 2D space (X × Y plane), using stereographic projection with the

reference point located at 47◦ 0′ 0′′ N , 0◦ 0′ 0′′ E. We use Z coordinate instead

of altitude, keeping the same units (flight level), to be more convenient in nota-

tions with X × Y plane. As for the origin-destination pairs, Toulouse-Blagnac

and Paris, Paris and Marseille, Paris and Nice airports had been chosen from the

data set. The data set consists in more than 2.5 million aircrafts trajectories, which

form the table with 12 columns and more than 6 × 107 lines. Here the first and
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second columns indicate date and time, third column corresponds to the flight

identification number, the next six columns are the X , Y and Z coordinates of

an aircraft and projected speeds (V X , V Y and V Z) of the aircraft on each of the

coordinate axes, and the last 3 columns are aircraft type, origin airport and des-

tination airport, respectively. The time interval of observations is not equidistant

with increments from 3 to 30 seconds.

Place figure 14 about one day air traffic over France here.

Below we show 3 random examples from the list of predicted trajectories.

They are figures 15, 16 and 17, where X , Y and Z coordinates are shown for each

example. The prediction bounds are equal for all experiments (approximately 25

minutes) with a starting prediction point at the 256th second on time axis. All the

experiments that are examined involve approximately 4500 aircraft each, flying

between Paris Orly and Nice, Marseille and Toulouse airports respectively. These

results demonstrate that the algorithm based on wavelet decomposition has been

successfully used to extract all the available information from the data.

The obtained results are convincing: most prediction errors can be explained

by ATC controllers actions that make the descending aircraft keep constant alti-

tude for avoiding a conflicting aircraft. For example, if a controller observes a

conflict situation between landing aircraft and an aircraft on take-off, he directs

the landing aircraft to keep a constant altitude to avoid the conflict. For example

Figure 16 showss bigger prediction errors on the altitude prediction between 300th

and approximately 350th seconds at Z coordinate. By essence, it is not possible

to forecast such actions that are depending on the surrounding traffic.

Place figures 15, 16, 17 and 18 about predicted trajectories here.
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Figure 18 demonstrate the predictions of altitude (Z coordinate) of an aircraft

and its real position in a 10 minutes time horizon. There are two figures: the

first one is the result of the method given at the third part of State-of-the-Art and

the second figure shows the result of our approach. On both figures prediction

starts at the point equals to 160th second. In fact, the difference between the real

altitude position of an aircraft and the predicted (our approach) position at the

last prediction point (760th second) is 72 ft. Vice-versa, the same difference in

prediction with imprecise regression is 4000 ft. Such a difference in the results

can be explained by the fact of generalization and over fitting of the model. It

has been described in first section of State-of-the-Art that Bias/Variance dilemma

dilemma has an influence on the quality the model and is also shown by this figure.

Relative prediction errors for 40 predicted aircraft trajectories are shown on

figure 19. These errors were computed by equation 49, which is described at the

end of the previous chapter. As it can be seen from the figure, the variation of the

relative prediction errors from the standard deviation of the nearest neighbors is

about 2% to 16%. Given results produced by this new approach show efficiency

and ability to make prediction in 25 minutes time horizon.

Place figure 19 about relative prediction errors here.

7. Conclusion and Future Work

In this paper a novel trajectory prediction approach was studied, implemented

and developed for Air Traffic Management (ATM) applications. The primary ob-

jective is to improve ATM capabilities and search for algorithmic methods that can

use such a model efficiently to extract useful information. At the beginning of the

paper, several existing methods with different approaches have been described.
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These are standard multiple linear regression, an imprecise regression and neural

networks based prediction.

The method presented here uses only previous radar tracks for a given origin-

destination pair. A learning process has been used to adjust parameters. It begins

from localization of the data set using k nearest neighbors and ends with solving

the functional linear regression using wavelet decomposition in Sobolev space.

Different wavelet bases were used to evaluate and to compare prediction errors.

This method produces efficient results with high robustness. The validation of the

proposed algorithm has been strengthening through extensive simulations, under

varying scenarios and settings. The so-obtained algorithm, based on functional re-

gression using wavelet decomposition has been compared to the first two existing

methods presented at the beginning of the paper.

In the future step, the performance of the algorithm needs to be tested on a

larger database, containing the flights over Europe. Moreover, prediction model

will be developed by taking into account the weather variable with observations

over the same period of time as the data set. Finally, the limit of this approach will

be determined by increasing the prediction time interval. Future work also sug-

gests development of the Conflict Detection algorithm based on aircraft trajectory

prediction approach presented in this paper.
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Figure 1: Training set for multiple linear regression.
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Figure 2: Altitude trajectory prediction (dashdot line) and the original path (line).
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Figure 3: Predicted trajectory (dashdot line) and real trajectory (line).
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Figure 4: Example of a real trajectory and the corresponding prediction (left) and real trajectory

not included in the learning base and corresponding prediction (right).
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Figure 5: Example of altitude of 20 aircraft trajectories during take-off.
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Figure 6: 23 aircraft trajectories (altitude) during take-off, cruising and landing.
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Figure 7: Mean of the 23 aircraft trajectories (altitude) of Figure 6
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Figure 8: Leave-one-out cross-validation procedure.
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STANDART LINEAR REGRESSION 

DISADVANTAGES 

Taking into account a huge 

number of points leads to: 

•Better shape information 

•Worse generalization 

Taking into account a small 

number of points leads to: 

•Worse shape information 

•Better generalization 

BENEFITS OF OUR APPROACH 

(Considering trajectories as functions) 

•Full shape information 

•Best possible generalization 

Figure 9: Benefits of considering trajectories as functions.

56



Figure 10: An aircraft’s x coordinate and its CWT
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Figure 11: An aircraft’s y coordinate and its CWT
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Figure 12: An aircraft’s z coordinate and its CWT
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Figure 13: Smoothing and compressing an artificial function with wavelets.
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Figure 14: X × Y plane of one day air traffic covered by ATC radars in France.
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Figure 15: Real trajectory (line) and Predicted trajectory (dashdot line). Paris Orly - Nice.
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Figure 16: Real trajectory (line) and Predicted trajectory (dashdot line). Paris Orly - Marseille.
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Figure 17: Real trajectory (line) and Predicted trajectory (dashdot line). Paris Orly - Toulouse
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Figure 18: Real trajectory (line) and Predicted trajectory (dashdot line).
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Figure 19: Relative prediction errors for 40 trajectories between Paris and Toulouse airports.
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