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Abstract

Thermal imaging has become a valuable tool in vari-
ous fields for remote sensing and can provide relevant in-
formation to perform object recognition or classification.
In this paper, we present an automated method to obtain a
3D model fusing data from a visible and a thermal camera.
The RGB and thermal point clouds are generated indepen-
dently by structure from motion. The registration process
includes a normalization of the point cloud scale, a global
registration based on calibration data and the output of the
structure from motion, and a fine registration employing a
variant of the Iterative Closest Point optimization. Experi-
mental results demonstrate the accuracy and robustness of
the overall process.

1. Introduction

Originally developed for military purpose, infrared ther-
mography became a common tool for numerous other fields.
In the last decades, thermal imaging has been employed
in applications such as infrastructure and electrical systems
monitoring, human detection, breast cancer diagnostic, and
see-through smoke or fog environment [25, 2]. In most of
these cases, 2D thermal images are considered, exploiting
the facility to install a thermal camera, as well as the non-
invasive and non-destructive system of recording the tem-
perature regardless of the ambient light. By applying 3D re-
construction photogrammetric techniques on infrared ther-
mal (IRT) images, such as structure from motion (SfM), it
is possible to take advantage of both thermal and geometric
properties. This way, scene understanding can be enhanced,
for example to study energy efficiency of the building sec-
tor, or to perform 3D object recognition and classification.
In this paper, we propose an automated registration method
for RGB and IRT point clouds generated by SfM from vi-
sual and infrared sequences. The obtained aligned model

fuses visible colors, thermal, and depth information.

1.1. Related Work

Current state-of-the-art techniques to generate 3D RGB-
thermal model rely on merging information from different
type of sensors. In general, these methods can be classified
in two different approaches.

The first approach is to map the RGB and IRT infor-
mation to a point cloud reconstructed using time-of-flight
technologies. Borrmann et al. present a mobile platform
equipped with a 3D laser scanner, an RGB camera and a
thermal camera to create 3D thermal models [4]. The mo-
bile robot is able to autonomously collect the data, then
map thermal and color information onto the 3D data with-
out any scale ambiguity given sensors calibration data. A
similar method is proposed in [7], where the sensors are
instead placed on a wearable backpack comprising of five
2D laser range scanners, two optical cameras and two in-
frared cameras. In [26], the authors present a registra-
tion method using a range camera that is able to simulta-
neously provide both range and intensity images. Given
2D correspondences between the intensity and thermal im-
ages, the range camera can assign a 3D point to each 2D
matches. The thermal point cloud is then derived by ap-
plying the Efficient Perspective-n-Point algorithm to these
3D/2D correspondences. Considering the cost of 3D laser
scanners, some systems use low-cost RGB-D camera (Mi-
crosoft Kinect). They also generate RGB point clouds on
which the thermal information is added. A system using
and RGB-D camera and a single additional thermal cam-
era is presented in [24], where after computing the poses
corresponding to each RGB and IRT image, raycasting is
used to map RGB and IRT intensities to the voxels recon-
structed from the range sensor. Even though depth cameras
and range scanners can provide accurate point cloud with
low processing costs, their precision and range can be lim-
ited when operated outdoors depending on the technology



employed [1, 13].
The second approach is an image-based point cloud

reconstruction. In [15], the authors present a semi-
automatic framework to generate RGB-IRT 3D model
achieved through image stitching and surface reconstruc-
tion techniques. This method needs an operator to define
the temperature interval for each dataset and to verify ev-
ery matches between thermal images as well as the matches
between RGB to thermal images. This task is decisive for
the image stitching and registration process. In [10], the
authors solve the matching problem using specific built-in
digital lenses that can capture simultaneously both RGB and
thermal images. However, their registration pipeline still in-
cludes a multi-view stereo process to optimize the camera
poses. Several RGB-IRT point cloud registration methods
for Remotely Piloted Aircraft System (RPAS) are evaluated
in [12]. The most accurate proposed method relies on the
on-board GPS/INS of the RPAS to generate the point clouds
from RGB and IRT image inputs. Then, under the assump-
tion that the two point clouds are very close together and
have the same scale, the Iterative Closest Point (ICP) algo-
rithm is directly used for the registration.

1.2. Motivations and Methodology

In each aforementioned method, the generation of the
thermal point cloud is relying on the extrinsic parameters
of the sensors retrieved during a calibration step, i.e., the
3D IRT point cloud cannot be reconstructed without using
other sensors. To the best of our knowledge, the whole SfM
pipeline has never been directly employed on thermal im-
age sequence, even though state-of-the-art local detectors
and descriptors can be also employed to find correspon-
dences in the latter [18, 14]. We propose a framework us-
ing SfM directly on visible and thermal image sequences.
Hence, unlike previous existing methods, the point cloud
reconstruction is completely independent from the registra-
tion process.

The proposed system to align the RGB and IRT point
clouds is based on the constant relative position and ori-
entation between the two cameras. This condition is ful-
filled by fixing the two cameras on a stereo rig. The relative
pose is beforehand determined by a calibration procedure
using a chessboard. Then, two independent RGB and IRT
point clouds are generated using SfM from image sequence
inputs. Since the scale of the two reconstructions are ar-
bitrary, a normalization procedure must be first performed
before the registration. Next, a rigid body transformation is
defined to achieve a global registration considering that the
two cameras are fixed on a stereo rig. Finally, a variant of
the Iterative Closest Point algorithm is applied to perform a
fine registration overcoming errors from previous steps. An
overview of the framework is presented in Figure 1.

The output of the presented method is two aligned RGB

and thermal point cloud which leads to more informative
scene representation. Our main contributions include:
• Providing a two-step algorithm for RGB and IRT point

cloud registration that can recover from an inaccurate
calibration or poses estimation.
• Proposing a way to normalize independent point

clouds output from SfM for a stereo rig.
• Presenting an enhanced calibration method for the

thermal camera using a chessboard pattern.
• Demonstrating the possibility to generate thermal

point cloud only using the SfM pipeline.

Figure 1. Overview of the proposed RGB and thermal 3D recon-
struction and registration method.

2. Camera Calibration
This section details the camera calibration procedure to

obtain the intrinsic and extrinsic parameters of the RGB and
the thermal camera.

2.1. Calibration Setup

The calibration of the RGB and IRT cameras follows the
procedure using a planar pattern [6, 28]. We use an en-
hanced version of the usual calibration chessboard adapted
to perform with both RGB and IRT cameras. Indeed, the
difference of emissivity of the black and white regions of a
regular chessboard is insufficient for the thermal camera to
have stable corners to perform the calibration. A common
method to increase the temperature difference between the
two regions is to heat the pattern with a flood lamp [17, 20].
Nevertheless, Vidas et al. [23] pointed out the struggle to
detect crisp corners for accurate calibration and the diffi-
culty to execute it.

To overcome these issues, we propose a simple yet accu-
rate calibration method using a modified chessboard and a



corners refinement step. A conductive rubber tape is placed
on the black parts of the printed chessboard pattern coupled
with a low heat capacity support to increase the thermal ra-
diation. Then, instead of using a flood lamp that produces
a non-uniform heating [20], we cool down the calibration
board. The Figure 2 shows the calibration chessboard cap-
tured simultaneously by both cameras.

Figure 2. Calibration chessboard simultaneously captured by the
RGB camera (left) and the thermal camera (right).

2.2. Radial Distortion

Due to the blur on the detected chessboard on the thermal
image, regular calibration methods that handle lens distor-
tion correction are unlikely to perform well. Thus, we first
consider the rectification of the radial distortion of the ther-
mal images.

We select a very usual 4th order polynomial as the dis-
tortion model to correct the effect of distortion. More
precisely, we use the method proposed by Devernay and
Faugeras [9], derived from the plumb line approach. They
assume the distortion center to be equal to the image center
and the pixels to be square. This approximation leads to sat-
isfactory results that still can be enhanced afterwards with a
global optimization scheme during the calibration process.

In practice, this process requires some patches of points
supposed to be aligned. Since the lens distortion correc-
tion is most likely to be performed only when the lenses are
changed or modified (zoom in / out), we select these points
manually. Note that straight lines in thermal images are not
hard to find. A radial distortion correction result is depicted
in Fig. 3.

2.3. Camera Parameters Estimation

Once the radial distortion is corrected, both RGB and
IRT cameras can be calibrated using automatic tools.

Figure 3. Lens distortion correction on the thermal image us-
ing [9].

2.3.1 Camera Model

We use the pinhole camera model for both cameras. The
camera sensor is assumed to be zero-skewed with squared
pixels. Given a scene points X ∈ P3 that projects to an
image point x ∈ P2, the camera projection matrix [11] can
be expressed by

x = K
[
R t

]
X, with K =

α 0 x0
0 α y0
0 0 1

 (1)

where K is the intrinsic parameters matrix, defined by the
focal length α expressed in pixel unit and the principal
point (x0, y0).

[
R t

]
is the extrinsic parameters matrix,

which contains the rotation and the translation that relates
the world coordinate system to the camera coordinate one.

2.3.2 Chessboard Corners Refinement

The chessboard corners are most of the time difficult to lo-
cate in a thermal image due to low difference of tempera-
ture between the black and white areas, causing a thermal
blur effect. Therefore, we perform a refinement step from
an approximative position of the corners computed with a
common chessboard detection algorithm dedicated for visi-
ble image [6].

This refinement step is inspired by the method proposed
by De la Escalera and Armingol [8] based on chessboard
line intersections optimization. However, instead of using
the Hough transform to detect the line, we estimate the lines
from the initial approximative corners.

Each line of the chessboard is first estimated using a least
square fit. Assuming a Gaussian noise on the chessboard
corner detection due to the thermal blur, the fitted line can
still be used as a guideline to accurately find the chessboard
edges. These edges can be represented by points identified
by computing the maximum of the image intensity gradi-
ent in an orthogonal direction to the fitted line. An exam-
ple of additional detected line points is represented in Fig.
4 (a), where outliers are discarded using RANSAC line fit-
ting. Then, the horizontal and vertical line coefficients are
optimized to obtain the same vanishing point.



(a) (b) (c)

Figure 4. Chessboard detection refinement. (a) Initial blue point are fitted to robustly extract more points according to the image gradient.
The inliers (green) and outliers (red) of the final RANSAC line fitting are also represented. (b) Intersection of the RANSAC and vanishing
point optimized fitted lines. (c) Refined corners (green) compared to initially estimated corners (blue).

The final chessboard edges are finally computed using
the intersections of the optimized lines, as shown in in
Fig. 4 (b). A comparison of the chessboard corners before
and after refinement is depicted in Fig. 4 (c).

2.3.3 Global Optimization

Given a set of 3D to 2D point correspondences over mul-
tiple frames, the intrinsic and extrinsic parameters can be
computed using the closed form solution introduced by
Zhang [28]. The resulting intrinsic parameters are used as
an initial estimate for a global optimization to refine the cal-
ibration as well as the lens distortions correction. This non-
linear process (computed with Levenberg-Marquardt opti-
mizer) minimizes the reprojection error function defined as
follows ∑

i

∑
j

‖xij − p̂(K,D,Ri, ti,Xj)‖2 , (2)

where xij is the position of the jth point in image i and
p̂(D,K,Ri, ti,Xj) is the projection of the 3D points Xj in
image i. In other words, the function p̂ first projects the
point Xj from Eq. (1) and then applies the lens distortion
correction (section 2.2) on the projected point.

3. Point Cloud Reconstruction
This section will present how the point clouds are gener-

ated from image sequences and its filtering process.

3.1. Structure From Motion and Multi-view Stereo

Although visible image and thermal image share differ-
ent physical properties, one common characteristic is the
similarity of the shape of an object. In a 3D sense, it means
that the two point clouds can be related using edges and
surface of the structure. Consequently, we propose a point
cloud alignment method based on the sparse 3D reconstruc-
tion since only the strong distinguishable features, such as

edges and corners, will be reconstructed. Nevertheless, we
also consider the dense reconstruction as it can be used for
a visualization purpose.

To reconstruct the sparse and dense 3D structure, the
open source software COLMAP [21, 22] is used. It is
a general-purpose structure from motion and multi-view
stereo pipeline. The sparse reconstruction differs from the
usual incremental reconstruction process notably by using
geometric verification to improve the robustness of the ini-
tialization, a next best view planning, a robust triangulation
method and a more efficient bundle adjustment parametriza-
tion.

3.2. Point Cloud Filtering

Since thermal images have less stable features compared
to the visible ones, we filter the point cloud by performing
a statistical analysis on the neighborhood of each point as
proposed in [19]. We compute the average distance from
a point to all its K nearest neighbors, and repeat this op-
eration for all points. Then, assuming a Gaussian noise
on the reconstructed point cloud, the points with a mean
distance farther than the interval defined by the global dis-
tances mean and standard deviation are considered as out-
liers. This way, we are able to filter noisy points arising
from false matches between thermal images features.

4. Point Cloud Registration
After having reconstructed the 3D point clouds from the

RGB and IRT image sequences, the registration operation
can be achieved. This section will cover how to define the
rigid body transformation that aligns the IRT point cloud
to the RGB one after having normalization. Then, the fine
registration step using sparse ICP will be explained.

4.1. Normalization of the 3D Reconstruction

In the incremental SfM pipeline, the scale of the recon-
struction is fixed by selecting two frames from the image



sequence and normalizing the length of their baseline [3].
If the normalization was performed with different pair of
frames for the two independently reconstructed 3D point
clouds, there will be a scale ambiguity between them.

We define the reconstruction scale sr as the factor that
the IRT point cloud must be scaled with to obtain the same
scale as the RGB one. This unknown scale sr can be es-
timated by analyzing the computed trajectories of the two
cameras defined by the set of camera poses Crgb and Cirt,
both estimated using SfM. In fact, since they are both sub-
ject to the same rigid motion in the real world, the distance
between two different camera poses i and i + n in Crgb

should be equal of the distance between its counterpart in
Cirt, in the case of a pure translation. This condition is
expressed as

d(Crgb
i ,Crgb

i+n) = d(Cirt
i ,Cirt

i+n), (3)

where d(Ci,Ci+n) is the distance between the camera posi-
tion Ci and Ci+n. As mentioned above, this constraint only
holds for pure translation of the camera rig, i.e. the relative
rotation between the ith and i+nth camera pose must be the
identity matrix. Thus, the camera poses must be first clus-
tered by their orientation so that Eq. (3) can be used within
a cluster of cameras related with pure translations. We per-
form the clustering by constructing a histogram where the
bin width corresponds to a specified maximal angular de-
viation of the camera orientations. The angular deviation
is computed as the sum of difference of the Euler angles.
By denoting V as the set of computed clusters, we can use
the Nc largest clusters of camera poses Vi to recover the
reconstruction scale sr as follows

sr =

Nc∑
i

dv(Vrgb
i )

Nc∑
i

dv(Virt
i )

, (4)

where dv(Vi) is the sum of distance between every pair of
camera position in the ith cluster. Nc is chosen such that
the impact of inaccurate pose estimation is reduced. As a
result, the IRT point cloud can be scaled by sr to match the
scale of the RGB one. We can note that the IRT camera
positions in Cirt are also affected by sr. The new scaled set
of IRT camera pose is denoted as C̃

irt
.

Since sr ≈ 1 in practice, for clarity purpose, we illus-
trate the scale normalization in Fig. 5 with two point clouds
generated by different SfM softwares leading to more dis-
tinctive arbitrary reconstruction scales.

4.2. Global Registration

The global registration can be performed by applying a
rigid body transform to the IRT point cloud since the two
point clouds have the same scale after the normalization.

(a) (b)

Figure 5. Normalization of the IRT point cloud generated with
COLMAP and the RGB one with VisualSFM [27] for the dataset
Shovel. The length of the wall for both point clouds is represented
(a) before normalization and (b) after normalization.

The relationship between the poses of the two cameras as
well as the ambiguity of their relative translation are con-
sidered to define this transformation.

4.2.1 Rigid Body Transformation

The coarse registration process is based on the fixed relative
pose between the two cameras, which was computed apart
during the calibration step. Let Np be the number of pair of
RGB-IRT camera poses (Crgb,Cirt) estimated using SfM.
Given an RGB and an IRT point cloud with the same scale
after normalization, we can perform the alignment of these
two point cloud by applying to the IRT point cloud the rigid
body transformation G(st) described as

G(st) =
Wrel(st)

Np

Np∑
i

Crgb
i (C̃

irt

i )−1

with Wrel(st) =

[
Rrel sttrel
0 1

] (5)

where st is the relative translation scale to be found, and
Wrel(st) is the rigid transformation defined by the relative
rotation Rrel and position trel retrieved during the camera
rig calibration. An interpretation of the rigid body transfor-
mation G(st) is depicted in Fig. 6 for ith IRT camera pose.
Nevertheless, the IRT point cloud will only have the correct
orientation, as the translation in Wrel(st) is defined with an
arbitrary scale. By modifying st, the point cloud is trans-
lated in the direction defined by trel. Consequently, to per-
form the correct rigid body transformation, we can estimate
the relative translation scale by maximizing the number of
overlapping points between the RGB and IRT point clouds.

It can be noted that in Eq. (5), the transformation be-
tween the IRT camera to the RGB camera needs to be op-
timized with the Np pairs to reduce the impact of the pose



Figure 6. Interpretation of the rigid body transform defined by
the computed camera poses and the relative pose between the two
cameras.

error from the structure from motion algorithm. We used
the arithmetic mean of the estimated poses for simplicity
but it could be further improved by considering the mean in
the rotation group for the orientation of the cameras [16].

4.2.2 Relative Translation Scale Estimation

By denoting X̃
irt

i as the homogeneous vector of the ith point
of the normalized IRT point cloud, and Xrgb

j as the homo-
geneous vector of the jth point of the original RGB point
cloud, we propose a scoring function which determines how
well the RGB and IRT point clouds overlap. The main con-
cept of our approach is to locally measure, within a certain
radius, the distances from one point of a point cloud to its
neighboring points belonging to the other point cloud. By
generalizing this process to all points of the first point cloud,
the function to be maximized can be computed as

argmax
st

∑
i

∑
j

f
(
G(st)X̃

irt

i ,Xrgb
j

)
,

with f(x1, x2) =

{ 1

1 + d2
if d ≤ Rth

0 if d > Rth

,

(6)

where the function f computes a score based on the Eu-
clidean distance d between two 3D points (x1, x2) and a
threshold Rth.

Since only the global structure of the two points cloud
will be similar due to the properties of each camera, the
determination of Rth is important. If Rth is too big, even
though there is a weight based on the distance, many distant
neighbors j will be included into the score of the considered
point i leading to false maximum of the total score. On the
other hand, if Rth is too small, the lack of local overlapping
will also impact the score. Furthermore, it can be noted that
every 3D reconstruction is computed with an arbitrary scale,
thus Rth should be chosen accordingly.

For these reasons, by denoting S(xc, Rth) as the interior
points of the sphere centered in xc of radius Rth, we pro-

pose to define Rth as the maximum radius of the sphere so
that it does not cover more than 5% of the RGB point cloud
when centered at any point of the latter. In other words, the
following equation must hold

∀xc ∈ Xrgb :

Card({x | x ∈ Xrgb : x ∈ S(xc, Rth)})
Card(Xrgb)

≤ 0.05 (7)

This way, we can ensure that the global and the local area
of the two point clouds are covered while overcoming the
arbitrary scale.

On Fig. 7, we show the score of the dataset Facade in
function of the relative translation scale. The result of the
coarse registration using the rigid body transformation cor-
responding to its maximum is depicted in Fig. 8.
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Figure 7. Score in function of the scale st (blue) to find and the
ground truth (red) of the dataset Facade.

4.3. Local Registration

Once the rigid body transform is applied on the normal-
ized IRT 3D reconstruction, the two point clouds will not
always be perfectly aligned. There will still be errors that
can arise from unreliable calibration, simplification of the
model, inaccurate scale estimation, etc. To reduce these
errors, the Sparse Iterative Closest Point (SICP) algorithm
proposed by Bouaziz et al. [5] is applied. This variant of the
well-known Iterative Closest Point (ICP) algorithm solves
the issues related to outliers and missing data by formu-
lating the registration optimization using sparsity inducing
norms. Estimating an optimal rigid alignment for noisy and
incomplete geometry is important in our application since
the RGB and IRT point cloud may be completely different
in certain areas due to the nature of the cameras.

The traditional two-step optimization of the ICP algo-
rithm using the l2 norm is reformulated using lp norms,
where p ∈ [0, 1] as follows [5]



(a) (b) (c)

Figure 8. Global registration of the dataset Facade using the optimal relative translation scale. (a) RGB point cloud (b) IRT pointcloud (c)
Alignment result (red) IRT point cloud (blue) RGB point cloud.

1) argmin
Y

∑
i

∥∥∥LG(st)X̃
irt

i − yi
∥∥∥p
2

for yi ∈ Xrgb

2) argmin
L

∑
i

∥∥∥LG(st)X̃
irt

i − yi
∥∥∥p
2
,

(8)

where L is a rigid body transformation that registers the
RGB and IRT point cloud, and Y is a set of point in R that
has the same number of element as Xrgb. Each point yi in
Y represents the closest point in Xrgb to the transformed
point LG(st)X̃

irt

i . In Eq. (8), the lp norm can be inter-
preted as a penalty associated to the residual, i.e., residuals
with higher value will have less impact on the optimization
problem when p is small. This way, large amount of outliers
can be robustly handled.

An example of the local registration effect is depicted
in Fig. 9, where the errors due to an inaccurate extrinsic
calibration are corrected after using the SICP algorithm.

(a) (b)

Figure 9. Fine (blue) RGB and (red) IRT point cloud registration
of the dataset desk using the SICP algorithm. (a) Before the algo-
rithm (b) after the algorithm.

5. Experimental Results
In this section, we demonstrate applications using the

registration of RGB and IRT point clouds and show its
accuracy by using the projection of the aligned point
clouds. Three different datasets including outdoor and in-
door scenes are presented: Facade, Shovel, and Desk. The
datasets have been captured with a optris PI 640, as the ther-
mal camera, and a PointGrey Flea3, as the visible camera.

5.1. Dense Thermal to Visible Image Projection

Using the same transformation employed to align the
sparse IRT point cloud to the RGB one, we can also register
the dense thermal reconstruction to the latter. By project-
ing the aligned IRT point cloud to an RGB camera knowing
its parameters, it is possible to superimpose thermal infor-
mation on a visible image. We show this projection for the
datasets Facade and Shovel in Fig. 10, where the RGB point
cloud has been omitted for clarity purpose.

5.2. Multi-Sensor Image Synthesis

Another application using the transformation computed
during the sparse point cloud registration is to align dense
RGB and IRT 3D reconstructions. The Figure 11 shows the
projection of both dense point clouds to a virtual camera for
the dataset Desk. This way, a new multi-sensor (RGB-IRT)
image can be synthesized.

6. Discussion

In this paper, we propose a method to register RGB and
thermal point cloud generated by SfM. The proposed algo-
rithms are evaluated on three different datasets containing
indoors and outdoors environment, where the accuracy of
the registration is illustrated with projections of the aligned
point clouds. Even though the SfM framework is easy to
perform, a limitation is that it requires sufficient detected
features. This is especially difficult for thermal images as
the temperature difference can be weak in some regions.
Image normalization method coupled with low features de-
tection threshold can be used to increase the number of fea-
tures. However, this will lead to more noise in the 3D recon-
structions. Still, the proposed method is able to register two
incomplete or noisy point clouds as long as there are pair
of RGB-IRT camera poses computed simultaneously. Our
future work includes a real-time variant of the proposed al-
gorithm based on SLAM techniques, and the possibility to
improve a 3D model at night by registering a thermal point
cloud to the incomplete RGB one.



Figure 10. (Top) Dense thermal point cloud of the dataset (first column) Facade and (second column) Shovel. (Each row from left to right)
Visible image, projected dense thermal point cloud on the RGB camera, and fused visible image and projected thermal information.

Figure 11. Example of multi-sensor image synthesis for the dataset Desk. (Each row from left to right) Projected dense RGB point cloud,
projected dense IRT point cloud, and fused RGB and thermal information.
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