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Minimizing Regret with Label Efficient Prediction
Nicolò Cesa-Bianchi, Ǵabor Lugosi,Member, IEEE,and Gilles Stoltz

Abstract— We investigate label efficient prediction, a variant,
proposed by Helmbold and Panizza, of the problem of prediction
with expert advice. In this variant the forecaster, after guessing
the next element of the sequence to be predicted, does not observe
its true value unless he asks for it, which he cannot do too
often. We determine matching upper and lower bounds for the
best possible excess prediction error, with respect to the best
possible constant predictor, when the number of allowed queries
is fixed. We also prove that Hannan consistency, a fundamental
property in game-theoretic prediction models, can be achieved
by a forecaster issuing a number of queries growing to infinity
at a rate just slightly faster than logarithmic in the number of
prediction rounds.

Index Terms— label efficient prediction, prediction with expert
advice, individual sequences, on-line learning

I. I NTRODUCTION

Prediction with expert advice, a framework introduced about
fifteen years ago in learning theory, may be viewed as a
direct generalization of the theory of repeated games, a field
pioneered by Blackwell and Hannan in the mid-fifties. At
a certain level of abstraction, the common subject of these
studies is the problem of forecasting each elementyt of an
unknown “target” sequence given the knowledge of the previ-
ous elementsy1, . . . , yt−1. The forecaster’s goal is to predict
the target sequence almost as well as any forecaster forced to
use the same guess all the times. We call this the sequential
prediction problem. To provide a suitable parameterization of
the problem, we assume that the set from which the forecaster
picks its guesses is finite, of sizeN > 1, while the set
to which the target sequence elements belong may be of
arbitrary cardinality. A real-valued bounded loss function` is
then used to quantify the discrepancy between each outcome
yt and the forecaster’s guess foryt. The pioneering results
of Hannan’s [1] and Blackwell [2] showed that randomized
forecasters exist whose excess cumulative loss (or regret),
with respect to the loss of any constant forecaster, grows
sub-linearly in the lengthn of the target sequence, and this
holds for any individual target sequence. In particular, both
Blackwell and Hannan found the optimal growth rate,Θ(

√
n),

of the regret as a function of the sequence lengthn when no
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assumption other than boundedness is made on the loss`. Only
relatively recently, Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth [3] have revealed that the correct
dependence onN in the minimax regret rate isΘ(

√
n lnN).

Game theorists, information theorists, and learning theorists,
who independently studied the sequential prediction model,
addressed the fundamental question of whether a sub-linear
regret rate is achievable in case the past outcomesy1, . . . , yt−1

are not entirely accessible when computing the guess foryt.
In this work we investigate a variant of sequential prediction
known aslabel efficient prediction. In this model, originally
proposed by Helmbold and Panizza [4], after choosing its
guess at timet the forecaster decides whether to query the out-
comeyt. However, the forecaster is limited in the numberµ(n)
of queries he can issue within a given time horizonn. In the
casen → ∞, we prove that Hannan consistency (i.e., regret
growing sub-linearly with probability one) can be achieved
under the only conditionµ(n)/(log(n) log log(n)) → ∞.
Moreover, in the finite-horizon case, we show that any fore-
caster issuing at mostm = µ(n) queries must suffer a regret
of at least ordern

√
(lnN)/m on some outcome sequence of

lengthn, and we show a randomized forecaster achieving this
regret to within constant factors.

The problem of label efficient prediction is closely related
to other frameworks in which the forecaster has a limited
access to the outcomes. Examples include prediction under
partial monitoring (see, e.g., Mertens, Sorin, and Zamir [5],
Rustichini [6], Piccolboni, and Schindelhauer [7], Mannor
and Shimkin [8], Cesa-Bianchi, Lugosi, and Stoltz [9]), the
multi-armed bandit problem (see Baños [10], Megiddo [11],
Foster and Vohra [12], Hart and Mas Colell [13], Auer, Cesa-
Bianchi, Freund, and Schapire [14], and Auer [15]), and the
“apple tasting” problem proposed by Helmbold, Littlestone,
and Long [16].

II. SEQUENTIAL PREDICTION AND THE LABEL EFFICIENT

MODEL

The sequential prediction problem is parameterized by a
numberN > 1 of player actions, by a setY of outcomes,
and by a loss functioǹ . The loss function has domain
{1, . . . , N} × Y and takes values in a bounded real inter-
val, say [0, 1]. Given an unknown mechanism generating a
sequencey1, y2, . . . of elements fromY, a prediction strategy,
or forecaster, chooses an actionIt ∈ {1, . . . , N} incurring a
loss `(It, yt). A crucial assumption in this model is that the
forecaster can chooseIt only based on information related
to the past outcomesy1, . . . , yt−1. That is, the forecaster’s
decision must not depend on any of the future outcomes.
In the label efficient model, after choosingIt the forecaster
decides whether to issue a query to accessyt. If no query is
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LABEL EFFICIENT PREDICTION

Parameters: numberN of actions, outcome spaceY, loss
function `, query rateµ : N → N.

For each roundt = 1, 2, . . .
(1) the environment chooses the next outcomeyt ∈ Y

without revealing it;
(2) the forecaster chooses an actionIt ∈ {1, . . . , N};
(3) each actioni incurs loss̀ (i, yt);
(4) if less thanµ(t) queries have been issued so far,

the forecaster may issue a new query to obtain the
outcomeyt; if no query is issued thenyt remains
unknown.

Fig. 1. Label efficient prediction as a game between the forecaster and the
environment.

issued, thenyt remains unknown. In other words,It does not
depend on all the past outcomesy1, . . . , yt−1, but only on the
queried ones. The label efficient model is best described as a
repeated game between the forecaster, choosing actions, and
the environment, choosing outcomes (see Figure 1).

The cumulative loss of the forecaster on a sequence
y1, y2, . . . of outcomes is denoted by

L̂n =
n∑

t=1

`(It, yt) for n ≥ 1.

As the forecasting strategies we consider may be randomized,
eachIt is viewed as a random variable. All probabilities and
expectations are understood with respect to theσ-algebra of
events generated by the sequence of random choices of the
forecaster. We compare the forecaster’s cumulative lossL̂n

with those of theN constant forecastersLi,n = `(i, y1) +
. . .+ `(i, yn), i = 1, . . . , N .

In this paper we devise label efficient forecasting strategies
whose expected regret

E
[
L̂n − min

i=1,...,N
Li,n

]
grows sub-linearly inn for any sequencey1, y2, . . . of out-
comes, that is, for any strategy of the environment whenever
µ(n) → ∞. Note that the quantitiesL1,n, . . . , LN,n are ran-
dom. Indeed, as argued in Section III, in general the outcomes
yt may depend on the forecaster’s past random choices. Via a
more refined analysis, we also prove the stronger result

L̂n − min
i=1,...,N

Li,n = o(n) a.s. (1)

for any sequencey1, y2, . . . of outcomes and whenever
µ(n)/(log(n) log log(n)) →∞. The almost sure convergence
is with respect to the auxiliary randomization the forecaster
has access to. Property (1), known asHannan consistency in
game theory, rules out the possibility that the regret is much
larger than its expected value with a significant probability.

Parameters: Real numbersη > 0 and0 ≤ ε ≤ 1.
Initialization: w1 = (1, . . . , 1).
For each roundt = 1, 2, . . .

(1) draw an actionIt from {1, . . . , N} according to the
distribution

pi,t =
wi,t∑N

j=1 wj,t

, i = 1, . . . , N ;

(2) draw a Bernoulli random variableZt such thatP[Zt =
1] = ε;

(3) if Zt = 1 then obtainyt and compute

wi,t+1 = wi,t e
−η `(i,yt)/ε for eachi = 1, . . . , N

else, letwt+1 = wt.

Fig. 2. The label efficient exponentially weighted average forecaster.

III. A LABEL EFFICIENT FORECASTER

We start by considering the finite-horizon case in which the
forecaster’s goal is to control the regret aftern predictions,
wheren is fixed in advance. In this restricted setup we also
assume that at mostm = µ(n) queries can be issued, where
µ is the query rate function. However, we do not impose any
further restriction on the distribution of thesem queries in
the n time steps, that is,µ(t) = m for t = 1, . . . , n. We
introduce a simple forecaster whose expected regret is bounded
by n

√
2(lnN)/m.

It is easy to see that in order to achieve a nontrivial
performance, a forecaster must use randomization in deter-
mining whether a label should be revealed or not. It turns
out that a simple biased coin is sufficient for our purpose.
The strategy we propose, sketched in Figure 2, uses an i.i.d.
sequenceZ1, Z2, . . . , Zn of Bernoulli random variables such
that P[Zt = 1] = 1 − P[Zt = 0] = ε and asks the labelyt to
be revealed wheneverZt = 1. Hereε > 0 is a parameter of
the strategy. (Typically, we takeε ≈ m/n so that the number
of solicited labels duringn rounds is aboutm. Note that this
way the forecaster may ask the value of more thanm labels,
but we ignore this detail as it can be dealt with by a simple
adjustment.) Our label efficient forecaster uses theestimated
losses ˜̀(i, yt)

def=
{
`(i, yt)/ε if Zt = 1,

0 otherwise.

Let pt = (p1,t, . . . , pN,t) and let vt
1 denote the prefix

(v1, . . . , vt) of an arbitrary sequence(v1, v2, . . .). Then

E[ ˜̀(i, yt) | Zt−1
1 , It−1

1 ] = `(i, yt) , (2)

E[ ˜̀(pt, yt) | Zt−1
1 , It−1

1 ]
= `(pt, yt) = E[ `(It, yt) | Zt−1

1 , It−1
1 ] , (3)

hold for eacht, where

`(pt, yt) =
N∑

i=1

pi,t `(i, yt) and ˜̀(pt, yt) =
N∑

i=1

pi,t
˜̀(i, yt) .
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Note that the conditioning onZt−1
1 and It−1

1 is necessary
because of the two following reasons: first,pt depends both
on the past realizations of the random choices of the forecaster
Zt−1

1 (see the third step in the algorithm of Figure 2) and
on the past outcomesyt−1

1 ; second,yt is a function of both
Zt−1

1 and It−1
1 , as the environment is allowed to determine

yt after playing the game up to timet − 1 (see Figure 1).
For technical reasons, we sometimes consider a weaker model
(which we call theoblivious adversary) where the sequence
y1, y2, . . . of outcomes chosen by the environment is determin-
istic and independent of the forecaster random choices. This
is equivalent to a game in which the environment must fix the
sequence of outcomes before the game begins. The oblivious
adversary model is reasonable in some scenarios, in which the
forecaster’s predictions have no influence on the environment.
Clearly, any result proven in the standard model also holds in
the oblivious adversary model.

The quantities̃̀ (i, yt) may be considered as unbiased esti-
mates of the true losses̀(i, yt). The label efficient forecaster
of Figure 2 is an exponentially weighted average forecaster
using such estimates instead of the observed losses. The
expected performance of this strategy may be bounded as
follows.

Theorem 1:Fix a time horizonn and consider the label
efficient forecaster of Figure 2 run with parametersε = m/n
and η = (

√
2m lnN)/n. Then, the expected number of

revealed labels equalsm and

E
[
L̂n − min

i=1,...,N
Li,n

]
≤ n

√
2 lnN
m

.

In the sequel, for eachi = 1, . . . , N , we write

L̃i,n =
n∑

t=1

˜̀(i, yt) .

PROOF. The proof is a simple adaptation of [17, Theorem 3.1].
The starting point is the following inequality (see also [7,
Theorem 1]):

n∑
t=1

˜̀(pt, yt)− min
i=1,...,N

L̃i,n ≤
lnN
η

+
η

2

n∑
t=1

N∑
j=1

˜̀(j, yt)2pj,t .

Since ˜̀(j, yt) ∈ [0, 1/ε] for all j and yt, the sec-
ond term on the right-hand side may be bounded by
(η/(2ε))

∑n
t=1

∑N
j=1

˜̀(j, yt)pj,t and therefore we get, for all
n,

n∑
t=1

˜̀(pt, yt)
(
1− η

2ε

)
≤ L̃i,n +

lnN
η

i = 1, . . . , N .

(4)
Taking expectations on both sides and substituting the values
of η andε yields the desired result.

Remark 1.1:In the oblivious adversary model, Theorem 1
(and similarly Theorems 2 and 10 below) can be strengthened
as follows. Consider the “lazy” forecaster of Figure 3 that
keeps on choosing the same action as long as no new queries
are issued. For this forecaster Theorems 1 and 2 hold with the
additional statement that, with probability 1, the number of

Parameters: Real numbersη > 0 and0 ≤ ε ≤ 1.
Initialization: w1 = (1, . . . , 1), Z0 = 1.

For each roundt = 1, 2, . . .

(1) if Zt−1 = 1 then draw an actionIt from {1, . . . , N}
according to the distribution

pi,t =
wi,t∑N

j=1 wj,t

, i = 1, . . . , N ;

otherwise, letIt = It−1 ;
(2) draw a Bernoulli random variableZt such thatP[Zt =

1] = ε ;
(3) if Zt = 1 then obtainyt and compute

wi,t+1 = wi,t e
−η `(i,yt)/ε for eachi = 1, . . . , N

else, letwt+1 = wt.

Fig. 3. The lazy label efficient exponentially weighted average forecaster
for the oblivious adversary model.

changes of an action, that is the number of steps whereIt 6=
It+1, is at most the number of queried labels (by construction
of the lazy forecaster). To prove the regret bound, note that
we derive the statement of Theorem 1 by taking averages
on both sides of (4), and then applying (2) and (3). Note
that (4) holds forevery realization of the random variables
I1, . . . , In andZ1, . . . , Zn. Therefore, as the lazy forecaster
differs from the forecaster of Figure 2 only in the distribution
of I1, . . . , In, inequality (4) holds for the lazy forecaster as
well. In the oblivious adversary modelyt does not depend
on I1, . . . , It−1; thus, by construction,pt does not depend
on I1, . . . , It−1 either. Therefore, we can take averages with
respect toI1, . . . , It−1 obtaining the following version of (3)
for the lazy forecaster,

E
[˜̀(pt, yt) | Zt−1

1

]
=

N∑
i=1

`(i, yt) pi,t = E
[
`(It, yt) | Zt−1

1

]
.

Since (2) holds as well when the conditioning is limited
to Z1, . . . , Zt−1, we can derive for the lazy forecaster the
same bounds as in Theorem 1 (and Theorem 2). Note also
that the result holds even whenyt is allowed to depend on
Z1, . . . , Zt−1.

A. Bounding the regret with high probability

Theorem 1 guarantees that the expected per-round regret
converges to zero wheneverm → ∞ as n → ∞. The next
result shows that this regret is, with overwhelming probability,
bounded by a quantity proportional ton

√
(lnN)/m.

Theorem 2:Fix a time horizonn and a numberδ ∈ (0, 1).
Consider the label efficient forecaster of Figure 2 run with
parameters

ε = max

{
0,
m−

√
2m ln(4/δ)
n

}
and η =

√
2ε lnN
n

.



4

Then, with probability at least1− δ, the number of revealed
labels is at mostm and for all t = 1, . . . , n,

L̂t − min
i=1,...,N

Li,t ≤ 2n

√
lnN
m

+ 6n

√
ln(4N/δ)

m
.

Before proving Theorem 2, note that ifδ ≤ 4Ne−m/8,
then the right-hand side of the inequality is greater thann
and therefore the statement is trivial. Thus, we may assume
throughout the proof thatδ > 4Ne−m/8. This ensures that

ε ≥ m/(2n) > 0 . (5)

We need a number of preliminary lemmas. The first is ob-
tained by a simple application of Bernstein’s inequality (see
Lemma 15).

Lemma 3:The probability that the strategy asks for more
thanm labels is at mostδ/4.

PROOF. Note that the numberM =
∑n

t=1 Zt of labels
asked by the algorithm is binomially distributed with pa-
rametersn and ε and therefore, writingγ = m/n − ε =
n−1

√
2m ln(4/δ), it satisfies

P[M > m] = P[M − EM > nγ] ≤ e−nγ2/(2ε+2γ/3)

≤ e−n2γ2/2m ≤ δ

4
where we used Bernstein’s inequality (see Lemma 15) in the
second step and the definition ofγ in the last two steps.

Lemma 4:With probability at least1 − δ/4, for all t =
1, . . . , n,

t∑
s=1

`(ps, ys) ≤
t∑

s=1

˜̀(ps, ys) +
4√
3
n

√
ln(4/δ)
m

.

Furthermore, with probability at least1 − δ/4, for all i =
1, . . . , N and for all t = 1, . . . , n,

L̃i,t ≤ Li,t +
4√
3
n

√
ln(4N/δ)

m
.

PROOF. The proofs of both inequalities rely on the same
techniques, namely the application of Bernstein’s inequality
for martingales combined with Doob’s maximal inequality. We
therefore focus on the first one, and indicate the modifications
needed for the second one.

We introduce the sequenceXs = `(ps, ys) − ˜̀(ps, ys),
s = 1, . . . , n, which is a martingale difference sequence with
respect to the filtration generated by the(Zs, Is), s = 1, . . . , n.
Defining u = (4/

√
3)n
√

(1/m) ln(4/δ) and the martingale
Mt = X1 + . . .+Xt, our goal is to show that

P
[

max
t=1,...,n

Mt > u

]
≤ δ

4
.

For all s = 1, . . . , n, we note that

E
[
X2

s |Zs−1
1 , Is−1

1

]
= E

[
(`(ps, ys)− ˜̀(ps, ys))2 | Zs−1

1 , Is−1
1

]
≤ E

[˜̀(ps, ys)2 | Zs−1
1 , Is−1

1

]
≤ 1/ε ,

so that summing overs, we haveVt ≤ n/ε for all t = 1, . . . , n.

We now apply Lemma 15 withx = u, v = n/ε, andK =
1/ε (since|Xs| ≤ 1/ε with probability1 for all s). This yields

P
[

max
t=1,...,n

Mt > x

]
= P

[
max

t=1,...,n
Mt > u andVn ≤

n

ε

]
≤ exp

(
− u2

2 (n/ε+ u/(3 ε))

)
.

Using ln(4/δ) ≤ m/8 implied by the assumptionδ >
4Ne−m/8, we see thatu ≤ n, which, combined with (5),
shows that

u2

2 (n/ε+ u/(3 ε))
≥ u2

(8/3)n/ε
≥ 3u2m

16n2
= ln

δ

4

and this proves the first inequality.
To prove the second inequality note that, by the arguments

above, for each fixedi we have

P

[
∀ t ≤ n L̃i,t > Li,t + (4/

√
3)n

√
ln(4N/δ)

m

]
≤ δ

4N
.

The proof is concluded by a union-of-events bound.

PROOF OFTHEOREM 2. Whenm ≤ lnN , the bound given
by the theorem is trivial, so we only need to consider the case
whenm ≥ lnN . Then (5) implies that1− η/(2ε) ≥ 0. Thus,
a straightforward combination of Lemmas 3 and 4 with (4)
shows that, with probability at least1 − 3δ/4, the strategy
asks for at mostm labels and for allt = 1, . . . , n,

t∑
s=1

`(ps, ys)
(
1− η

2ε

)
≤ min

i=1,...,N
Li,t +

8√
3
n

√
1
m

ln
4N
δ

+
lnN
η

,

which, since
∑t

s=1 `(ps, ys) ≤ n for all t ≤ n, implies, for
all t = 1, . . . , n,

t∑
s=1

`(ps, ys)− min
i=1,...,N

Li,t

≤ nη

2ε
+

8√
3
n

√
1
m

ln
4N
δ

+
lnN
η

= 2n

√
lnN
m

+
8√
3
n

√
1
m

ln
4N
δ

by our choice ofη and using1/(2ε) ≤ n/m derived from (5).
The proof is finished by noting that the Hoeffding-Azuma
inequality (for maximal processes, see [18]) implies that, with
probability at least1− δ/4, for all t = 1, . . . , n,

L̂t =
t∑

s=1

`(Is, ys) ≤
t∑

s=1

`(ps, ys) +

√
n

2
ln

4
δ

≤
t∑

s=1

`(ps, ys) + n

√
1

2m
ln

4N
δ

sincem ≤ n.
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B. Hannan consistency

Theorem 1 does not directly imply Hannan consistency of
the associated forecasting strategy because the regret bound
does not hold uniformly over the sequence lengthn. However,
using standard dynamical tuning techniques (such as the
“doubling trick” described in [3]) Hannan consistency can be
achieved. The main quantity that arises in the analysis is the
query rateµ(n), that is the number of queries that can be
issued up to timen. The next result shows that Hannan consis-
tency is achievable wheneverµ(n)/(log(n) log log(n)) →∞.

Corollary 5: Let µ : N → N be any nondecreasing integer-
valued function such that

lim
n→∞

µ(n)
log2(n) log2 log2(n)

= ∞ .

Then there exists a Hannan consistent randomized label effi-
cient forecaster that issues at mostµ(n) queries in the firstn
predictions, for anyn ∈ N.

PROOF. The algorithm we consider divides time into consec-
utive epochs of increasing lengthsnr = 2r for r = 0, 1, 2, . . ..
In the r-th epoch (of length2r) the algorithm runs the
forecaster of Theorem 2 with parametersn = 2r, m = mr,
and δr = 1/(1 + r)2, wheremr will be determined by the
analysis (without loss of generality, we assume the forecaster
always asks at mostmr labels in each epochr). Our choice
of δr and the Borel-Cantelli lemma implies that the bound of
Theorem 2 holds for all but finitely many epochs. Denote the
(random) index of the last epoch in which the bound does not
hold by R̂. Let L(r) be cumulative loss of the best action in
epochr and letL̂(r) be the cumulative loss of the forecaster
in the same epoch. IntroduceR(n) = blog2 nc. Then, by
Theorem 2 and by definition of̂R, for eachn and for each
realization ofIn

1 andZn
1 we have

L̂n − L∗n ≤
R(n)−1∑

r=0

(
L̂(r) − L(r)

)
+

n∑
t=2R(n)

`(It, yt)

−
n∑

t=2R(n)

min
j=1,...,N

`(j, yt)

≤
R̂∑

r=0

2r + 8
R(n)∑

r=R̂+1

2r

√
ln(4N(r + 1)2)

mr
.

This, the finiteness of̂R, and1/n ≤ 2−R(n), imply that with
probability 1,

lim sup
n→∞

L̂n − L∗n
n

≤ 8 lim sup
R→∞

2−R
R∑

r=0

2r

√
ln(4N(r + 1)2)

mr
.

Cesaro’s lemma ensures that thelim sup above equals zero
as soon asmr/ ln r → +∞. It remains to see that the latter
condition is satisfied under the additional requirement that the
forecaster does not issue more thanµ(n) queries up to timen.
This is guaranteed wheneverm0 +m1 + . . .+mR(n) ≤ µ(n)
for eachn. Denote byφ the largest nondecreasing function
such that

φ(t) ≤ µ(t)
(1 + log2 t) log2(1 + log2 t)

for all t = 1, 2, . . .

Parameters: Real number0 ≤ ε ≤ 1.

Initialization: t = 1.

For each epochr = 0, 1, 2, . . .,

1) let Kr = 4r(2 lnN)/ε ;
2) initialize L̃i(r) = 0 for all i = 1, . . . , N ;
3) restart the forecaster of Figure 2 choosingε andηr =√

(2ε lnN)/Kr ;
4) while mini L̃i(r) ≤ Kr − 1/ε do:

(a) denote byIt the action chosen by the forecaster
of Figure 2, and letZt = 1 if it asks for the label
yt, Zt = 0 otherwise;

(b) if Zt = 1, then obtain the outcomeyt and update
the estimated losses, for alli = 1, . . . , N , as

L̃i(r) := L̃i(r) + `(i, yt)/ε ;

(c) t := t+ 1.

Fig. 4. A doubling version of the label efficient exponentially weighted
average forecaster.

As µ grows faster thanlog2(n) log2 log2(n), we have that
φ(t) → +∞. Thus, choosingm0 = 0, and mr =
bφ(2r) log2(1 + r)c, we indeed ensure thatmr/ ln r → +∞.
Furthermore, using thatmr is nondecreasing as a function of
r, and using the monotonicity ofφ,

R(n)∑
r=0

mr ≤ (R(n) + 1)φ(2R(n)) log2(1 +R(n))

≤ (1 + log2 n)φ(n) log2(1 + log2 n) ≤ µ(n)

and this concludes the proof.

IV. I MPROVEMENTS FOR SMALL LOSSES

We now prove a refined bound in which the factors
n
√

(lnN)/m of Theorem 2 are replaced by quantities of the
order of

√
nL∗n(lnN)/m+(n/m) lnN in case of an oblivious

adversary, and
√
nL∗n(ln(Nn))/m+(n/m) ln(Nn) in case of

a non-oblivious one, whereL∗n is the cumulative loss of the
best action,

L∗n = L∗n(yn
1 ) = min

i=1,...,N

n∑
t=1

`(i, yt) .

In particular, we recover the behavior already observed by
Helmbold and Panizza [4] for oblivious adversaries in the case
L∗n = 0.

This is done by introducing a modified version of the
forecaster of Figure 2, which performs a doubling trick
over the estimated losses̃Li,t, t = 1, . . . , n (see Figure 4),
and whose performance is studied below through several
applications of Bernstein’s lemma.

Similarly to [17, Section 4], we propose in Figure 4 a
forecaster which uses a doubling trick based on the estimated
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losses of each actioni = 1, . . . , N . We denote the estimated
accumulated loss of this algorithm by

L̃A,n =
n∑

t=1

˜̀(pt, yt)

and prove the following inequality.
Lemma 6:For any0 ≤ ε ≤ 1, the forecaster of Figure 4

achieves, for alln = 1, 2, . . .,

L̃A,n ≤ L̃∗n + 8
√

2

√(
L̃∗n + 1/ε

) lnN
ε

+
4 lnN
ε

where
L̃∗n = min

i=1,...,N
L̃i,n .

PROOF. The proof is divided in three steps. We first deal with
each epoch, then sum the estimated losses over the epochs,
and finally bound the total numberR of different epochs (i.e.,
the final value ofr). Let Sr andTr be the first and last time
steps completed on epochr (where for convenience we define
TR = n). Thus, epochr consists of trialsSr, Sr + 1, . . . , Tr.
We denote the estimated cumulative loss of the forecaster at
epochr by

L̃A(r) =
Tr∑

t=Sr

˜̀(pt, yt)

and the estimated cumulative losses of the actionsi =
1, . . . , N at epochr by

L̃i(r) =
Tr∑

t=Sr

˜̀(i, yt) .

Inequality (4) ensures that for epochr, and for all i =
1, . . . , N , (

1− ηr

2ε

)
L̃A(r) ≤ L̃i(r) +

lnN
ηr

so dividing both terms by the quantity1− ηr/(2ε) (which is
more than1/2 due to the choice ofKr), we get

L̃A(r) ≤ L̃i(r) +
ηr

ε
L̃i(r) + 2

lnN
ηr

.

The stopping condition now guarantees thatmini L̃i(r) ≤ Kr,
hence, substituting the value ofηr, we have proved that for
epochr,

L̃A(r) ≤ min
i=1,...,N

L̃i(r) + 2
√

2

√
Kr lnN

ε
.

Summing overr = 0, . . . , R, we get

L̃A,n ≤
R∑

r=0

min
i=1,...,N

L̃i(r) +
R∑

r=0

2
√

2

√
Kr lnN

ε

≤ min
i=1,...,N

L̃i,n + 2
√

2

√
K0 lnN

ε

(
2R+1 − 1

)
.(6)

It remains to bound the numberR of epochs, or alternatively,
to bound2R+1 − 1. Assume first thatR ≥ 1. In particular,

L̃∗n = min
i=1,...,N

L̃i,n ≥ min
i=1,...,N

L̃i(R− 1)

> KR−1 − 1/ε = 4R−1K0 − 1/ε

so

2R−1 ≤
√(

L̃∗n + 1/ε
) 1
K0

.

The above is implied by

2R+1 − 1 ≤ 1 + 4
√(

L̃∗n + 1/ε
) 1
K0

which also holds forR = 0. Applying the last inequality to (6)
concludes the proof.

We now state and prove a bound that holds in the most
general (non-oblivious) adversarial model.

Theorem 7:The label efficient forecaster of Figure 4, run
with

ε =
m−

√
2m ln(4/δ)
n

ensures that, with probability1 − δ, the algorithm does not
ask for more thanm labels and for allt = 1, . . . , n,

L̂t − L∗t ≤ U(L∗n) +

√
2 (1 + L∗n + U(L∗n)) ln

4n
δ

+
1
2

ln
4n
δ

where

U(L∗n)

= 20

√
n

m
L∗n ln

4Nn
δ

+ 32
(
n

m
ln

4Nn
δ

)3/4

(L∗n)1/4

+10
(
n

m
ln

4Nn
δ

)7/8

(L∗n)1/8 + 75
n

m
ln

4Nn
δ

≤ 137×max

{√
n

m
L∗n ln

4Nn
δ

,
n

m
ln

4Nn
δ

}
.

We remark here that the bound of the theorem is an im-
provement over that of Theorem 2 as soon asL∗n grows
slower thann/

√
lnn. (For L∗n ∼ n however, these bounds

are worse, at least in the case of non-oblivious adversary, see
Theorem 10 below for a refined bound for the case of an
oblivious adversary.)

First we relateL̃∗n to L∗n, andL̃A,n to L̄A,n, where

L̄A,n =
n∑

t=1

`(pt, yt)

is the sum of the conditional expectations of the instantaneous
losses, and then substitute the obtained inequalities in the
bound of Lemma 6.

Lemma 8:With probability 1 − δ/2, the following 2n
inequalities hold simultaneously: for allt = 1, . . . , n,

L̃∗t ≤ L∗t + 2

√
n

m
L∗n ln

4Nn
δ

+ 4
n

m
ln

4Nn
δ

,

L̃A,t ≥ L̄A,t −

(
2

√
n

m
L̄A,n ln

4n
δ

+ 4
n

m
ln

4n
δ

)
.

PROOF. We prove that each of both lines holds with probability
at least1− δ/4. As the proofs are similar, we concentrate on
the first one only. For alli = 1, . . . , N , we apply Corollary 16
with Xt = ˜̀(i, yt) − `(i, yt), t = 1, . . . , n, which forms a
martingale difference sequence (with respect to the filtration
generated by(It, Zt), t = 1, . . . , n). With the notation of the
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corollary, K = 1/ε, and Vn is smaller thanLi,n/ε, which
shows that (for a giveni), with probability at least1−δ/(4N),

max
t=1,...,n

(
L̃i,t − Li,t

)
≤

√
2
(

1
ε2

+
Li,n

ε

)
ln

4Nn
δ

+
√

2
3ε

ln
4Nn
δ

.

The proof is concluded by using
√
x+ y ≤

√
x +

√
y for

x, y ≥ 0, 1/ε ≤ 2n/m (derived from (5)),ln(4Nn/δ) ≥ 1
and the union-of-events bound.

Lemma 9:With probability at least1− δ/2,

∀ t = 1, . . . , n L̄A,t − L∗t ≤ U(L∗n) ,

whereU(L∗n) is as in Theorem 7.

PROOF. We combine the inequalities of Lemma 8 with
Lemma 6, and perform some trivial upper bounding, to get
that, with probability1− δ/2, for all t = 1, . . . , n,

L̄A,t ≤ L∗t + 2

√
n

m
L̄A,n ln

4Nn
δ

+ 18

√
n

m
L∗n ln

4Nn
δ

+23 (L∗n)1/4

(
n

m
ln

4Nn
δ

)3/4

+ 56
n

m
ln

4Nn
δ

.

An application of Lemma 19 concludes the proof.

PROOF OF THEOREM7. Lemma 3 shows that with probability
at least1− δ/4, the number of queried labels is less thanm.
Using the notation of Corollary 16, we consider the martingale
difference sequence formed byXt = `(It, yt) − `(pt, yt),
with associated sum of conditional variancesVn ≤ L̄A,n and
increments bounded by 1. Corollary 16 then shows that with
probability 1− δ/4,

max
t=1,...,n

(
L̂t − L̄A,t

)
≤
√

2
(
1 + L̄A,n

)
ln

4n
δ

+
√

2
3

ln
4n
δ
.

We conclude the proof by applying Lemma 9 and a union-of-
events bound.

In the oblivious adversary model, the bound of Theorem 7
can be strengthened as follows.

Theorem 10:In the oblivious adversary model, the label
efficient forecaster of Figure 4, run with

ε =
m−

√
2m ln(4/δ)
n

ensures that with probability1−δ, the algorithm does not ask
for more thanm labels and that

∀ t = 1, . . . , n L̂t−L∗t ≤ B(L∗n)+2

√
(L∗n +B(L∗n)) ln

4
δ

where

B(L∗n) = 21

√
n

m
L∗n ln

4N
δ

+ 39
(
n

m
ln

4N
δ

)3/4

(L∗n)1/4

+15
(
n

m
ln

4N
δ

)7/8

(L∗n)1/8 + 59
n

m
ln

4N
δ

≤ 134 max

(√
n

m
L∗n ln

4N
δ

,
n

m
ln

4N
δ

)
.

Observe that the order of magnitude of the bound of Theorem
10 is always at least as good as that of Theorem 2 and is better
as soon asL∗n grows slower thann.

The proof of Theorem 10 is based on combining Lemma 6
with two applications of Bernstein’s inequality, but here, one of
these applications is a backward call to Bernstein’s inequality:
usually, one can handle the predictable quadratic variation of
the studied martingale, and Bernstein’s inequality is then a
useful concentration result for the martingale. In the case of the
second step below we know the deviations of the martingale
(formed by L̃A,n), but we are interested in the behavior of
its predictable quadratic variation (equal tōLA,n). The two
quantities are related by a “backwards” use of Bernstein’s
lemma.

First step: Relating estimated losses to the cumulative loss
of the best action:We relateL̃∗n and L̃A,n to L∗n by using
Bernstein’s inequality (Lemma 15). First we point out the
difference between oblivious and non-oblivious adversaries.
More precisely, to apply Lemma 15 rather than Corollary 16,
we need upper boundsKi for all Li,n = Li,n(yn

1 ) (we
exceptionally make the dependence on the played outcomes
explicit) which are independent ofIn

1 andZn
1 . In case of an

oblivious adversaries, the outcome sequenceyn
1 is chosen in

advance, andKi = Li,n(yn
1 ) is a suitable choice. This is not

the case for non-oblivious adversaries whose behavior may
take the actions of the forecaster into account (see the previous
section).

Observe the similarity of the first statement of the following
lemma to Lemmas 4 and 8.

Lemma 11:When facing an oblivious adversary, with prob-
ability 1− δ/4,

∀ t = 1, . . . , n, L̃∗t ≤ L∗t +2

√
n

m
L∗n ln

4N
δ

+
n

m
ln

4N
δ

.

Consequently, with probability1− δ/4,

∀ t = 1, . . . , n, L̃A,t ≤ L∗t +A(L∗n) , (7)

where

A(L∗n) = 18

√
n

m
L∗n ln

4N
δ

+23
(
n

m
ln

4N
δ

)3/4

(L∗n)1/4 + 37
n

m
ln

4N
δ

.

PROOF. For all i = 1, . . . , N , we may apply Lemma 15
with Xt = ˜̀(i, yt) − `(i, yt), t = 1, . . . , n, which forms a
martingale difference sequence with respect to the filtration
generated byZt, t = 1, . . . , n. With the notation of Lemma 15,
Vn ≤ Li,n/ε ≤ 2nLi,n/m, which is indeed independent of
the Zt, and simple algebra and the union-of-events bound
conclude the proof of the first statement. The second one
follows from a combination of the first one with Lemma 6.

Second step: Bernstein’s inequality used backwards:Next
we relateL̄A,n to L̃A,n (and thus toL∗n, via Lemma 11). This
is done by using Bernstein’s lemma (Lemma 15) once again,
but backwards.
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Lemma 12:For oblivious adversaries, with probability at
least1− δ/2,

∀ t = 1, . . . , n L̄A,t − L∗t ≤ B(L∗n) ,

whereB(L∗n) is as in Theorem 10.

PROOF. ConsiderA(L∗n) as in Lemma 11 and fix a real number
x0 > A(L∗n). Recall the functionφK defined in the statement
of Lemma 15. Then (7) and the union-of-events bound imply
that, forλ > 0 such thatλ− φ1(λ)/ε > 0,

P
[

max
t=1,...,n

(
L̄A,t − L∗t

)
> x0

]
≤ δ

4
+ P

[
max

t=1,...,n

(
L̄A,t − L∗t

)
> x0

and max
t=1,...,n

(
L̃A,t − L∗t

)
≤ A(L∗n)

]
≤ δ

4

+P

[
max

t=1,...,n
exp

((
λ− φ1(λ)

ε

)

·
(
L̄A,t − L∗t

)
− λ

(
L̃A,t − L∗t

))

> exp
((

λ− φ1(λ)
ε

)
x0 − λA(L∗n)

)]
≤ δ

4
+ P

[
max

t=1,...,n
exp

(
λ
(
L̄A,t − L̃A,t

)
− φ1(λ)

ε
L̄A,t

)
> exp

((
λ− φ1(λ)

ε

)
x0 − λA(L∗n)− φ1(λ)

ε
L∗n

)]
(8)

We introduce the martingale difference sequence (with in-
crements bounded by 1)Xt = `(pt, yt) − ˜̀(pt, yt). The
conditional variances satisfy

E
[
X2

t |Zt−1
1

]
≤ E

[˜̀(pt, yt)2 |Zt−1
1

]
≤ `(pt, yt)

ε

so that, using the notation of Lemma 15,Vn ≤ L̄A,n/ε.
By Lemma 15,exp

(
λ
(
L̄A,t − L̃A,t

)
− φ1(λ)Vt

)
for t =

1, 2, . . . is a nonnegative supermartingale. Hence, using Doob’s
maximal inequality, we get

P
[

max
t=1,...,n

exp
(
λ
(
L̄A,t − L̃A,n

)
− φ1(λ)

ε
L̄A,t

)
> exp

((
λ− φ1(λ)

ε

)
x0 − λA(L∗n)− φ1(λ)

ε
L∗n

)]
≤ P

[
max

t=1,...,n
exp

(
λ
(
L̄A,t − L̃A,t

)
− φ1(λ)Vt

)
> exp

(
λ (x0 −A(L∗n))− φ1(λ)

ε
(x0 + L∗n)

)]
≤ exp

(
λ (A(L∗n)− x0) +

φ1(λ)
ε

(x0 + L∗n)
)
. (9)

Now, choose

λ =
x0 −A(L∗n)
2 (x0 + L∗n)

ε .

λ ≤ ε/2 ≤ 1, and therefore, usingφ1(t) ≤ t2 for t ≤ 1, we
have proved thatλ− φ1(λ)/ε > 0. Thus, (8) and (9) imply

P
[

max
t=1,...,n

(
L̄A,t − L∗t

)
> x0

]
≤ δ

4
+ exp

(
λ (A(L∗n)− x0) +

λ2

ε
(x0 + L∗n)

)
=

δ

4
+ exp

(
− (A(L∗n)− x0)

2

4 (x0 + L∗n)
ε

)
.

It suffices to find ax0 > A(L∗n) such that

(A(L∗n)− x0)
2

4 (x0 + L∗n)
ε = ln

δ

4
.

One such choice is

x0 = A(L∗n) +
2 ln δ

4

ε
+ 2

√
ln δ

4

ε

√
L∗n +A(L∗n) +

ln δ
4

ε
.

Substituting the value ofA(L∗n) yields the statement of the
lemma.

Third step: Conclusion of the proof of Theorem 10:
Lemma 3 shows that, with probability at least1 − δ/4, the
number of queried labels is less thanm. We then consider the
martingale difference sequence formed byXt = `(It, yt) −
`(pt, yt), with associated sum of conditional variancesVn ≤
L̄A,n and increments bounded by 1. Lemma 15 yields

P
[

max
t=1,...,n

(
L̂t − L̄A,t

)
> u and L̄A,n ≤ L∗n +B(L∗n)

]
≤ exp

(
− u2

4 (L∗n +B(L∗n))

)
provided thatu ≤ 3(L∗n + B(L∗n)). Lemma 12 together with
a union-of-events bound and the choice

u = 2

√
(L∗n +B(L∗n)) ln

4
δ

concludes the proof.

V. A LOWER BOUND FOR LABEL EFFICIENT PREDICTION

Here we show that the performance bounds proved in Sec-
tion III for the label efficient exponentially weighted average
forecaster are essentially unimprovable in the strong sense
that no other label efficient forecasting strategy can have a
significantly better performance for all problems. Denote the
set of natural numbers byN = {1, 2, . . .}.

Theorem 13:There exist an outcome spaceY, a loss func-
tion ` : N × Y → [0, 1], and a universal constantc > 0 such
that, for allN ≥ 2 and for alln ≥ m ≥ 20 e

1+e ln(N −1), the
cumulative (expected) loss of any (randomized) forecaster that
uses actions in{1, . . . , N} and asks for at mostm labels while
predicting a sequence ofn outcomes satisfies the inequality

sup
y1,...,yn∈Y

(
E

[
n∑

t=1

`(It, yt)

]
− min

i=1,...,N

n∑
t=1

`(i, yt)

)

≥ c n

√
ln(N − 1)

m
.
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In particular, we prove the theorem for

c =
√
e

(1 + e)
√

5(1 + e)
.

PROOF. First, we defineY = [0, 1] and`. Giveny ∈ [0, 1], we
denote by(y1, y2, . . .) its dyadic expansion, that is, the unique
sequence not ending with infinitely many zeros such that

y =
∑
k≥1

yk 2−k .

Now, the loss function is defined as`(k, y) = yk for all y ∈ Y
andk ∈ N.

We construct a random outcome sequence and show that the
expected value of the regret (with respect both to the random
choice of the outcome sequence and to the forecaster’s pos-
sibly random choices) for any possibly randomized forecaster
is bounded from below by the claimed quantity.

More precisely, we denote byU1, . . . , Un the auxiliary
randomization which the forecaster has access to. Without loss
of generality, this sequence can be taken as an i.i.d. sequence
of uniformly distributed random variables over[0, 1]. Our
underlying probability space is equipped with theσ-algebra of
events generated by the random outcome sequenceY1, . . . , Yn

and by the randomizationU1, . . . , Un. As the random outcome
sequence is independent of the auxiliary randomization, we
define N different probability distributions,Pi ⊗ PA, i =
1, . . . , N , formed by the product of the auxiliary random-
ization (whose associated probability distribution is denoted
by PA) and one of theN different probability distributions
P1, . . . ,PN over the outcome sequence defined as follows.

For i = 1, . . . , N , Qi is defined as the distribution (over
[0, 1]) of

Z∗2−i +
∑

k=1,...,N, k 6=i

Zk2−k + 2−(N+1)U ,

whereU , Z∗, Z1, . . . , ZN are independent random variables
such thatU has uniform distribution, andZ∗ and theZk

have Bernoulli distribution with parameter1/2−ε for Z∗ and
1/2 for the Zk. Now, the randomization is such that under
Pi, the outcome sequenceY1, . . . , Yn is i.i.d. with common
distributionQi.

Then, under eachPi (for i = 1, . . . , N ), the losses̀(k, Yt),
k = 1, . . . , N , t = 1, . . . , n, are independent Bernoulli random
variables with the following parameters. For allt, `(i, Yt) = 1
with probability1/2−ε and`(k, Yt) = 1 with probability1/2
for eachk 6= i, whereε is a positive number specified below.

We have

max
y1,...,yn

(
EAL̂n − min

i=1,...,N
Li,n

)
= max

y1,...,yn

max
i=1,...,N

(
EAL̂n − Li,n

)
≥ max

i=1,...,N
Ei

[
EAL̂n − Li,n

]
,

where Ei (resp.EA) denotes expectation with respect toPi

(resp.PA).
Now, we use the following decomposition lemma, which

states that a randomized algorithm performs, on the average,

just as a convex combination of deterministic algorithms. The
simple proof is omitted.

Lemma 14:For any randomized forecaster there exists an
integerD, a pointα = (α1, . . . , αD) ∈ RD in the probability
simplex, andD deterministic algorithms (indexed by a super-
script d = 1, . . . , D) such that, for everyt and every possible
outcome sequenceyt−1

1 = (y1, . . . , yt−1),

PA

[
It = i | yt−1

1

]
=

D∑
d=1

αd I[Id
t =i | yt−1

1 ] ,

where I[Id
t =i | yt−1

1 ] is the indicator function that thed-th
deterministic algorithm chooses actioni when the sequence
of past outcomes is formed byyt−1

1 .
Using this lemma, we have that there existD, α and D
deterministic sub-algorithms such that

max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
= max

i=1,...,N
Ei

[
n∑

t=1

D∑
d=1

αd

N∑
k=1

I[Id
t =k |Y t−1

1 ]`(k, Yt)− Li,n

]

= max
i=1,...,N

D∑
d=1

αd Ei

[
n∑

t=1

N∑
k=1

I[Id
t =k |Y t−1

1 ]`(k, Yt)− Li,n

]

Now, under Pi the regret grows byε whenever an action
different from i is chosen and remains the same otherwise.
Hence,

max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
= max

i=1,...,N

D∑
d=1

αd Ei

[
n∑

t=1

N∑
k=1

I[Id
t =k |Y t−1

1 ]`(k, Yt)− Li,n

]

= ε max
i=1,...,N

D∑
d=1

αd

n∑
t=1

Pi

[
Id
t 6= i

]
= ε n

(
1− min

i=1,...,N

D∑
d=1

n∑
t=1

αd

n
Pi[Id

t = i]

)
.

For thed-th deterministic subalgorithm, let1 ≤ T d
1 < . . . <

T d
m ≤ n be the times when them queries were issued.

Then T d
1 , . . . , T

d
m are finite stopping times with respect to

the i.i.d. processY1, . . . , Yn. Hence, by a well-known fact
in probability theory (see, e.g., [19, Lemma 2, page 138]),
the revealed outcomesYT d

1
, . . . , YT d

m
are independent and

indentically distributed asY1.
Let Rd

t be the number of revealed outcomes at timet
and note thatRd

t is measurable with respect to the random
outcome sequence. Now, as the subalgorithm we consider is
deterministic,Rd

t is fully determined byYT d
1
, . . . , YT d

m
. Hence,

Id
t may be seen as a function ofYT d

1
, . . . , YT d

m
rather than a

function of YT d
1
, . . . , YT d

Rd
t

only. As the joint distribution of

YT d
1
, . . . , YT d

m
underPi is Qm

i , we have proved that

Pi[Id
t = i] = Qm

i [Id
t = i] .
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Consequently, the lower bound rewrites as

max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
= ε n

(
1− min

i=1,...,N

D∑
d=1

n∑
t=1

αd

n
Qm

i [Id
t = i]

)
.

By the generalized Fano’s inequality (see Lemma 18 in the
Appendix), it is guaranteed that

min
i=1,...,N

D∑
d=1

n∑
t=1

αd

n
Qm

i [Id
t = i] ≤ max

{
e

1 + e
,

K̄

ln(N − 1)

}
,

where

K̄ =
n∑

t=1

D∑
d=1

N∑
i=2

αd

n(N − 1)
KL(Qm

i ,Qm
1 )

=
1

N − 1

N∑
i=2

KL(Qm
i ,Qm

1 ) ,

and KL is the Kullback-Leibler divergence (or relative en-
tropy) between two probability distributions.

Moreover,Bp denoting the Bernoulli distribution with pa-
rameterp,

KL(Qm
i ,Qm

1 )
= mKL(Qi,Q1)
≤ m

(
KL
(
B1/2−ε,B1/2

)
+ KL

(
B1/2,B1/2−ε

))
= mε ln

(
1 +

4ε
1− 2ε

)
≤ 5mε2

for 0 ≤ ε ≤ 1/10, where the first inequality
holds by noting that the definition of theQi implies
that the considered Kullback-Leibler divergence is up-
per bounded by the Kullback-Leibler divergence between
(Z1, . . . , Z

∗, . . . , Zn, U), whereZ∗ is in thei-th position, and
(Z∗, Z2 . . . , Zn, U). Therefore,

max
y1,...,yn

(
EAL̂n − min

i=1,...,N
Li,n

)
≥ ε n

(
1−max

{
e

1 + e
,

5mε2

ln(N − 1)

})
.

The choice

ε =

√
e ln(N − 1)
5(1 + e)m

yields the claimed bound.

APPENDIX I
BERNSTEIN’ S INEQUALITY FOR MARTINGALES

We recall first a version of Bernstein’s inequality suited for
maxima of martingale difference sequences [20], and prove a
corollary tailored to the needs of Section IV.

Lemma 15 (Bernstein’s maximal inequality for martingales):
Let X1, . . . , Xn be a bounded martingale difference sequence

with respect to the filtrationF = (Ft)1≤t≤n and with
increments bounded in absolute values byK. Let

Mt =
t∑

s=1

Xs

be the associated martingale. Denote the sum of the conditional
variances by

Vn =
n∑

t=1

E
[
X2

t | Ft−1

]
.

Then, for allλ > 0,

(exp (λMn − φK(λ)Vn))n≥0

is a supermartingale (with respect to the same filtrationF),
where

φK(λ) =
1
K2

(
eλK − 1− λK

)
.

In particular, for all constantsx, v > 0,

P
[

max
t=1,...,n

Mt > x andVn ≤ v

]
≤ exp

(
− x2

2 (v +Kx/3)

)
and therefore,

P
[

max
t=1,...,n

Mt >
√

2vx+ (
√

2/3)Kx and Vn ≤ v

]
≤ e−x .

Corollary 16: Under the assumptions of Lemma 15, for all
δ ∈ (0, 1), with probability at least1− δ,

max
t=1,...,n

Mt ≤
√

2(Vn +K2) ln(n/δ) + (
√

2/3)K ln(n/δ) .

PROOF. Denote
M = max

t=1,...,n
Mt .

We apply the previous lemman times and use a union-of-
events bound. Fort = 1, . . . , n,

P
[
M >

√
2(Vn +K2) ln(n/δ) + (

√
2/3)K ln(n/δ)

and Vn ∈ K2 [t− 1, t]
]

≤ P
[
M >

√
2K2t ln(n/δ) + (

√
2/3)K ln(n/δ)

and Vn ≤ K2t
]

≤ δ/n ,

where we used Lemma 15 in the last step. By boundedness of
theXt, Vn lies between 0 andK2 n, and therefore a union-
of-events bound overt = 1, . . . , n concludes the proof.

APPENDIX II
GENERALIZED FANO’ S LEMMA

The crucial point in the proof of the lower bound theorem
is an extension of Fano’s lemma to a convex combination
of probability masses, which may be proved thanks to a
straightforward modification of the techniques developed by
Birgé [21] (see also Massart [22]). Recall first a consequence
of the variational formula for entropy.

Lemma 17:For arbitrary probability distributionsP,Q and
for eachλ > 0,

λP[A]− ψQ[A](λ) ≤ KL(P,Q)
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whereψp(λ) = ln
(
p (eλ − 1) + 1

)
.

Lemma 18 (Generalized Fano):Let
{As,j : s = 1, . . . , S, j = 1, . . . , N} be a family of subsets
of a setΩ such thatAs,1, . . . , As,N form a partition ofΩ
for each fixeds. Let α1, . . . , αs be such thatαs ≥ 0 for
s = 1, . . . , S and α1 + . . . + αS = 1. Then, for all sets
Ps,1, . . . ,Ps,N , s = 1, . . . , S, of probability distributions on
Ω,

min
j=1,...,N

S∑
s=1

αs Ps,j [As,j ] ≤ max
{

e

1 + e
,

K̄

ln(N − 1)

}
,

where

K̄ =
S∑

s=1

N∑
j=2

αs

N − 1
KL(Ps,j ,Ps,1) .

PROOF. Using Lemma 17, we have that

S∑
s=1

N∑
j=2

αs

N − 1
λPs,j [As,j ]−

S∑
s=1

N∑
j=2

αs

N − 1
ψPs,1[As,j ](λ)

≤
S∑

s=1

N∑
j=2

αs

N − 1
KL(Ps,j ,Ps,1) = K̄ .

Now, for each fixedλ > 0, the function that mapsp to−ψp(λ)
is convex. Hence, letting

p1 =
S∑

s=1

N∑
j=2

αs

N − 1
Ps,1[As,j ]

=
1

N − 1

(
1−

S∑
s=1

αsPs,1[As,1]

)
,

by Jensen’s inequality we get

S∑
s=1

N∑
j=2

αs

N − 1
λPs,j [As,j ]− ψp1(λ)

≤
S∑

s=1

N∑
j=2

αs

N − 1
λPs,j [As,j ]−

S∑
s=1

N∑
j=2

αs

N − 1
ψPs,1[As,j ](λ) .

Recalling that the right-hand side of the above inequality above
is less thanK̄, and introducing the quantities

aj =
S∑

s=1

αsPs,j [As,j ] for j = 1, . . . , N ,

we conclude

λ min
j=1,...,N

aj−ψ 1−a1
N−1

(λ) ≤ λ
1

N − 1

N∑
j=2

aj−ψ 1−a1
N−1

(λ) ≤ K̄ .

Denote bya the minimum of theaj ’s and let p∗ = (1 −
a)/(N − 1) ≥ p1. We only have to deal with the case when
a ≥ e/(1 + e). As for all λ > 0, the function that mapsp to
−ψp is decreasing, we have

K̄ ≥ sup
λ>0

(λ a− ψp∗(λ)) ≥ a ln
a

e p∗

≥ a ln
a (N − 1)
(1− a) e

≥ a ln(N − 1) ,

wheneverp∗ ≤ a ≤ 1 for the second inequality to hold, and
by usinga ≥ e/(1+e) for the last one. Asp∗ ≤ 1/(N−1) ≤
e/(1+e) wheneverN ≥ 3, the casea < p∗ may only happen
whenN = 2, but then the result is trivial.

APPENDIX III
A BASIC FACT

Lemma 19:If xt, yt ≥ 0, and b ≥ 0, are such that for all
t = 1, . . . , n

xt ≤ yt + b
√
xn , (10)

then
∀t = 1, . . . , n xt ≤ yt + b

√
yn + b2 .

PROOF. We obtain a bound over
√
xn and apply it to (10) to

conclude. The inequality

xn ≤ yn + b
√
xn

rewrites as (
√
xn −

b

2

)2

≤ yn +
b2

4
,

that is, either
√
xn ≤ b/2 or

√
xn −

b

2
=
√xn −

b

2

 ≤
√
yn +

b2

4
≤ √

yn +
b

2
.

In both cases, √
xn ≤ b+

√
yn

concluding the proof.
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