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Abstract—We investigate label efficient prediction, a variant, assumption other than boundedness is made on thé.|Gsdy
proposed by Helmbold and Panizza, of the problem of prediction relatively recently, Cesa-Bianchi, Freund, Haussler, Helmbold,

with expert advice. In this variant the forecaster, after guessing Schapire, and Warmuth [3] have revealed that the correct
the next element of the sequence to be predicted, does not observed d ' W in th S t rate iI©(vVnIn NV
its true value unless he asks for it, which he cannot do too G€PENAENCE OIV In the minimax regret rate | (VnInN).

often. We determine matching upper and lower bounds for the Game theorists, information theorists, and learning theorists,

best possible excess prediction error, with respect to the bestwho independently studied the sequential prediction model,

possible constant predictor, when the number of allowed queries addressed the fundamental question of whether a sub-linear
is fixed. We also prove that Hannan consistency, a fundamental regret rate is achievable in case the past outcames. , y;_

property in game-theoretic prediction models, can be achieved irel ol h . h f
by a forecaster issuing a number of queries growing to infinity ar€ Not entirely accessible when computing the guesgtor

at a rate just slightly faster than logarithmic in the number of In this work we investigate a variant of sequential prediction

prediction rounds. known aslabel efficient prediction. In this model, originally
Index Terms— label efficient prediction, prediction with expert Proposed by Helmbold and Panizza [4], after choosing its
advice, individual sequences, on-line learning guess at time the forecaster decides whether to query the out-

comey;. However, the forecaster is limited in the numpén)
of queries he can issue within a given time horizann the
l. INTRODUCTION casen — oo, we prove that Hannan consistency (i.e., regret
Prediction with expert advice, a framework introduced abo@fowing sub-linearly with probability one) can be achieved
fifteen years ago in learning theory, may be viewed asu@der the only conditionu(n)/(log(n)loglog(n)) — ooc.
direct generalization of the theory of repeated games, a fiditpreover, in the finite-horizon case, we show that any fore-
pioneered by Blackwell and Hannan in the mid-fifties. Agaster issuing at most = p(n) queries must suffer a regret
a certain level of abstraction, the common subject of thegéat least orden,/(In N')/m on some outcome sequence of
studies is the prob|em of forecasting each e|en7!ﬁn®f an Iengthn, and we show a randomized forecaster aChieVing this
unknown “target” sequence given the knowledge of the preVigret to within constant factors.
ous e|ement@1’ e Y1 The forecaster’s goa| is to predict The problem of label efficient prediction is Closely related
the target sequence almost as well as any forecaster forcedtether frameworks in which the forecaster has a limited
use the same guess all the times. We call this the sequerdiggess to the outcomes. Examples include prediction under
prediction problem. To provide a suitable parameterization Bfirtial monitoring (see, e.g., Mertens, Sorin, and Zamir [35],
the problem, we assume that the set from which the forecadtatstichini [6], Piccolboni, and Schindelhauer [7], Mannor
picks its guesses is finite, of siz& > 1, while the set and Shimkin [8], Cesa-Bianchi, Lugosi, and Stoltz [9]), the
to which the target sequence elements belong may be roglti-armed bandit problem (see Bes [10], Megiddo [11],
arbitrary cardinality. A real-valued bounded loss functiois Foster and Vohra [12], Hart and Mas Colell [13], Auer, Cesa-
then used to quantify the discrepancy between each outcoRianchi, Freund, and Schapire [14], and Auer [15]), and the
y, and the forecaster’s guess for. The pioneering results “apple tasting” problem proposed by Helmbold, Littlestone,
of Hannan's [1] and Blackwell [2] showed that randomize@nd Long [16].
forecasters exist whose excess cumulative loss (or regret),

with respect to the loss of any constant forecaster, growg SEQUENTIAL PREDICTION AND THE LABEL EFFICIENT

sub-linearly in .thej !engthz of the target sequence, and this MODEL
holds for any individual target sequence. In particular, both _ o _ _
Blackwell and Hannan found the optimal growth ra&,/z), ~ The sequential prediction problem is parameterized by a

of the regret as a function of the sequence lengtithen no numberN > 1 of player actions, by a se¥ of outcomes,
and by a loss functiord. The loss function has domain
N. Cesa-Bianchi is with the Dipartimento di Scienze delllnformazione{1,..., N} x ) and takes values in a bounded real inter-
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LABEL EFFICIENT PREDICTION Parameters: Real numberg) > 0 and0 < e < 1.

Parameters: numberN of actions, outcome spacg, loss Initialization: wy = (1., 1).
function ¢, query ratex : N — N. For each round =1,2,...
For each round =1,2,... (1) draw an actionl; from {1,..., N} according to the
(1) the environment chooses the next outcogpec ) distribution
without revealing it; _ pii= =t —  i=1,...,N;
(2) the forecaster chooses an actibre {1,...,N}; T Y wye

(3) each action incurs losst(i, y);
(4) if less thanu(t) queries have been issued so far,
the forecaster may issue a new query to obtain|the
outcomey;; if no query is issued then, remains

unknown. w11 =w; e MG¥)/E foreachi=1,...,N

(2) draw a Bernoulli random variablg; such thatP[Z; =
1] =¢;
(3) if Z; =1 then obtainy; and compute

else, letw; 1 = w;.
Fig. 1. Label efficient prediction as a game between the forecaster and |the t+1 ¢

environment.

Fig. 2. The label efficient exponentially weighted average forecaster.

issued, theny; remains unknown. In other words, does not
depend on all the past outcomgs. .., y;_1, but only on the 1. A LABEL EFFICIENT FORECASTER

gueried ones. The label efficient model is best .descnt.)ed as e start by considering the finite-horizon case in which the
repeated game between the forecaster, choosing actions, @Ad.aster's goal is to control the regret afterpredictions,
the environment, choosing outcomes (see Figure 1). wheren is fixed in advance. In this restricted setup we also
The cumulative Ios_s of the forecaster on a sequenggs,me that at most, — 1u(n) queries can be issued, where
Y1, Y2, ... of outcomes is denoted by w is the query rate function. However, we do not impose any
n further restriction on the distribution of these queries in
L, = Zf(fnyt) for n > 1. the n time steps, that isy(t) = m for ¢ = 1,...,n. We
P introduce a simple forecaster whose expected regret is bounded
by n\/2(In N)/m.
As the forecasting strategies we consider may be randomizedit is easy to see that in order to achieve a nontrivial
eachl; is viewed as a random variable. All probabilities angerformance, a forecaster must use randomization in deter-
expectations are understood with respect to d¢kagebra of mining whether a label should be revealed or not. It turns
events generated by the sequence of random choices of ¢be that a simple biased coin is sufficient for our purpose.
forecaster. We compare the forecaster's cumulative Ioss The strategy we propose, sketched in Figure 2, uses an i.i.d.

with those of theN constant forecasterg,,, = £(i,y1) + sequenceZ;, Z,...,Z, of Bernoulli random variables such
oo+ i yn), i =1,...,N. thatP[Z, = 1] = 1 — P[Z, = 0] = ¢ and asks the labg}, to
In this paper we devise label efficient forecasting strategibse revealed whenevef; = 1. Heree > 0 is a parameter of
whose expected regret the strategy. (Typically, we take~ m/n so that the number
of solicited labels during: rounds is abouin. Note that this
E En — min L, way the forecaster may ask the value of more thatabels,
i=1,..,N but we ignore this detail as it can be dealt with by a simple
i ) adjustment.) Our label efficient forecaster uses dttémated
grows sub-linearly inn for any sequence, ys,... of out- | ccac
comes, that is, for any strategy of the environment whenever ~ def [ L(i,ys)/e if Z, =1,
u(n) — oco. Note that the quantitieg, ,,,..., Ly, are ran- (Goy) = { 0 otherwise.
dom. Indeed, as argued in Section I, in general the outcomes : .
y: may depend on the forecaster's past random choices. Vidd Pt = (p1t,---,pve) and let vy denote the prefix
more refined analysis, we also prove the stronger result \V1>- " ,ve) of an arbitrary sequenc@:, vz,...). Then
E[{(i Z5N Y = e 2
Zn . i Ilnln Liﬁn _ O(TL) as. (1) M(z, yt) | 1 41 ] E(Z,yt) ) ( )
E[g(ptayt) ‘ Zf_lvjf_l]
for any sequencey,y.,... of outcomes and whenever

=/ =E[((I VAR 3
1(n)/ (log(n) loglog(n)) — oc. The almost sure convergence (P ye) = E[UTeye) | 217 I )
is with respect to the auxiliary randomization the forecastéold for eacht, where
has access to. Property (1), known Hasnnan consistency in

N N
game theory, rules out the possibility that the regret is mug =N "p 0 and {(p,y) = piil(i )
larger than its expected value with a significant probability. %t’yt) ; + HEw) (1. 3¢) ; + Hiu)



Note that the conditioning orZi~! and Ii~' is necessary
because of the two following reasons: firgi, depends both

on the past realizations of the random choices of the forecas

fol (see the third step in the algorithm of Figure 2) an

Parameters: Real numbersg) > 0 and0 < e < 1.
styitialization: w, = (1,...,1), Zp = 1.
dFor each round = 1,2, ...

on the past outcomeg{fl; second,y; is a function of both
Zi=' and I'™!, as the environment is allowed to determin
y; after playing the game up to time— 1 (see Figure 1).
For technical reasons, we sometimes consider a weaker mg
(which we call theoblivious adversary) where the sequence
Y1, Y2, . . . of outcomes chosen by the environment is determi
istic and independent of the forecaster random choices. T
is equivalent to a game in which the environment must fix the =¢:
sequence of outc_omes before t_he game begm_s. The ob_I|V| DL@) if Z, — 1 then obtainy, and compute
adversary model is reasonable in some scenarios, in which the
forecaster’s predictions have no influence on the environment.
Clearly, any result proven in the standard model also holds|in
the oblivious adversary model.
The quantitie(i, y;) may be considered as unbiased esti-
mates of the true losse%i, y;). The label efficient forecasterFig. 3. The lazy label efficient exponentially weighted average forecaster
of Figure 2 is an exponentially weighted average forecast8f the oblivious adversary model.
using such estimates instead of the observed losses. The

expected performance of this strategy may be bounded
foIIFZ)ws. b 9y y c%anges of an action, that is the number of steps whigese

Theorem 1:Fix a time horizonn and consider the label ft+1: is at most the number of queried labels (by construction
efficient forecaster of Figure 2 run with parameters m/n of the lazy forecaster). To prove the regret bound, note that

andn = (vV2mInN)/n. Then, the expected number ofV€ derive the statement of Theorem 1 by taking averages
revegled Iai:)els%;uagrgmd P on both sides of (4), and then applying (2) and (3). Note

that (4) holds forevery realization of the random variables

(1) if Z;—; =1 then draw an actiod; from {1,...,
according to the distribution
Wit
N
> j=1 Wyt
otherwise, letl; = I;_; ;
hi&) draw a Bernoulli random varlabl@t such thatP[Z, =

N}

1)

del , i=1,...,N;

bit =

n_

Wi g1 = wi e MHEVO/E for eachi =1,..., N

else, letw; 1 = wy.

E F ~ min L < 2In N Il.’ oo Iyand Zy, ..., Z,,. Ther'efore, as thg lazy fpre.cas.ter

[ N o Al m differs from the forecaster of Figure 2 only in the distribution

In the sequel; for each=1,...; N, we write of I,...,1I,, inequality (4) holds for the lazy forecaster as
B no well. In the oblivious adversary model does not depend
L;,= Zﬁ(z’,yt) on I,...,I;_q; thus, by constructionp, does not depend

t=1 onIy,..., I, either. Therefore, we can take averages with

respect toly, ..., I;_; obtaining the following version of (3)
PROOF. The proof is a simple adaptation of [17, Theorem 3.1for the lazy forecaster,
The starting point is the following inequality (see also [7,

N
Theorem 1)) B [Upou) | 2571 = Y ) pie =B [0T) | 2071
- .~ InN n =1
o Lin<— 14 . . e
; (Perye) = mlnN ’ i) fz;; 3 e) th Since (2) holds as well when the conditioning is limited

_ to Zy,...,7Z;_1, we can derive for the lazy forecaster the
Since {(j,y.) € [0,1/¢] for all j and y;, the sec- same bounds as in Theorem 1 (and Theorem 2). Note also
ond term on the right-hand side may be bounded hjat the result holds even whep is allowed to depend on

(n/(2¢)) >0, ZJ 1 (4, y¢)p;+ and therefore we get, for all Z;,..., 7, ;.

n,

znjz(pmyt) (1 - 2%) <Lin+

t=1

In N

n

N . A. Bounding the regret with high probability

i=1,...,

Theorem 1 guarantees that the expected per-round regret
fanverges to zero whenevet — oo asn — oo. The next
result shows that this regret is, with overwhelming probability,
bounded by a quantity proportional to,/(In N)/m.

Remark 1.1:In the oblivious adversary model, Theorem 1 Theorem 2:Fix a time horizonn and a numbeb € (0,1).
(and similarly Theorems 2 and 10 below) can be strengtherfe@nsider the label efficient forecaster of Figure 2 run with
as follows. Consider the “lazy” forecaster of Figure 3 thatarameters
keeps on choosing the same action as long as no new queries

max {O7 m- } and

Taking expectations on both sides and substituting the val
of n ande yields the desired result. ||

2mIn(4/6)

2¢eIn N
- .

are issued. For this forecaster Theorems 1 and 2 hold with the_
additional statement that, with probability 1, the number of




Then, with probability at least — §, the number of revealed We now apply Lemma 15 withk = u, v = n/e, and K =

labels is at mostn and for allt = 1,. 1/e (since|X| < 1/ with probability 1 for all s). This yields
Et min th < 2n1/ —|— 6ny/ —————= 4N/6 P L max My > x} = P L max M; >wu andV,, < :j
1=1,..., =1,....n =1,....,n
Before provmg Theorem 2, note that #f < 4Ne*m/8, u2
then the right-hand side of the inequality is greater than < eXP( 2(n/e+u/(3€))>

and therefore the statement is trivial. Thus, we may assume

throughout the proof that > 4Ne=™/8. This ensures that  Using In(4/d) < m/8 implied by the assumptiors >
4Ne~™/8 we see that, < n, which, combined with (5),

e>m/(2n) >0 . () shows that
We need a number of preliminary lemmas. The first is ob- u? - u? 3u?m _, §
tained by a simple application of Bernstein’s inequality (see 2(nje +u/(3¢)) ~ (8/3)n/e ~ 16n2 Y

Lemma 15).

Lemma 3: The probability that the strategy asks for mor@nd this proves the first inequality.
thanm labels is at most /4. To prove the second inequality note that, by the arguments

above, for each fixed we have
PROOF Note that the numbed/ = >} | Z, of labels

asked by the algorithm is binomially distributed with pa-p |y . 7. < 7. & (475 REN/O) | 0
rametersn and ¢ and therefore, writingy = m/n — e = =" > Lie+(4/V3)n AN

2mIn(4/9), it satisfies ) )
) ) The proof is concluded by a union-of-events boundl
P[M >m] = P[M—EM >ny] <e ™ /(2+27/3)

< em2m o 0 PROOF OFTHEOREM 2. Whenm < In N, the bound given
4 by the theorem is trivial, so we only need to consider the case
where we used Bernstein’s inequality (see Lemma 15) in thghenyn > In N. Then (5) implies that — /(2¢) > 0. Thus,
second step and the definition gfin the last two steps. | g straightforward combination of Lemmas 3 and 4 with (4)

) . shows that, with probability at leadt — 3§/4, the strategy
Lemma 4:With probability at leastl — ¢/4, for all ¢ =

) asks for at mostn labels and for alt = 1,...,n,
yeeay N,
t t i n
4 [i(4/s) Sty (1- o)
SZ:; p57y8 z:: pbvys \/gn m . 1 2e
) 8 4N InN
Furthermore, with probability at leadt— §/4, for all i = < rlnln Liy+— \f ln 3 + —,
1,...,Nandforallt=1,...,n - g
N 4 In(4N/9) which, smcezszlﬁ(ps,ys) < n for all t < n, implies, for
Liy <L +— — alt=1,....,n
\/> t
PrROOF The proofs of both inequalities rely on the same .
techniques, namely the application of Bernstein’s inequality ;E(ps,y ) L=11mn1v ot
for martingales combined with Doob’s maximal inequality. We - 8 7 4N N
therefore focus on the first one, and indicate the modifications < + L e P
needed for the second one. N V3 m n
We introduce the sequenc¥, = {(p,,vs) — £(Ps,Vs), B InN 8 L, 4N
s =1,...,n, which is a martingale difference sequence with - T ﬁ m. 5

respect to the filtration generated by (&, 1), s = 1, .. ..

Defining u = (4/v/3)n+/(1/m)In(4/6) and the martlngale by our choice ofy and usingl/(2¢) < n/m derived from (5).
M, = X, + ...+ X,, our goal is to show that The proof is finished by noting that the Hoeffding-Azuma

inequality (for maximal processes, see [18]) implies that, with
P { max M, > u} < 9 probability at leastl — /4, forallt =1,...,n
<1
t t
=~ 4
For alls = 1,...,n, we note that I3 U, ys 3 P2
' ;(,y Zps,y +/ 55
E[X2| 2 0 . -
~ 1
= E[(tpoy) - Upoy))? | 20757 < D Upoys) +ny 5=

s=1
< E [f(ps,ys)2 \ Zf‘l,If‘l} <1/e,

=1,..,n

sincem <n. |
so that summing over, we havel, < n/sforallt =1,...,n.



B. Hannan consistency

Theorem 1 does not directly imply Hannan consistency ?arameters: Real numbe
the associated forecasting strategy because the regret bguRdialization: ¢ = 1.
does not hold uniformly over the sequence lengtiHowever, | For each epoch = 0,1,2,.. .,

‘l‘Jsmg _stan@ar:d dyngmlcql tuning techmques (such as the 1) let K, — 47(2In N) /e ;
doubling trick” described in [3]) Hannan consistency can be 2) initialize f-(r) —Oforalli=1 N
achieved. The main quantity that arises in the analysis is the ! PR

0D<e<l.

query rateu(n), that is the number of queries that can be 3 r\;%cfaster of Figure 2 choosingndy, =
issued up to timex. The next result shows that Hannan consis- 2 wh(ileg ;in‘)é(;)? K, —1/c do
tency is achievable whenevg(n)/(log(n) loglog(n)) — oo. vV = '
Corollary 5: Let . : N — N be any nondecreasing integer (a) denote by, the action chosen by the forecaster
valued function such that of Figure 2, and lefZ, = 1 if it asks for the labe
Yy, Zy = 0 otherwise;
un) =00 . (b) if Z, =1, then obtain the outcomg and update
n—o0 logy(n) log, logy (1) the estimated losses, for dl=1,..., N, as

Then there exists a Hannan consistent randomized label effi- ~ ~ )
cient forecaster that issues at mpsh) queries in the firsk Li(r) = Li(r) + £(i, ye) /¢ ;
predictions, for anyh € N. (c) t:=1t+1.

PrROOF The algorithm we consider divides time into consec=
utive epochs of increasing lengths = 2" for r = 0,1,2,.... Fig. 4. A doubling version of the label efficient exponentially weighted
In the r-th epoch (of length2”) the algorithm runs the average forecaster.

forecaster of Theorem 2 with parameters= 2", m = m,.,

andé, = 1/(1 + r)?, wherem, will be determined by the

analysis (without loss of generality, we assume the forecasft # 9rows faster tharlog, (n) log, logy(n), we have that
always asks at most,,. labels in each epoch). Our choice ¢(t) — +oo. Thus, choosingme = 0, and m, =

of 6, and the Borel-Cantelli lemma implies that the bound df?(2")10gs(1 + )], we indeed ensure that,./Inr — +o0.
Theorem 2 holds for all but finitely many epochs. Denote tHedrthermore, using that.,. is nondecreasing as a function of
(random) index of the last epoch in which the bound does rfotand using the monotonicity af,

hold by R. Let LA(’”) be cumulative loss of the best action in  r(»)

_epochr and letL(") be the cumulative loss of the forecaster Z m, < (R(n)+ 1)¢(2R(n)) log, (1 + R(n))

in the same epoch. IntroducB(n) = |[log,n]|. Then, by —0

Theorem 2 and by definition oR, for eachn and for each < (14 1logyn)o(n)logy (1 +logyn) < u(n)

realization of/{* and Z* we have )
and this concludes the proof. I

R(n)—1 n
PP S (ZCI7) W ST
= t=21) IV. | MPROVEMENTS FOR SMALL LOSSES
— > min_ £(j,y) We now prove a refined bound in which the factors
igrim I n+/(In N)/m of Theorem 2 are replaced by quantities of the
R R(n) m(AN(r + 1)) order of\/nL: (In N)/m+(n/m)In N in case of an oblivious
< > 2r48 )y 2y e ) adversary, and/nL? (In(Nn))/m+(n/m)In(Nn) in case of
r=0 =Rl M a non-oblivious one, wheré; is the cumulative loss of the
) o . ] ] best action,
This, the finiteness oft, and1/n < 2-%(™) imply that with B
robability 1, X . . )
P Y Ln = Ln<yll) = iirlnlnNZE(Zayt) .
7 R T =1
) L,—- L% ) R » [In(AN(r+1)?)
hffo‘ipT =8 hgl_?iPQ >.2 progy " In particular, we recover the behavior already observed by

r=0 Helmbold and Panizza [4] for oblivious adversaries in the case

Cesaro’s lemma ensures that thm sup above equals zero L: =0.

as soon asn,./Inr — +oo. It remains to see that the latter This is done by introducing a modified version of the
condition is satisfied under the additional requirement that th§ecaster of Figure 2, which performs a doubling trick
forecaster does not issue more tham) queries up to time..  gyer the estimated lossds ¢, t = 1,...,n (see Figure 4),

This is guaranteed whenevery +mi +...+mp@) < #(n)  and whose performance is studied below through several

for eachn. Denote by¢ the largest nondecreasing functiompplications of Bernstein's lemma.
such that
o(t) <

Similarly to [17, Section 4], we propose in Figure 4 a
forecaster which uses a doubling trick based on the estimated

p(t)
(14 logy t) logy(1 + log, t)

forallt=1,2,...



losses of each actioh=1,..., N. We denote the estimatedso

accumulated loss of this algorithm by 9R-1 < (zz T 1/5) L

" no_ 0

Lan= Zﬁ(pt,yt) The above is implied by

t=1
L . ~ 1
and prove the following inequality. of+l _1<144 (L;; + 1/5) A
Lemma 6:For any0 < ¢ < 1, the forecaster of Figure 4 0
achieves, for alh =1, 2, . . ., which also holds foR = 0. Applying the last inequality to (6)
TN AN concludes the proof. |
~ ~ ~ n n
Lan <L +8/2 (L* 1 )7 .
An S Ent \[\/ ntl/e € + € We now state and prove a bound that holds in the most

where general (non-oblivious) adversarial model.

Z;; = min L;, . Theorem 7:The label efficient forecaster of Figure 4, run

i=1,...,.N with
PrROOF The proof is divided in three steps. We first deal with _ m—/2mIn(4/0)
. g =

each epoch, then sum the estimated losses over the epochs, n
and finally bound the total numbét of different epochs (i.e., ensures that, with probability — 4, the algorithm does not
the final value ofr). Let S, and 7). be the first and last time ask for more thann labels and for alt = 1,....n

steps completed on epochwhere for convenience we define

Tr = n). Thus, epoch consists of trialsS,., S, + 1,...,T. Et L} <UL + \/2(1 +L* 4 U(L,*))ln4—n + 11114—“
We denote the estimated cumulative loss of the forecaster at - " " " b 2 6
epochr by . where
La(r)="Y_ Up, ) U(L;,)
t=5r In 4Nn n . 4Nn\*/* er1/4
and the estimated cumulative losses of the actions= = 20 ELR In 5 +32 (mln 5 ) (Ln)
1,..., N at epochr by 7/8
’ ’ 4N AN
T F10( S =) (@)Y 475t I
~ D~ m 1) m )
Li(r)= ) _Ltli,y) - N AN
=5~ < 137 x max EL; In 6n ,ﬁln 671
Inequality (4) ensures that for epoeh and for alli = m m _ _
1... N We remark here that the bound of the theorem is an im-

provement over that of Theorem 2 as soon Igs grows

(1 _ ﬁ) La(r) < Li(r) + In N slower thann/v/Inn. (For L* ~ n however, these bounds
2 Mr are worse, at least in the case of non-oblivious adversary, see
so dividing both terms by the quantity— 7, /(2¢) (which is Theorem 10 below for a refined bound for the case of an
more thanl /2 due to the choice of{,), we get oblivious adversary.) B B
_ _ T ~ In N First we relateL to L, and L4 ,, t0 L4 ,, where
L(r) SL,;(T)+?TL1;(T)+2 .

EA,n = Z U(py, yt)

The stopping condition now guarantees thah; Ei(r) < K,, —1
hence, substituting the value gf, we have proved that for

is the sum of the conditional expectations of the instantaneous
epochr,

losses, and then substitute the obtained inequalities in the
K,InN bound of Lemma 6.
: Lemma 8:With probability 1 — §/2, the following 2n

La(r) < min Li(r) +2v2
inequalities hold simultaneously: for all=1, ..., n,

1=

9
Summing over = 0,..., R, we get

R R ~. N n 4Nn n . 4Nn
~ Ay o< gzt n,
Z min  L;(r) + Z 2v/2 - ¢ t m 6 m 0
r=o =t r=0 ¢ ~ _ In - 4n n . 4n
K th LAﬂg 2 LAﬂg — <2 7LA,7L ln? +4* ln 6) .
+2v2 705 (241 —1) (6) m m

EA,n

IA

< min L; ,
i=1,...,

) ) PROOF We prove that each of both lines holds with probability
It remains to bound the numbét of epochs, or alternatively, ot leastl — 5/4. As the proofs are similar, we concentrate on

to bound2®*! — 1. Assume first thaf? > 1. In particular,  the first one only. Forall = 1,..., N, we apply Corollary 16
Z;; =  min zm > min Ei(R— 1) with _Xt = E_(i,yt) —l(i,y), t = 1,_...,n, which formg. a
i=1,....N =1,...,N martingale difference sequence (with respect to the filtration

> Kprq—1/e=4""1Ky—1/e generated by I, Z;), t = 1,...,n). With the notation of the



corollary, K = 1/e, andV,, is smaller thanL; , /e, which Observe that the order of magnitude of the bound of Theorem
shows that (for a giver), with probability at least —§/(4N), 10 is always at least as good as that of Theorem 2 and is better
~ as soon a4} grows slower tham.
(Zix— Lie)
n

max The proof of Theorem 10 is based on combining Lemma 6

t=1,...,

T L AN V3 AN with two applications of Bernstein’s inequality, but here, one of
< \/2 <2 + m) TR Tl P AL these applications is a backward call to Bernstein’s inequality:
€ € 0 3¢ 0 usually, one can handle the predictable quadratic variation of

The proof is concluded by usingz +y < /z + /i for the studied martingale, and Bernstein’s inequality is then a
z,y > 0, 1/e < 2n/m (derived from (5)),_111(4]\7”/5) > 1 useful concentration result for the martingale. In the case of the

and the union-of-events bound. I second step below we know the deviations of the martingale
(formed by L4 ,,), but we are interested in the behavior of
Lemma 9: With probability at leastt — §/2, its predictable quadratic variation (equal fgy ,,). The two
Vi=1,... .n Las— LI <UL, guantities are related by a “backwards” use of Bernstein’s
’ lemma.
whereU(L}) is as in Theorem 7. First step: Relating estimated losses to the cumulative loss

PROOF We combine the inequalities of Lemma 8 witrf the best action:We relate;, and L, to L;, by using

that, with probabilityl — §/2, for all t = 1,...,n, difference between oblivious and non-oblivious adversaries.

More precisely, to apply Lemma 15 rather than Corollary 16,
La; < Li+ 2\/nLA nln ANn + 18\/nL* In 4Nn we need upper bound¥; for all L;, = L;,(y}) (we
El — m 9 m n

o 0 exceptionally make the dependence on the played outcomes
w/a(n . 4ANn 3/4 n . 4Nn explicit) which are independent df* and Z7'. In case of an
+23(Ly) m In + 5651n 5~ oblivious adversaries, the outcome sequepigds chosen in

advance, and{; = L, ,(y}") is a suitable choice. This is not
the case for non-oblivious adversaries whose behavior may
] . take the actions of the forecaster into account (see the previous
PROOF OF THEOREM/. Lemma 3 shows that with pmbab'“tysection).

at !eastl B 6/4,.the number of queried Iabe;ls is less thgm Observe the similarity of the first statement of the following
Using the notation of Corollary 16, we consider the martmga'gmma to Lemmas 4 and 8.

difference sequence formed by, = ((I;,y:) — £(Py, 1), Lemma 11:When facing an oblivious adversary, with prob-
with associated sum of conditional variandés< L4, and aﬁ)ility 1-6/4

increments bounded by 1. Corollary 16 then shows that wit

robability 1 — §/4, ~ AN AN

P y1-9/ Vi=1,...,n, L:gL;+m/ﬁLyn7r+fqn77.
- 7 4 2 4 m m

max Q@LM)§VBQ+LA@m_”+Vﬁm o

An application of Lemma 19 concludes the proofll

=1, § '3 & Consequently, with probability — /4,
We conclude the proof by applying Lemma 9 and a union-of- _ ~ N “
events bound. [ Vi=1,....m, Lag < Li+A(Ly) ()
. \A}here
In the oblivious adversary model, the bound of Theorem
can be strengthened as follows. A(L* n_. . 4N
Theorem 10:In the oblivious adversary model, the label (Ln) = 18 ELn IDT
efficient forecaster of Figure 4, run with 3/4
’ 4N 4N
+23(tm==) )Y 43t
_m- V2mln(4/9) m 0 m
. on ) PrROOF For alli = 1,...,N, we may apply Lemma 15
ensures that with probability — 4, the algorithm does not askith x, = 7(i,y;) — £(i,5), t = 1,...,n, which forms a
for more thanm labels and that martingale difference sequence with respect to the filtration

B -~ . . ; . 4 generated by,;,t = 1,...,n. With the notation of Lemma 15,

Vi=1l...n  L=Li< B(L")+2\/(Ln +B(Ly) s o Lin/e < 2nL;,/m, which is indeed independent of

where the Z;, and simple algebra and the union-of-events bound
conclude the proof of the first statement. The second one

n AN n . ANNY* o : ;
B(LY) = 214/ —Lx 1nT +39 ( In 5) (L%) follows from a combination of the first one with Lemma 6.
m m

|
7/8
n N n 4N
+15 (m In 5) (L)"® + 59 In — Second step: Bernstein’s inequality used backwaidext
we relateL 4 ,, to L4 ,, (and thus tal}, via Lemma 11). This

134 max | 1/ L lnﬂ n lnﬂ ) is done by using Bernstein's lemma (Lemma 15) once again,
m-" 8 'm0 but backwards.

IN



Lemma 12:For oblivious adversaries, with probability at\ < /2 < 1, and therefore, using, (t) < t2 for t < 1, we
leastl — /2, have proved thad — ¢1(\)/e > 0. Thus, (8) and (9) imply

t=1,.
where B(L?) is as in Theorem 10. 5 A2

< Grew (AT )+ T o+ 1))
PrROOF ConsiderA(L?) as in Lemma 11 and fix a real number c
xo > A(L}). Recall the functionpx defined in the statement 1) (A(L:) — 9:0)2
of Lemma 15. Then (7) and the union-of-events bound imply 4 +exp ( 4(xo + L) 5)
that, for A > 0 such that\ — ¢;()\)/e > 0,

Vtzl,...7’l’L -Z/A,t_L:SB(L:L)7 IP|: max (LA’t—L:)>(L'0:|

It suffices to find azy > A(L}) such that

u»[_max (Lay— L) > x] (A(L;) = o)
t=1,...,n e=In-.
s g tF [ max (Lay— L) > o One such choice is
T T * 21n 9 s
and t:Hll,aX,n (LA,t Lt) < A(Ln):| To = A(L* Il \/ \/L* + A L* 4
0
= 1 Substituting the value ofA(L?) yields the statement of the
lemma. |
A
+P | max exp ()\ — (bl())
t=1,....,n € Third step: Conclusion of the proof of Theorem 10:

number of queried labels is less than We then consider the
martingale difference sequence formed By = ¢(I;,y:) —
> oxp (< d1(N) ) vy — )} £(py, ), with associated sum of conditional variandgs <

)) Lemma 3 shows that, with probability at least- §/4, the

L4, and increments bounded by 1. Lemma 15 yields

€
N NI o f
< g  Jmax exp A= Bag ) = — At P L max (Lt — LA¢) >wandLy, <Ly + B(Lfl)}

>exp(<A @9)) /\A(Lfl)—mi)\)LZﬂ) o gexp<4(L1*Zsz(L;))>

We introduce the martingale difference sequence (with iRrovided thatu < 3(L* + B(L?)). Lemma 12 together with

crements bounded by 1X; = /(p;,y:) — {(ps,y:).- The a union-of-events bound and the choice
conditional variances satisfy

4
=2/(L% + B(L*))In=
- 7 1] < UPs " \/ " n s
E X727 SJE[E(pt,yt)lef 1} < Upuy)

€ concludes the proof.
so that, using the notation of Lemma 18, < L4, /e.

By Lemma 15,exp(\(La,; — La ¢) — (V) for t = V. A LOWER BOUND FOR LABEL EFFICIENT PREDICTION
1,2,...is a nonnegative supermartingale. Hence, using Doob’sHere we show that the performance bounds proved in Sec-
maximal inequality, we get tion 11l for the label efficient exponentially weighted average

610\ forecaster are essentially unimprovable in the strong sense
P { max exp (/\ (EA_t — Ly n) Al t) that no other label efficient forecasting strategy can have a
t=1,...,n ’ ’ € ’

significantly better performance for all problems. Denote the
> exp (<)\ B ¢1(>\)) 20— MA(LY) — $1(N) L;)} set of natural numbers by = {1,2,...}.

€ ’ € Theorem 13:There exist an outcome spagk a loss func-
tion ¢: N x Y — [0,1], and a universal constalt> 0 such

< P L_max exp (>\ (EA,t - EA,t) - ¢>1()\)Vt>

“iom (N —1), the
§ (V) § cumulatlve (expected) loss of any (randomlzed) forecaster that
> exp (/\ (w0 — A(Ly,)) — (zo + Ln)ﬂ uses actions ifi1, ..., N'} and asks for at most labels while
S\ predicting a sequence of outcomes satisfies the inequality
< oo (A )+ 2D @) . @ . .
c sup (E ZE(It,yt)] — min Z((i,yﬁ)
Now, choose Y1, Yn €Y P i=1,...N —
zo — A(L}) In(N — 1
_Q(CUOJFLZ)E- Zen (m )'



In particular, we prove  the  theorem forjust as a convex combination of deterministic algorithms. The
Ve simple proof is omitted.
(1+e)/b(1+e) Lemma 14:For any randomized forecaster there exists an
integerD, a pointa = (a1, ...,ap) € RP in the probability

PROOF First, we defingy = [0, 1] and(. Giveny € [0, 1], we . N . .
denote by(y1, v, .. ) its dyadic expansion, that is, the uniques'mplex' andD deterministic algorithms (indexed by a super-

sequence not ending with infinitely many zeros such that scriptd = 1,..., D) ?LfCh that, for every and every possible
outcome sequencg ' = (y1,...,yr 1),
y=> w2,

k>1

D
Palli=ilyi™'] =D aalju_y o s
Now, the loss function is defined @&k, y) =y, forally € d=1 ' '
andk € N.

We construct a random outcome sequence and show thatere I;._; .1 is the indicator function that thel-th
expected value of the regret (with respect both to the randélaterministic algorithm chooses actiarwhen the sequence
choice of the outcome sequence and to the forecaster's pekpast outcomes is formed by~
sibly random choices) for any possibly randomized forecastdsing this lemma, we have that there exiSt « and D
is bounded from below by the claimed quantity. deterministic sub-algorithms such that

More precisely, we denote by/,...,U, the auxiliary
randomization which the forecaster has access to. Without losgax Ei[EAEn — Lm]
of generality, this sequence can be taken as an i.i.d. sequefide " b N

Dy Tpaogyyy1lk,Ye) = Lin

n

of uniformly distributed random variables ové®, 1]. Our

underlying probability space is equipped with thalgebra of = izr{f??fN E;

events generated by the random outcome sequgnce. , Y,, b t=1d=1 ’“?Vl

and by the randomizatiotry, . . ., U,,. As the random outcome _ - o
sequence is independent of the auxiliary randomization, we =1 N ;ad Ezlt;;ﬂw_kwl]@(k,ﬁ) Lin

define N different probability distributionsP; @ P4, i =

1,...,N, formed by the product of the auxiliary random{\ow, underP; the regret grows by whenever an action

ization (whose associated probability distribution is denoteffferent from i is chosen and remains the same otherwise.
by P4) and one of theN different probability distributions Hence,

Py, ..., Py over the outcome sequence defined as follows.
Fori =1,...,N, Q; is defined as the distribution (over .. E-[EAE _ L. }
[0,1]) of i=1,...,N '
D n N
*0—1 —k —(N+1) _
77+ ) 222 U, = max adEi[Zan_kYlt_llz(k,yt) ~ L,
k=1,...,N, k#i d=1 t=1 k=1
D n
whereU, Z*, Z;,...,Zy are independent random variables rrd s
such thatU has uniform distribution, andZ* and the Z; o ei:ql,?.%zv;ad — Ps [It #Z}

have Bernoulli distribution with parametgéy2 — ¢ for Z* and D n
1/2 for the Z;. Now, the randomization is such that under _ en 11— min ZZ %P‘Ud =i .
P;, the outcome sequendg,...,Y,, is i.i.d. with common i N n

d=1 t=1
distribution Q;.
Then, under eacl; (fori = 1,..., N), the lossed(k, Y1),  For thed-th deterministic subalgorithm, let < T{ < ... <
k=1,...,N,t=1,...,n, areindependent Bernoullirandomrd < n be the times when then queries were issued.
variables with the following parameters. For alf(i,Y;) =1 Then 7, ..., T4 are finite stopping times with respect to

with probability 1/2—¢ and{(k, ;) = 1 with probability 1/2 the i.i.d. processy;,...,Y,. Hence, by a well-known fact
for eachk # i, wheree is a positive number specified belowin probability theory (see, e.g., [19, Lemma 2, page 138]),

We have the revealed outcomeYT{i,...7YT$ are independent and
~ ) indentically distributed ag;.
s (]EAL” _,_IlmnNLm> Let R{ be the number of revealed outcomes at time
-~ and note thatR{ is measurable with respect to the random
= A Iy (]EAL" - L,;,,,) outcome sequence. Now, as the subalgorithm we consider is

-~ deterministic,R¢ is fully determined bW, . .., Y74 . Hence,

i=1,...,N ’ I may be seen as a function mffz, ..., Yra rather than a

whereE; (resp.E,) denotes expectation with respect function of YT{z,...,YT;d only. As the joint distribution of

(resp.P.4). Ypa,...,Yra underP; is Q) we have proved that
Now, we use the following decomposition lemma, which
states that a randomized algorithm performs, on the average, P;[I¢ =i] = QI =] .



10

Consequently, the lower bound rewrites as with respect to the filtrationF = (F;)1<i<», and with
increments bounded in absolute values iy Let

t
— Z X,
s=1

be the associated martingale. Denote the sum of the conditional
I){griances by

max [E; {IEAETL — Li,n}
i=1,...,N

geeey

D
Qg d .
= 1— E T = .
5n< iHlll’lN nQ z)

.....

By the generalized Fano’s inequality (see Lemma 18 in t

n

Appendix), it is guaranteed that vV, = ZE [Xf |ft_1] )
_ t=1
Qdgmird — i) < c K Then, for allA > 0
mln ;tzl —QI' =14 < max{1+€ ln(N—l)}’ , ,
h (exp ()\M ¢K( ) ))n>0
where is a supermartingale (with respect to the same filtration
7 n X . where )
- ;;;n Q) ¢K(/\)=ﬁ(€AK—1_)‘K) :

i\’: In particular, for all constants, v > 0,
=2
and KL is the Kullback-Leibler divergence (or relative en-

tropy) between two probability distributions. and therefore,
Moreover,B,, denoting the Bernoulli distribution with pa-P L

22
. < < =
P |:tlrll7§“)ith >z andV, < v} < exp < o+ K:z:/3)>

max M; > V2vz + (V2/3)Kz and V,, <wv| <e .

orollary 16: Under the assumptions of Lemma 15, for all
KL(Q{",Q7") § € (0,1), with probability at leastl — 4,

rameterp,

= mKL(Qian) max M; < \/2 V. +K2) ln(n/é) (\@/3)Kln(n/5) .
< m (KL (31/2—5, ]Bl/g) + KL (Bl/Q, 31/2_6)) t=1,...,n
4e PROOF. Denote
= men (o) Some M= max M,
b t=1,...,n ¢

for 0 < ¢ < 1/10, where the first inequality We apply the previous Iemma times and use a union-of-
holds by noting that the definition of th&); implies events bound. Fot=1,.

that the considered Kullback-Leibler divergence is up-
per bounded by the Kullback-Leibler divergence between P[M> \/2(V”+K2)ln("/5)+(\/§/3)Kln("/5)
(Z1,...,2*,...,Z,,U), whereZ* is in thei-th position, and and V,, € K?[t — 1, ¢]]
(Z*,Zy...,Z,,U). Therefore,

< P [M > V2K2tIn(n/5) + (V2/3)K In(n/5)
max (IEAzn — min Li,n) and V, < KQt}
Yiyeey Yn i=1,...,N
< §/n,
> en | 1—max . 5m7€
- 1+e In(N—1) ' where we used Lemma 15 in the last step. By boundedness of
he choi the X,, V,, lies between 0 and(?n, and therefore a union-
The choice of-events bound over=1,...,n concludes the proof. |
eln(N —1)
E=| =7
5(14+¢e)m
APPENDIX I
yields the claimed bound. I GENERALIZED FANO’S LEMMA
The crucial point in the proof of the lower bound theorem
is an extension of Fano’s lemma to a convex combination
APPENDIXI of probability masses, which may be proved thanks to a
BERNSTEIN' S INEQUALITY FOR MARTINGALES straightforward modification of the techniques developed by

We recall first a version of Bernstein’s inequality suited foBlrge [21] (see also Massart [22]). Recall first a consequence
of the variational formula for entropy.

maxima of martingale difference sequences [20], and prove qemma 17:For arbitrary probability distribution®, Q and
corollary tailored to the needs of Section IV.
far each\ > 0,
Lemma 15 (Bernstein’s maximal inequality for martingales):
Let X;,..., X, be a bounded martingale difference sequence AP[A] — ga (M) < KL(P,Q)



wherey,(A) =1In (p(e* — 1) +1).
Lemma 18 (Generalized Fano)et
{As; :s=1,...,5,j=1,...,N} be a family of subsets

of a setQ such thatA;,,..., A,y form a partition of 2
for each fixeds. Let a1,...,a, be such thato, > 0 for

11

wheneverp* < a < 1 for the second inequality to hold, and
by usinga > ¢/(1+e) for the last one. A®* < 1/(N —
e/(1+¢e) wheneverN > 3, the case: < p* may only happen
when NV = 2, but then the result is trivial. [

1)<

s =1,....5anda; + ... + ag = 1. Then, for all sets
Po1,...,Pon, s = 1,...,S, of probability distributions on APPENDIXIII
Q, A BASIC FACT
g i Lemma 19:If z;,y; > 0, andb > 0, are such that for all

~min asPsﬁj[As,j]gmax{e,} , t=1,...,n

§=1. N 1+e’ In(N-1) zr <y + by/Tn (10)
where < then

Vi=1,...,n xtgyter\/y"erQ.

-y

s=1

Qs
KL(P; ;,Ps 1) .
N_1 ( 2] ,1)

N
=2

PrROOF Using Lemma 17, we have that
S N
PIPIE T ZZ
s=1 j=2 s=1j=2
S N
SHWL

sl =;7]( )

K.

KL(P, . Py1) =

PROOF. We obtain a bound ovey/z,, and apply it to (10) to
conclude. The inequality

Tp < Yn + b/

rewrites as

b\ > b2
- — < —
(\/mn 2) < Yn + 4

that is, either,/z,, <b/2 or

Now, for each fixed\ > 0, the function that mapgto —, () — b . _9 + b? + b
is convex. Hence, letting VIn =5 = | Vin =5 Yn < Vn
S X a, In both cases,
P ZZ N As,j] [Ty < b+ /Un
s=1 j=2 .
) g concluding the proof. 1
= ﬁ (1 - ;asps,l[As,1}> )
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