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Detection of manhole covers in high-resolution
aerial images of urban areas by combining two

methods
Jérôme PASQUET∗‡, Thibault DESERT†, Olivier BARTOLI†, Marc CHAUMONT‡§, Car-

ole DELENNE‖, Gérard SUBSOL‡, Mustapha DERRAS∗ and
Nanée CHAHINIAN†

Abstract—Mispositioning of buried utilities is an increas-
ingly important problem both in industrialized and developing
countries because of urban sprawl and technological advances.
However, some of these networks have surface access traps
which may be visible on high resolution airborne or satellite
images and could serve as presence indicators. We put forward
a methodology to detect manhole covers and grates on very high-
resolution aerial and satellite images. Two methods are tested:
the first is based on a geometrical circular filter whereas the
second uses machine learning to retrieve some patterns. The
results are compared and combined in order to benefit from
the two approaches.

Index Terms—Machine learning; geometrical filter; buried
utility network; circular object detection; high resolution

I. INTRODUCTION

REGARDLES of economic growth, urban expansion is
an on-going trend [1] [2] and urban areas are viewed

as particularly vulnerable to climate change; current forecasts
predict increasing poverty and rapid urbanization [3]. Hence,
urban areas are highly sensitive and need frequent monitoring.
One of the direct consequences of urban expansion is the
development of underground utility networks. Over the past
century it was common practice for public service providers
to install, operate and repair their networks separately [4].
Hence it is now very difficult to find accurate records of utility
network maps. Mispositioning of buried utilities is an increas-
ingly important problem both in industrialized and developing
countries because of urban sprawl and technological advances
that create new needs among consumers resulting in additional
cables and pipes that have to be added and connected [5]
[6]. Urban works will thus be more prone to delays with
concomitant additional costs [7] [8]. Locating past records can
be a cumbersome and time consuming task. An alternative
would be to use a quick survey method to have an estimate
of the current situation. Some of these buried networks have
surface access traps which may be visible on high resolution
airborne or satellite images. Indeed, high spatial resolution
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imagery is becoming more and more available. There is a
growing number of cities that provide high resolution (<20
cm/pixel) orthophotos through open data platforms i.e. free
of charge. If correctly detected, these elements could serve as
indicators of underground utility networks. Furthermore, they
can be used as landmarks in photogrammetric applications [9]
or in geotechnical works such as subsidence calculations [10].
We put forward a methodology to detect small urban objects,
namely manhole covers and grates, on very high-resolution
aerial and satellite images. Two methods are tested: the first
is based on a geometrical circular filter whereas the second
uses machine learning to retrieve some patterns. The results
are compared and combined in order to benefit from the two
approaches.

II. MATERIALS AND METHODS

THE methodology is tested on a small town in southern
France (Gigean, Herault).

A. Data

Three images with different resolutions were used to put
forward the method. Pléiade bundle products (50 cm resolu-
tion) obtained through the SUDOC project and Orthophotos
(Fig. 1) of the town of Gigean (Herault, South of France)
with a 25 cm resolution provided by SIG-LR, were used in
the pretreatment step of the methodology. Supplementary high
resolution orthorectified aerial photographs (5,300 x 5,500
pixels at 4 cm resolution) were specifically acquired since the
machine learning method requires a very high resolution (see
Figure 2). Ground truth was acquired on three residential zones
(Zone 1 to 3 in Fig. 1).

The methodology is threefold. First the image is segmented
to extract the zones where manhole covers and grates can be
found i.e. roads, streets and pavements. Then the vegetation
and shadows are eliminated by using colorimetric indices,
using infrared information provided by the Pléiade images.
Finally either the circular object detection method proposed
in [11] or the machine learning approach is used to locate the
manhole covers and grates. These two methods are compared
and merged to increase the detection performance.
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Fig. 1. Orthophoto of Gigean, south of France c©SIG-LR 2014, and location
of the three testing zones used to validate the approach.

Fig. 2. Extract of the 4 cm resolution image.

B. Pretreatment procedure

1) Roads detection: Several methods were tested to extract
the roads. The most efficient one in terms of implementation
simplicity, calculation time and final results, consists in select-
ing all the light grey pixels in the image, i.e. pixels having a
low intensity in all channels of the image. The average value
of each pixel over the three channels (Red, Green, Blue) is
computed and the pixel is classified as ”road” if its radiometric
value in each channel deviates from the mean value by less
than a given threshold. In this application the threshold was
set to 10%. Classified pixels are then merged into connected
components using the union-find algorithm. The roads are
expected to constitute large connected components; hence
the smallest units (smaller than 1000 pixels) are eliminated.
Figure 3 shows the orthophoto after the road detection step.

2) Vegetation and shadow removal: Two indices are used
to segment the vegetation. The classical NDVI uses the Near
InfraRed (NIR) information of the Pléiades images in contrast

Fig. 3. Roads detection using grey-level threshold and extraction of the
biggest connected components.

with the Red (R) band:

NDVI =
NIR-R
NIR+R

(1)

The ExG index (Excess Green) is used on the areal orthopho-
tos which do not have a NIR channel; it is defined as:

ExG = 2G-R-B (2)

The results are then combined to benefit from the spectral
resolution of the Pléiades images and the spatial resolution of
the orthophotos (see Fig. 4).

Fig. 4. Detection of vegetation using, left: NDVI, middle: ExG and right:
fusion of the two previous results. Whiter pixels belong to the vegetation
class.

The shadow elimination procedure is based on Dempster-
Shafer’s evidence theory following a method presented in [12].
A final smoothing using the Iterated Conditional Modes (ICM)
algorithm [13] is performed (Fig. 5). The resulting shadow
characteristic image is then combined with the vegetation
image to clean the orthophotos from areas not supposed to
contain manhole covers.

C. Circular object detection

The geometrical approach is based on the method proposed
in [11] for the detection of circular patterns in a noisy and low
contrasted image. The authors put forward a filter that consists
of two annular regions R1 and R2 of radius r1 to r and r to
r2, each of which is divided in eight sub-regions (see Fig. 6).
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Fig. 5. Shadow elimination from [12] and smoothing using an ICM algorithm.
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Fig. 6. Circular filter (from [11]). Left: R1 and R2 are the two main regions;
middle and right: definition of the subregions (the phase shift is π/4).

The filter is applied to a grey-scaled image, obtained with the
luminance formula.

Three indices are computed to detect a circular pattern
on a sliding window, using normalized histograms of each
region/subregion. The first one estimates the similarity be-
tween two statistical distributions using the Bhattacharyya
coefficient:

S(R1, R2) =

L∑
l=1

√
p1(l)p2(l) (3)

where p1 (respectively p2) is the normalized histogram of
R1 (respectively R2) and L is the maximal intensity of the
two histograms. The result of this index is 1.0 when the two
histograms are identical and 0.0 when they are completely
different. The desirable value for this index to isolate a circular
pattern from its background is thus the lower.

The second index is computed to avoid detection of linear
patterns. It is based on the comparison between the intensity
distribution of R1 and those of the eight sub-regions of R2:

S8 = max
j∈1...8

{
S(R1, S

j
2)
}

(4)

where Sj
2 denotes the jth subregion of R2. This index is

low when all oriented similarity scores between R1 and each
subregion of R2 are small.

The last index assesses the uniformity within the two main
regions:

U(Ri) = min
j,j′∈{1..8}

{
S(Sj

i , S
j′

i )
}

(5)

where i stands for the region and j, j′ for the subregions. The
three indices are finally merged into a global index for circular
pattern detection:

ζ = (1−max {S(R1, R2),S8}) ·U(R1) ·U(R2) (6)

The higher the value of ζ, the higher the probability of
encountering a circular shaped object.

D. Machine learning approach

The circular object detection is only efficient when there
is an average color difference between the inside and outside
circles. Moreover, this approach doesn’t use the texture in-
formation inside the circle to decide on the manhole cover
identification. To overcome these problems we use a machine
learning algorithm which builds the best model from the data.
This method is quite efficient for urban object detection [14].
The learning phase involves three steps [15]:
• extraction of a sample composed of manhole covers and

small random images from the training database (each
extract being resized to a constant size for the sake of
robustness at all scales);

• extraction of multiple histograms from oriented gradients
(HOG) [16] to transform data into feature vectors mea-
suring the distribution of the gradient angles within the
image;

• application of a linear SVM classifier [17] to create the
required model.

The scene covered by the 4cm image contained 125 manholes,
with an average size of 80 x 80cm, 91 of which were used
to build the training set and 34 for the testing step. During
the evaluation step, a multi-scale representation of the testing
image called ”pyramid” is used. The pyramid approach allows
us to find manhole covers with different sizes. A sliding
window is applied on each pyramid to localise the manhole
cover. During the process, the training classifier gives a score
for recognized manhole covers at each position.

E. Merging the approaches

The significant difference between the two approaches,
stems from the fact that the first one uses pixel intensity to
detect a circular shape while the second one is based on a
model of the object, built from the gradient. We observed that
the detection errors differ from one approach to the other.
Therefore, we combined the results from the two methods to
increase the detection performance. The final score is obtained
by merging the scores given by each approach. Let f(x) be
a function that returns the value of ζ for a pixel x (Eq. 6)
rescaled between 0 and 100, and g(x) a function that returns
the probability of a pixel x being a manhole cover center by
the machine learning approach. The product function between
f and g is called h (Eq. 7) and is used as a score value for
the presence of manhole covers. Note that all the objects may
not be detected by both methods. For instance, function f
returns a null score for rectangular shapes. We thus suggest
other functions for scoring the presence of a manhole cover,
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s(x) for the sum (Eq. 8), n(x) and m(x) for the min and max
(Eqs. 9 and 10). Scoring functions are evaluated in section III.

h(x) = f(x).g(x) (7)

s(x) =

 2.f(x) g(x) = 0
2.f(x) f(x) = 0
f(x) + g(x) otherwise

(8)

n(x) = min(f(x), g(x)) (9)

m(x) = max(f(x), g(x)) (10)

III. RESULTS

THE circular method was first applied on three test zones
extracted from the orthophoto image, corresponding to

housing estates for which ground truth is available.

TABLE I
DETECTION RESULTS IN RESIDENTIAL AREAS

Zones 1 2 3
Manholes per zone (nb) 26 19 19

Detected objects (nb) 23 21 13
True positives (nb) 12 11 4
False positives (nb) 11 10 9

Detected manholes (%) 46% 58% 21%
Undetected manholes (%) 54% 42% 79%

False detection (%) 47% 47% 69%

The primary results indicate (Tab. I) that the filter is able to
detect manhole covers, in all three zones with slightly better
results for zone 2 and poorer results for zone 3. As the three
zones are residential areas with similar semi-detached houses,
the difference in results is thought to be caused by a higher
proportion of vegetation and shadows. Fig. 7 shows examples
of true and false positives as well as undetected objects.

Fig. 7. Examples of results. Left: true positive, middle: undetected; right:
false positive.

The results also highlight the existence of false positives,
reaching nearly 60% in zone 3. No clear typology of the
situations which lead to false detection can be made at this
stage. Over the three zones, 42% to 79% of manholes remain
undetected. This may seem as a poor result, however, it is
common practice in southern France not to systematically take
down all manhole locations during surveying, but rather to
register only half or one third of covers each time, in an effort
to cut down costs.

The two methods have then been applied on the 4 cm
resolution image (see Figure 8). Their results are compared
in terms of precision and recall:

precision =
TP

TP+FP
(11)
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Fig. 9. Precision vs recall, with circular pattern detection (CF) and with the
machine learning method (ML).

recall =
TP

TP+FN
(12)

where TP stands for true positive i.e. number of correctly
detected manhole covers; FN for false negative, i.e. number of
omitted manhole covers and FP for false positive, i.e. number
of objects confused as manhole covers. TP+FP is thus the total
number of detected objects.

Figure 9 illustrates the performance of the circular detec-
tion filter method using a Receiver Operating Characteristics
(ROC) graph [18] i.e. precision as a function of the recall,
where the threshold applied to ζ varies. All manhole covers
could not be detected by this method because about 20% of
them had a rectangular shape and were undetectable. We also
noticed a significant number of false positives. In fact, there
were many circular patterns on the road such as oil spots or
potholes, which are enhanced as the image is smoothed.

The ROC curve of the machine learning method, which
has higher precision than the previous one, is also plotted in
Figure 9. Poor results are obtained: for a recall of 50%, only
20% of the objects were manhole covers. They may stem from
the small size of the training database.

Figure 10 illustrates the combined method, with functions
h, s, n and m. All these functions but s give better results than
the two methods taken separately. The poorer results obtained
with the summing function s were due to the addition of
all detections, including false ones. Hence, the precision was
worsened according to Eq. 11.

With the other functions (m, n and h), the precision was
increased by more than 25%. For instance, a recall of 40%
corresponded to a precision of approximately 43% for the
machine learning approach (ML curve) and reached 68% for
the min function (n curve).

We noticed that the maximum function m gave a better
score: nearly twice the precision of the machine learning
method. Actually, if the classifier probability value is high,
then this response is more efficient than the dot or minimum
return. This could have two explanations. First, nearly ideal
circular shapes may be detected with high precision by the
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Fig. 8. The two figures represent the results obtained with the circular filter on the left and the machine learning method on the right. The rectangles are
the true negatives and the circles are the true positives. The lines connect the two common results between two approaches. The testing image is at 4 cm
resolution.
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Fig. 10. Results of the combined method: sum (s), product (h), maximum
(m) and minimum (n) functions. Comparison with the two approaches (ML-
machine learning) and (CF-circular filter)

circular filter, but may have a lower probability with the
machine learning method, which has no information on the
shape. In contrast, the circular filter gives a lower score for
rectangular manhole covers, contrary to the machine learning
approach, which is more robust.

The main shortcomings of this kind of approach are that,
when using two methods, the combined recall value is always
lower than the lowest score of each method taken separately.

IV. CONCLUSION

The objective of this work was to put forward a methodol-
ogy to detect small urban objects on high resolution images
in order to reconstruct buried utility networks. The main
challenge was to detect grey objects whose size is within the
spatial resolution limit of the image and that are located on a
grey background.

The preliminary results obtained using the geometrical filter
are satisfactory as they allow the detection of 42% of manhole
covers in residential areas. Surveying companies in southern
France are often required to report one third of manholes in
order to cut down production costs. Our method thus allows
the same detection rate. However, the rate of false negatives
is still unacceptably high and remains unchanged even when
using higher resolution images (4 cm resolution). Additional
criteria can be used to discriminate these false negatives,
such as the density of detected objects. Furthermore, we are
currently investigating the use of alternative remote-sensing
data such as thermal or infra-red images, in order to improve
the detection rate.

Regarding the machine learning method, the results show
that nearly 40% of manhole covers were detected with a
precision of 80%. These results are encouraging, specially
considering that a small training database was used.

Many options remain unexplored and will be investigated
in the very near future. For instance, a square filter could be
added to the geometrical detection procedure, additional SVMs
could be tested as well as other combined methods [19]. The



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

high resolution of the aerial images for the localisation of
small urban objects is a highly promising research field.

The final objective of this project is to estimate urban contri-
bution to downstream waterbodies and not to precisely assess
water fluxes in the buried network itself. Based on the detected
manhole covers locations, and knowing the efficiency of the
method, a network will be statistically reconstructed using the
rules and regulations of drainage network implementation in
France.

A sensitivity analysis will also be performed to estimate the
impact the partial information on network characteristics have
on the assessment of downstream fluxes.
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