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A Minimax Procedure for Electing 
Committees 

 

Steven J. Brams1, D.  Marc Kilgour2, M. Remzi Sanver3 

 

Abstract4 

A new voting procedure for electing committees, called the minimax 
procedure, is described.  Based on approval balloting, it chooses the committee 
that minimizes the maximum Hamming distance to voters’ ballots, where these 
ballots are weighted by their proximity to other voters’ ballots.  This minimax 
outcome may be diametrically opposed to the outcome obtained by aggregating 
approval votes in the usual manner, which minimizes the sum of the Hamming 
distances and is called the minisum outcome.  The manipulability of these 
procedures, and their applicability when election outcomes are restricted in various 
ways, are also investigated. 

The minimax procedure is applied to the 2003 Game Theory Society election 
of a council of 12 new members from a list of 24 candidates.  The composition of 
the council would have changed by 4 members; there would have been more 
substantial differences between minimax and minisum outcomes if the number of 
candidates to be elected had been endogenous rather than being fixed at 12.  The 
minimax procedure, which renders central voters more influential but does not 
antagonize any voter too much, may produce a committee that better represents the 
interests of all voters than a minisum committee. 
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A Minimax Procedure for Electing Committees 

1 Introduction 
 

In this paper we propose a new voting procedure, called the minimax procedure, for 
electing committees.  This procedure is based on approval balloting—whereby voters 
approve of as many candidates as they like (Brams and Fishburn, 1978, 1983)—but 
votes are not aggregated in the usual manner.5   

Instead of selecting the candidates that receive the most votes, the minimax 
procedure selects the set of candidates that minimizes the maximum Hamming distance 
to voters’ ballots, where these ballots are weighted by their proximity to other voters’ 
ballots.  This set of candidates constitutes the minimax outcome.  We define and 
illustrate Hamming distance in section 2 and show how the proximity weighting of this 
distance is determined.  We also offer a geometric interpretation of minimax outcomes.  

We call the set of candidates that minimizes the sum of the Hamming distances to 
all voters the minisum outcome.  In fact, this is the usual set of majority winners under 
approval balloting.  We give examples in which tied and nontied minimax and minisum 
outcomes may be diametrically opposed in section 3. 

We argue that when committees of two or more candidates are to be elected, there 
are good reasons for preferring a minimax outcome.  It ensures that no voter is “too far 
away” from the committee that is elected—based on proximity-weighted Hamming 
distances—whereas minisum outcomes ensure that voters will, on average, be closer to 
the committee, even though a few voters may be far away.   

In section 4, we discuss the applicability the procedures when there are restrictions 
on the possible committees to be elected, either in size or in composition.  In section 5 
we show that while the minisum procedure is not manipulable, the minimax procedure 
is (when preferences are based on Hamming distance), though in practice the minimax 
procedure is probably almost as invulnerable as the minisum procedure.  

In section 6, we analyze the 2003 Game Theory Society (GTS) election of 12 new 
members to the GTS council from a list of 24 candidates.  There were 224  16.8 
million possible ballots under approval balloting, because each voter could approve, or 
not, each of the 24 candidates.  Given this huge number, it is hardly surprising that all 
but two of the 161 GTS members who voted in this election cast different ballots.

≈

6  

                                                 
5 Merrill and Nagel (1987) distinguish between a balloting method and a procedure for aggregating voter 
choices on the ballot.  Throughout we assume the balloting method is approval balloting; what we 
compare are different ways of aggregating approval votes.   
6 If all ballots are assumed equiprobable, the probability that no two (of the 161) voters cast identical 
ballots is [(s)(s – 1) . . . (s – 159)(s – 160)]/s161, where s is the number of possible ballots (16,774,216 in 
this case).  This follows from the fact that the first voter can cast one of s different ballots; for each of 
these, there are (s - 1) ways for the second voter to cast a different ballot; and so on to the 161st voter.  
The product of these numbers, divided by the number of possible ballots, s161, gives the probability that 
no two voters cast identical ballots; the complement of this probability is the probability that at least two 

78 



Annales du LAMSADE n°6 

In section 7, we conclude that the minimax procedure is a viable alternative to the 
minisum procedure for electing committees.  Besides professional societies like the 
GTS, we commend the minimax procedure to colleges, universities, and other 
organizations that rely substantially on representative committees to make 
recommendations and decisions.  

In other arenas, such as faction-ridden countries like Afghanistan and Iraq, the minimax 
procedure could facilitate the choice of councils and cabinets that mirror the diversity of 
interests in the electorate.  It could also be used to resolve multi-issue disputes; in fact, a 
simplified version of this procedure would have led to a different outcome from that 
achieved in oil-pollution treaty negotiations of 32 countries in 1954 (Brams, Kilgour, 
and Sanver, 2004). 
 

2 Minisum and Minimax Outcomes 
 

Assume there n voters and k candidates.  Under approval balloting, a ballot is a 
binary k-vector, (p1, p2, …, pk), where pi equals 0 or 1.  These binary vectors indicate 
the approval or disapproval of each candidate by a voter.   

To simplify notation, we write ballots such as (1, 1, 0) as 110, which indicates that 
the voter approves of candidates 1 and 2 but disapproves of candidate 3.  (We also use 
vectors like 110 to represent election outcomes—that is, the committees that are chosen 
by the voters.)  The number of distinct ballots, or possible election outcomes, is 2k. 

To illustrate the selection of representative committees based on the minisum and 
minimax criteria, consider the following example, in which 4 voters cast three distinct 
ballots for k = 3 candidates: 

 

1 voter:   100              

1 voter:   110 

2 voters:  101 

Under the usual method of aggregating approval votes, we ask whether each of the 
three candidates wins a majority of votes.  

                                                                                                                                               
voters cast the same ballot.  In the GTS election, the latter probability was only 0.000768, or less than 1 in 
1,000, indicating that it was highly improbable that two or more voters would cast the same ballot, given 
all ballots are equiprobable (also highly unlikely). These calculations are similar to those used to solve the 
“birthday problem” in probability theory, which asks how many people must be in a room to make the 
probability greater than 1/2 that at least two people have the same birthday (the answer is 23 or more). In 
section 5 we define a more “empirical” probability, based on the number of voters voting for different 
numbers of candidates, which suggests that the probability that some ballots are identical is much higher. 
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Observe that candidate 1 receives approval from all 4 voters, candidate 2 from 1 
voter, and candidate 3 from 2 voters, so candidate 1 is elected and candidate 2 is not 
elected.   Normally, we would say that candidate 3, who is approved by exactly half the 
voters, would not be elected, but our version of majority voting allows for candidate 3 
to be elected or not.  That is, outcomes 101 and 100 are both majority-voting outcomes.7    

The Hamming distance between two ballots, p and q, is d(p, q), the number of 
components on which they differ.  For example, if k = 3 and a voter’s ballot is 110, the 
distances, d, between it and the eight binary 3-vectors (including itself) are shown 
below: 

 

Ballot 

 
d = 0 

 
d = 1 

 
d = 2 

 
d = 3 

 

110 

 

110 

 

100 

010 

111 

 

000 

101 

011 

 

 

001 

 

Observe that there are three ballots at Hamming distance d = 1, and three more at d = 
2; ballot 110 is at distance d = 0 from itself, and its antipode, the ballot on which all 
components differ, is at d = 3.   

Define a majority-voting (MV) committee to be any subset of candidates that 
includes all candidates who receive more than n/2 voters and none that receive less than 
than n/2 votes, where n is the number of voters.  Brams, Kilgour, and Sanver (2004, 
Proposition 4) proved that a committee is an MV committee if and only if the sum of 
the Hamming distances between all voters and the committee is a minimum.  For this 
reason, we refer to MV committees as minisum committees. 

As we saw in the 4-voter example, there may be more than one MV committee (100 
and 101).  In general, an MV committee is not unique if and only if n is even and at 
least one candidate receives exactly n/2 votes.  (If n is odd, MV committees will always 
be unique since no candidate can receive exactly half the votes.)  

Minisum Committees with Count Weights 
Following Kilgour, Brams, and Sanver (2006), we focus not on the individual ballots 

but on the distinct ballots, and the number of times that each was cast.  For instance, 

                                                 
7 In general, if there is a tie between the yes (1) and no (0) votes for a candidate, then there are multiple 
majority-voting outcomes, both including and excluding this candidate.  Defining majority-voting 
outcomes in this way makes them coincide with minisum outcomes (more on this below). 
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committees 100 and 101 minimize the sum of the Hamming distances to all voters in 
our 4-voter example—or, equivalently, the sum of the Hamming distances to all distinct 
ballots weighted by the numbers of voters who cast each.  This is shown by the 
weighted Hamming distances to the eight possible committees in Table 1.  We call the 
weights count weights, because they count the numbers of voters who cast each ballot.   

 

Ballot: 100 110 101 Sum Max 

Count 
Weight: 

                  
1 

                 
1 

                
2 

  

1.  000 1 2 4 7 4 

2.  100 0 1  2 3* 2* 

3.  010 2 1 6 9 6 

4.  001 2 3 2 7 3 

5. 110 1 0 4 5 4 

6. 101 1 2 0 3* 2* 

7.  011 3 2 4 9 4 

8. 111 2  1 2 5 2* 

*Minimum in column. 

Table 1 : Derivation of Minisum and Minimax Committees Based on Count Weights  
(4-Voter Example) 

 

The sums of the entries in each row are shown in the Sum column of Table 1.  
Clearly, the two MV committees, 100 and 101, whose sums of 3 are starred, minimize 
the sum of the weighted Hamming distances.  By Brams, Kilgour, and Sanver (2004, 
Proposition 4), choosing a committee that minimizes the sum of the weighted Hamming 
distances, based on count weights, is equivalent to choosing an MV committee.  In our 
example, this committee always includes candidate 1 and may or may not include 
candidate 3.  

Minimax Committees 
Following Brams, Kilgour, and Sanver (2004) and Kilgour, Brams, and Sanver 

(2006), we note that there are other ways to define the most representative committee.  
Instead of finding a committee that minimizes the sum of the Hamming distances to all 
ballots, find the committee(s) that minimize the maximum Hamming distance.  In our 
example, these are the three committees that tie with values of 2, which are starred, in 
the Maximum column of Table 1.    
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Note that a third committee, 111, ties with minisum committees 100 and 101 as 
most representative, based on count weights.  Because 111 is not a minisum 
committee, however, it is arguably an inferior choice to 100 and 101.  But there is a 
more fundamental issue regarding minimax committees: The minimax procedure, 
based on count weights, does not seem as compelling as the same procedure based 
on a different weighting, as we describe next.  

Minimax Committees with Proximity Weights   
Proximity weights, like count weights, reflect the number of voters who cast each of 

the distinct ballots.  But they also incorporate information about the closeness of a ballot 
to all other ballots, based on Hamming distances.    

The closer a ballot is to all other ballots, and the more voters who cast it, the more 
influence it should have on the determination of a committee.  The minisum procedure 
with proximity weights works in this way.  The proximity weight of ballot qj is 

w j =
m j

mhd(q j ,qh )
h=1

t

∑
,

               (1) 

where mj  is the number of voters who cast ballot qj = (q1
j, q2

j, . . ., qh
j) and t is the 

number of distinct ballots cast.  The denominator of the fraction is the sum of the 
Hamming distances from ballot j to all ballots (including ballot j), weighted by the 
number of voters who cast each ballot.     

To illustrate in our example, the Hamming distances of ballot 100 to itself, 110, and 
101 are 0, 1, and 1, respectively.  Because these three ballots are cast by 1, 1, and 2 
voters, respectively, ballot 100 has weight 1/[(1 ×  0) + (1 ×  1) + (2 ×  1)] = 1/3, 
with the numerator reflecting the fact that one voter cast this ballot.  

Similarly, ballots 110 and 101 have weights of 1/5 and 2/3.  As shown in Kilgour, 
Brams, and Sanver (2006), it is the relative sizes of the weights that matter, so, for 
convenience, we multiply them by 15 to clear denominators.  This yields weights of 5, 
3, and 10 for ballots 100, 110, and 101, respectively.  Thereby we obtain Table 2, which 
is the same as Table 1 except that it is based on proximity weights rather than count 
weights. 
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Ballot: 100 110 101 Sum Max 

Proximity 
Weight: 

                
5 

               
3 

               
10 

  

1.  000 5 6 20 31 20 

2. 100 0 3  10 13 10 

3.  010 10 3 30 43 30 

4.  001 10 9 10 29 10 

5. 110 5 0 20 25 20 

6. 101 5 6 0 11* 6* 

7.  011 15 6 20 41 20 

8.  111 10  3 10 23 10 

*Minimum in column 

Table 2 : Derivation of Minisum and Minimax Committees Based on Proximity  
Weights  (4-Voter Example) 

 

Notice that only committee 101 minimizes both the sum and the maximum of 
weighted Hamming distances, based on proximity weights.  While committee 101 is 
also one of the committees singled out by the minisum and minimax criteria, based on 
count weights, this coincidence will not necessarily be the norm.  In fact, we will show 
in section 3 that the minisum outcome, based on count weights, and the minimax 
outcome, based on proximity weights, may be antipodes. 

A Geometric Interpretation of Minimax Outcomes 
Minimax outcomes may be interpreted geometrically, which we illustrate next.  

Represent the eight possible ballots for three candidates as the vertices of the cube in 
Figure 1, in which approval (1) or disapproval (0) of each candidate is represented on a 
different axis (the first candidate on the horizontal axis, the second candidate on the 
vertical axis, and the third candidate on the planar axis).  The three distinct ballots in 
our example (100, 110, and 101) are circled in Figure 1. 
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000

101

110

001

011

010

100

111

1 voter

1 voter

2 voters

 

 

 

 

 

 

 

 

 

 

Figure 1  Geometric Representation of Ballots in 4-Voter Example 

(Voted-for Ballots Circled) 

 

The proximity weights of (5, 3, 10) for ballots (100, 110, 101) can be thought of as 
the inertias of these ballots: Voters who cast them would depart from them, moving 
outward the edges of the cube toward other vertices that they would find acceptable, at 
velocities inversely proportional to these inertias.8  Thus, after 10 units of time, the two 
voters who cast ballot 101 would move distance 1 (i.e., traverse 1 edge from their 
node); the one voter who casts ballot 100 would move distance 2 (i.e., traverse 10/5 = 2 
edges from its node); and the one voter who casts ballot 110 would move distance 10/3 
= 3 1/3 (i.e., traverse 10/3 = 3 1/3 edges from its node).  Moving at these relative rates, 
it is easy to see that the first committee that all voters would reach would be 101 in 6 
units of time: The110 voter would find 101 acceptable at time 6; the other voters would 
find it acceptable sooner (the 100 voter at time 5, and the two 101 voters at time 0, 
because the latter voters start out at this node). 

                                                 
8 This interpretation is inspired by a procedure called “fallback bargaining” (Brams and Kilgour, 2001), 
which can be applied to approval balloting (Brams, Kilgour, and Sanver, 2004; Kilgour, Brams, and 
Sanver, 2006).  Technically, Brams and Kilgour (2001) define fallback bargaining only when preferences 
form a linear order over all alternatives.  We use a straightforward extension of their procedure to allow 
for weak preferences.  Under this procedure, voters fall back, or descend lower and lower, in their 
preferences until they reach an alternative on which all agree.  This alternative minimizes the maximum 
distance they must traverse in order that their agreement is unanimous.  The innovation here is that voters 
may descend at different rates, depending on the weighting scheme used; a proof that this descent 
minimizes the maximum weighted Hamming distance is given in Kilgour, Brams, and Sanver (2006).  If 
the requirement is that only a majority, not all, voters must agree, the fallback-bargaining outcome is 
essentially the “majoritarian compromise”; see Hurwicz and Sertel (1999), Sertel and Sanver (1999), and 
Sertel and Yilmaz (1999).  
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If count weights rather than proximity weights are used (see Table 1), an analogous 
argument shows why there are three tied minimax outcomes.  The two voters who cast 
ballots 100 and 110 traverse edges twice as vast as the two voters who cast ballot 101.  
From Figure 1, it is apparent that the first outcomes on which all four voters will agree 
will be within one edge of 101, and within two edges of 100 and 110, which are 
outcomes 100, 101, and 111.  These are precisely the minimax outcomes, based on 
count weights, shown in Table 1.9  

Henceforth we will use proximity weights, not count weights, to define minimax 
outcomes.  Count weights reflect only the number of voters who cast a particular ballot 
but not how close this ballot is to other ballots, whereas proximity weights take into 
account both factors.  Thus in our example, with count weights the two 101 voters have 
twice the inertia of each of voters 100 and 110, even though the 110 voter is not as close 
to the two 101 voters as the 100 voter is (see Figure 1).   

But with proximity weights, the greater closeness of the 100 voter to the two 101 
voters increases the 100 voter’s inertia, and therefore influence, compared to the 110 
voter, in the ratio 5:3.  More generally, we think voters whose ballots are close, but not 
necessarily identical, to the ballots of other voters should add weight to these ballots 
(i.e., give them greater inertia).  Likewise, extreme voters—outliers who are far from 
other voters—should have reduced influence on the outcome.10   

A minimax outcome can be visualized as the first outcome that all voters will 
converge upon as they move along the edges of a hypercube—in all directions from 
their ballots—at speeds inversely proportional to their proximity weights.  Not only may 
this outcome be very different from the minisum outcome (based on count weights), as 
we show next, but this difference raises the question of under what circumstances a 
minimax outcome is preferable to a minisum outcome in the selection of a committee.   

  

3  Minimax Vs. Minisum Outcomes: They May Be 
Antipodes 

 

Minimax and minisum outcomes may be identical or overlap, as we showed in our 
previous example.  But they may also diverge maximally, as we show next.  In each 
case, we ask which committee—minimax or minisum—better represents the electorate.  

                                                 
9 It is worth noting that if the count weights were all 1 (if there were one 101 voter rather than two), the 
minimax outcome would be 100, which is the node exactly “between,” and one edge distant from, 110 
and 101 (see Figure 1).  
10 Other weighting schemes, of course, are possible, but proximity weights seem to us to balance the need 
to give representation to outliers, but downgrade this representation according to how far away 
(disconnected from other voters) they are.   
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As we will see, the answer depends on which candidates, based on their patterns of 
support, one thinks should appear on the committee. 

Proposition 1.  If there are two or more candidates, tied minisum and tied minimax 
outcomes may include antipodes. 

Proof. Assume there are n = 2 voters who cast ballots 00 and 11 for k = 2 candidates.  
(Geometrically, the four possible committees (00, 10, 01, 11) can be represented by a 
square.)  The minimax outcomes, 01 and 10, are antipodes, each lying at distance one 
from each of the two ballots.  These outcomes, as well as outcomes 00 and 11 that are 
also antipodes, are all minisum outcomes, whose Hamming distances to the two ballots 
all sum to 2.  The 2-voter example can easily be extended to any larger number of voters 
or candidates.  Q.E.D. 

Outcomes 01 and 10 lead to the election of just one person.  This is not a committee 
as this term is usually used, but Proposition 1 holds for larger tied minimax and 
minisum committees.11   These examples illustrate not only that minisum and minimax 
may give antipodes but also that each voting system, by itself, may produce them as 
well. 

Note that there are half as many minimax outcomes as minisum outcomes in the 2-
voter example. Whereas the minimax outcomes, 10 and 01, seem reasonable 
compromises, the additional minisum outcomes, 00 and 11, entirely favor one voter or 
the other.  Manifestly, neither of the latter outcomes well represents both voters. 

In the examples that follow, we will, for reasons of exposition, use antipodes like 
0000 (no candidate elected) and 1111 (all candidates elected).  These outcomes can 
readily be converted into antipodes, like 1100 and 0011, that more plausibly reflect real-
world election possibilities.   

The next two propositions show that minimax and minisum outcomes may be 
antipodes when there are as few as 4 candidates (with ties) and 5 candidates (without 
ties).  

Proposition 2.  If there are four or more candidates, a nonunique minimax and a 
unique minisum outcome may be antipodes. 

Proof.  Consider the following example, in which there n = 11 voters and k = 4 
candidates: 

1.  3 voters:   0000 
                                                 
11 Consider the following example comprising 4 voters and 3 candidates:  (1) 110; (2) 101; (3) 010; (4) 
001.  By constructing a table analogous to Tables 1 and 2, it is not difficult to show that there are four 
minimax outcomes, {000, 100, 011, 111}, which include two antipodal pairs; all eight possible outcomes 
are minisum.  Notice that a larger minimax or minisum committee may not include a smaller committee; 
for example, 011 does not include 100.  This failure of monotonicity—larger committees may not include 
smaller committees as subsets—is shared with other voting procedures, like the Kemeny rule, that have 
also been proposed to elect committees (Ratliff, 2003).  
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2.  2 voters:   0111 

3.  2 voters:  1011 

4.  2 voters:  1101 

5.  2 voters:  1110  

Applying equation (1), the proximity weight of ballot #1 is  

3/[(3  0) + (2  3) + (2 ×  3) + (2 × × ×  3) + (2 ×  3)] = 3/24 = 1/8. 

The proximity weight of ballot #2—and, by symmetry, ballots #3, #4, and #5—is  

2/[(3  3) + (2  0) + (2 ×  2) + (2 × × ×  2) + (2 ×  2)] = 2/21. 

Multiplying the weights by a factor (8 ×  21 = 168) that clears denominators 
produces a proximity weight of 21 for ballot #1, and a proximity weight of 16 for each 
of ballots #2, #3, #4, and #5.  Thus, the voters who cast ballot #1 are more influential 
under the minimax procedure than all other voters. 

Note that one of the 7 tied minimax outcomes in Table 3 is #1 (0000), whereas the 
unique minisum (or MV) outcome is the antipode, #16 (1111), as can be calculated 
directly: 3 of the 5 voters approve of each candidate.  This 4-candidate example of 
antipodal minisum and minimax outcomes can easily be extended to any larger number 
of candidates.  Q.E.D.  

In the example in the proof of Proposition 1, there were more minisum outcomes 
than minimax outcomes (4 minisum and 2 minimax), whereas the opposite is true for 
the example in the proof of Proposition 2 (1 minisum and 7 minimax).  Note that the 3 
voters who cast ballot 0000 in the latter example will be totally dissatisfied by minisum 
outcome 1111, a Hamming distance of 4 away.  This seems a good argument for a 
minimax outcome, which is at maximum distance 3 from the ballot of any voter.  

The most stark clash of minimax and minisum outcomes occurs when they are 
unique and antipodal.  

 

Ballot: 0000 0111 1011 1101 1110 Max 

No. of 
Voters: 

              
3 

               
2 

              
2 

              
2 

               
2 

 

Proxim
ity 
Weight: 

              
21 

              
16 

              
16 

              
16 

              
16 

 

1.  
0000 

0 48 48 48 48 48* 

2.  21 64 32 32 32 64 
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1000 

3.  
0100 

21 32 64 32 32 64 

4.  
0010 

21 32 32 64 32 64 

5.  
0001 

21 32 32 32 64 64 

6.  
1100 

42 48 48 16 16 48* 

7.  
1010 

42 48 16 48 16 48* 

8.  
1001 

42 48 16 16 48 48* 

9.  
0110 

42 16 48 48 16 48* 

10.  
0101 

42 16 48 16 48 48* 

11.  
0011 

42 16 16 48 48 48* 

12. 
1110 

63 32 32 32 32 63 

13. 
1101 

63 32 32 32 32 63 

 14.  
1011 

63 32 32 32 32 63 

15.  
0111 

63 32 32 32 32 63 

16. 
1111 

84 32 32 32 32 84 

*Minimum of column. 

Table 3 Derivation of Minimax Committees Based on Proximity Weights 

(11-Voter Example) 
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Proposition 3.  If there are five or more candidates, a unique minimax and a unique 
minisum outcome may be antipodes. 

Proof.  Consider the following example, in which there are n = 11 voters and k = 5 
candidates:  

1.  11100 

2.  11010 

3.  11001 

4.  10110 

5.  10101 

6.  10011 

7.  01110 

8.  01101 

9.  01011 

10.  00111 

11.  00000 

Instead of constructing a table like Table 3, with a row for each of the 32 possible 
committees, we exploit the example’s symmetry by noting that 10 voters approve of 

exactly 3 candidates in the 

5
3

 
 
 

 

 
 
 = 10 different ways that this is possible; voter #11 

approves of no candidates.   

Applying equation (1), the proximity weight of ballot #1 is  

1/[0 + 2 + 2 + 2 + 2 + 4 + 2 + 2 + 4 + 4 + 3] = 1/27; 

by symmetry, it is the same for ballots #2 through #10.  The proximity weight of 
ballot #11 is  

1/[10(3) + (1 ×  0)] = 1/30. 

Clearing denominators, the proximity weight of the first 10 ballots is 10, and the 
proximity weight of ballot #11 is 9.  Thus, the voter who casts ballot #11 is slightly less 
influential than the voters who cast the other 10 ballots. 

Because the maximum Hamming distance between any two of the first 10 ballots is 
4, the maximum weighted Hamming distance of one of these ballots is 4  10 = 40.  By 
contrast, the maximum weighted distance of ballot #11 is 3 

×
×  9 = 27, because this ballot 

is a Hamming distance of 3 from each of the 10 other ballots (and 0 from itself).  
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To show that none of the 32 – 11 = 21 other committees (ballots) has a greater 
maximum weighted Hamming distance than 27, consider (i) the one committee with 5 
members (maximum weighted distance of 5 ×  9 from 00000), (ii) the five different 
committees with 4 members (maximum weighted distance of 4 ×  9 from 00000), (iii) 
the ten committees with 2 members (maximum weighted distance of 5  10 from one of 
the 3-member committees), and (iv) the five committees with 1 member (maximum 
weighted distance of 4  10 from one of the 3-member committees).  In all these cases, 
the maximum weighted distances exceed the maximum weighted distance of 3 ×  9 = 27 
of ballot #11 from all others, so this distance is minimal and, therefore, ballot #1 is the 
minimax outcome.  This 5-candidate example of antipodal minisum and minimax 
outcomes can easily be extended to any larger number of candidates.  Q.E.D. 

×

×

Once again, a minimax committee (00000) seems better to represent all voters than a 
minisum committee (11111).  (Recall that these antipodes might be more plausible 2-
member and 3-member committees, such as 11000 and 00111.)  Whereas the voter 
casting ballot #11 would be completely dissatisfied by 11111, the other 10 voters would 
mildly prefer 11111 to 0000. 

These results for antipodes suggest that minimax committees may be more 
representative of all voters than minisum committees, because they leave no voter too 
aggrieved, especially not voters whose ballots are relatively close to those of many 
other voters.  To be sure, if the aggrieved voters are only an isolated minority, like voter 
#11 in the foregoing example, it may be preferable to give better representation to the 
large majority than to appease the minority. 

Our main purpose in this section has been to highlight such a trade-off by posing 
minimax outcomes as an alternative to minisum outcomes.  Whether or not minimax 
should be used instead of minisum depends on the importance one attaches to the 
Rawlsian criterion (Rawls, 1971) of making the worst-off voter as well off as possible.  

In section 5 we will show that the divergence between minisum and minimax 
outcomes is not purely theoretical but actually occurred in a real-life election that used 
approval balloting to elect a committee of 12 members.  But first we discuss elections in 
which not every subset of candidates is a possible outcome. 

 

4  Endogenous Vs. Restricted Outcomes 
 

So far we have assumed that any subset of the candidates can be the minisum or 
minimax committee elected, whereas it is commonplace to put restrictions on the 
outcome.  For example, one may want to specify the size of the committee to be elected 
(to ensure that it is neither too small nor too large to function efficiently) or its 
composition (to ensure that certain groups are at least minimally represented). 
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We refer to elections as endogenous if all outcomes are possible winners; otherwise, 
they are restricted.  As shown in Kilgour, Brams, and Sanver (2006), both minimax and 
minisum procedures apply equally well to restricted and endogenous elections.  In a 
restricted election, one constructs tables, like Table 1, in which only rows representing 
eligible committees—that is, those not disqualified by the restrictions—appear.  

In the election of a committee restricted according to size, the minisum procedure is 
equivalent to a more familiar procedure, namely plurality voting, as shown by the next 
proposition.   

Proposition 4.  When the size of a committee is restricted to c members, the minisum 
outcomes are the sets of c candidates receiving the most votes.  

Proof.  See Appendix.  

The idea behind the proof is the following.  We know that when there is no 
restriction, the minisum outcome is the set of candidates that win a majority of votes 
(Brams, Kilgour, and Sanver, 2004, Proposition 4).  Assume that the number of 
majority winners is less than the desired committee size c.  Then adding to the majority 
winners those non-majority candidates with the most approvals until the committee size 
is exactly c minimizes the sum of the weighted distances to these members and, 
therefore, the sum of weighted distances to these members plus the majority winners.  
Likewise, if the number of original majority winners is greater than the desired 
committee size c, subtracting the candidates with the fewest approvals until the 
committee size is exactly c minimizes the sum of the weighted distances of the 
candidates who remain. 

Unlike the minisum case, we know of no algorithm to find minimax outcomes—
short of constructing tables like Table 2.  When outcomes are endogenous, we have 
already shown that minisum and minimax outcomes may be antipodes.  Restricting 
outcomes will not necessarily lead to a common minisum and minimax outcome, as our 
next example with n = 4 voters and k = 4 candidates illustrates: 

1. 1100 

2. 1010 

3. 1001 

4. 0111 

Assume a committee of size c = 1 is to be chosen.  It is easy to see that 1000 is the 
unique minisum outcome, because candidate 1 receives 3 votes when the three other 
candidates receive 2 votes each.12   

                                                 
12 If there were no single-winner restriction, the election of candidate 1 and any one, two, or all three of 
the other candidates (i.e., outcomes 1100, 1010, 1001, 1110, 1101, 1011, and 1111) are tied minimax 
outcomes that are, like outcome 1000, also minisum. 
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To find the minimax outcome, use equation (1) to calculate the proximity weights, 
which for ballot 1100 is   

1/[0 + 2 + 2 + 3] = 1/7, 

and, by symmetry, is the same for ballots 1010 and 1001.  Similarly, the proximity 
weight of ballot 0111 is  

1/[3 + 3 + 3 + 0] = 1/9. 

Clearing denominators, the proximity weights of the first three ballots are 9 each, and 
the proximity weight of ballot 0111 is 7.  Thus, the voter who casts ballot 0111 is less 
influential than the voters who cast the other 3 ballots. 

As shown in Table 4, the unique minimax outcome is 1111, which does not satisfy 
the restriction of the committee to one member.13  (Note that 1111 is not the ballot of 
any voter, nor is the minimax outcome of 1000.14)  Surprisingly, of the four possible 
committees that include one member (see committees #2 – #5 in Table 4), the three tied 
minimax outcomes—0100, 0010, and 0001, which are committees #3, #4, and #5—do 
not include the minisum outcome, 1000.   

It may seem bizarre not to elect the most approved candidate, especially one 
approved of by a majority, in a single-winner election.  We will revisit this issue in the 
concluding section, asking whether the minimax criterion is reasonable, especially in 
single-winner elections.    

 

 

 

 

 

 

 

 

 

 

                                                 
13 We show the 16 possible outcomes in Table 4 to illustrate how the restriction to c = 1 may alter 
minimax outcomes, making them, as in this example, disjoint from the unrestricted outcome.   
14 Brams, Kilgour, and Zwicker (1997, 1998) were the first to show that the minisum outcomes need not 
correspond to the ballot of any voter, which they called the “paradox of multiple elections.”  Özkal-
Sanver and Sanver (2005) show that a voting rules ensures a Pareto-optimal outcome if and only if it 
never exhibits this paradox.   
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Ballot: 1100 1010 1001 0111 Max 

No. of 
Voters: 

                  
1 

                 
1 

                 
1 

                 
1 

 

Proximity 
Weight: 

                  
9 

                 
9 

                 
9 

                 
7 

 

1.  0000 18 18 18 21 21 

2.  1000 9 9 9 28 28 

3.  0100 9 27 27 14 27 

4.  0010 27 9 27 14 27 

5.  0001 27 27 9 14 27 

6.  1100 0 18 18 21 21 

7.  1010 18 0 18 21 21 

8.  1001 18 18 0 21 21 

9.  0110 18 18 36 7 36 

10.  0101 18 36 18 7 36 

11.  0011 36 18 18 7 36 

12. 1110 9 9 27 14 27 

13. 1101 9 27 9 14 27 

14.  1011 27 9 9 14 27 

15.  0111 27 27 27 0 27 

16. 1111 18 18 18 7 18* 

*Minimum of column. 

Table 4 Derivation of Minimax Committees Based on Proximity Weights 

(4-Voter Example) 

 

5  Manipulability  
 

A voting procedure is manipulable if it is possible for a voter, by misrepresenting his 
or her preferences, to obtain a preferred outcome.  To define “preferred,” we relate 
Hamming distance to preferences.   
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Specifically, we assume that a voter’s ballot indicates his or her most-preferred 
committee, or top preference.  We further assume that the voter’s preference is spatial 
in the sense that outcomes that are farther (as measured by Hamming distance) from the 
top preference are less preferred.  Thus, if pi is voter i’s top preference and p and q are 
any outcomes such that d(pi, p) < d(pi, q), then voter i strictly prefers p to q.  In other 
words, as distance increases, a voter’s preference falls off, reaching a minimum at the 
antipode of the top preference; note that there is no assumption about the voter’s 
preference among ballots that are at equal Hamming distance from the top preference.15 

We make an additional assumption about preferences over sets: If outcome a is 
preferred to outcome b, then {a} is preferred to {a, b}, which we interpret as a tie in 
which each of the two outcomes occurs with positive probability.  This assumption, 
which is used in the proof of Proposition 5, seems eminently plausible.  

Proposition 5. The minimax procedure is manipulable, whereas the minisum 
procedure is not. 

Proof.  First consider the minimax procedure.  In the example in Table 2, we showed 
the unique minimax outcome is 101, which is a Hamming distance of 2 from the ballot 
of the voter who casts ballot 110.  But if this voter falsely indicates his or her ballot to 
be 100, then the situation would appear as the following:   

2 voters:  100              

2 voters:  101 

It is easy to see that the proximity weights according to equation (1) are now equal, 
so we need only ask which outcome minimizes the maximum Hamming distance of the 
voters from their ballots.  Clearly, the ballots themselves do this, so the minimax 
outcome is {100, 101}.   

The 110 voter who falsely indicated a top preference of 100 prefers this tied 
outcome, because he or she prefers 100 to 101, and, by our previous assumption, prefers 

                                                 
15 Like both the minimax and minisum procedures, spatial models of preference could be based on other 
metrics, such as “root-mean-square,” which is essentially Euclidean distance.  We think the Hamming 
metric is particularly well suited for measuring the distance of a voter from an outcome, because it 
reflects equally the voter’s disagreements with the candidates elected and with those not elected.  
However, spatial models cannot mirror well the preference of a voter who wants a “balanced” 
committee—say, with an equal number of men and women.  For example, assume that eight male (M) 
and female (F) candidates are listed as follows, FFFFMMMM, and the committee is to have four 
members.  The “balanced” voter’s two most-preferred committees might be 11001100 and 00110011, 
which are antipodes, so voting for either will work to rule out the other, especially under minimax.  Of 
course, the worst case for this voter, 11110000 or 00001111 (all women or all men), can be precluded if it 
is mandated that the committee must have equal numbers of men and women.  Then the male chauvinist 
who votes for the four males (00001111) will never get his favorite committee but will, instead, support 
equally 11000011 and 00111100—in fact, all balanced committees.  Thus, if this voter wants to have 
some effect on the outcome, it behooves him to vote for some women!  For a review of the literature on 
ranking sets of items, see Barbera, Bossert, and Pattanaik (1998).    
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{100, 101} to 101.  Hence, the minimax procedure is manipulable.  The proof that the 
minisum procedure is not manipulable is given in the Appendix.  Q.E.D. 

The idea of the proof for the minisum procedure is easy to describe.  Because a 
voter’s choices are binary on each candidate, it is always in his or her interest to support 
those, and only those, candidates of whom he or she approves.  Moreover, the voter’s 
decision on each candidate does not affect which other candidates are elected, so each 
voter cannot be worse off as a consequence of voting truthfully on all candidates. 

Although the minimax procedure is vulnerable to manipulation in theory, in practice 
it is probably almost as resilient to manipulation as the minisum procedure.  To exploit 
it would require a manipulative voter to have virtually complete information about the 
voting intentions of other voters, which is unlikely in most real-world situations.  
Indeed, merely finding the truthful minimax outcome is computationally hard, as we 
indicated earlier, reflecting the fact that the number of possible outcomes increases 
exponentially with the number of candidates.16  

We next turn to a real-world election.  This election renders concrete some of the 
theoretical and practical issues we have discussed and raises some new questions as 
well. 
 
6  The Game Theory Society Election 

 

In 2003, the Game Theory Society (GTS) used approval voting for the first time to 
elect 12 new council members from a list of 24 candidates.  (The council comprises 36 
members, with 12 elected each year to serve 3-year terms.)  We give below the numbers 
of members who voted for from 1 to all 24 candidates (no voters voted for between 19 
and 23 candidates): 

 
Votes 

cast 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 24 

# of 

voters 

3 2 3 10 8 6 13 12 21 14 9 25 10 7 6 5 3 3 1 

 

                                                 
16 Although this might be seen as a disadvantage of the minimax procedure, computers make the 
calculation of minimax outcomes feasible for 30 or more candidates (in section 5 we analyze an election 
with 24 candidates).  For more on the computability of minimax, see Kilgour, Brams, and Sanver (2006). 
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Casting a total of 1574 votes, the 161 voters, who constitute 45% of the GTS 
membership, approved, on average, 1574/161 ≈ 9.78 candidates; the median number of 
candidates approved of, 10, is almost the same.  

The modal number of candidates approved of is 12 (by 25 voters), echoing the ballot 
instructions that 12 of the 24 candidates were to be elected.  The approval of candidates 
ranged from a high of 110 votes (68.3% approval) to a low of 31 votes (19.3% 
approval).  The average approval received by a candidate was 40.7%, though only 
candidates who received at least 69 votes (42.9 % approval) were elected.    

In the GTS election, there were 224 ≈16.8 million possible ballots.   It turned out 
that 2 of the 161 voters voted identically.  As one might expect, the identical ballot, 
111100011001101000000111, was cast by 2 of the 25 modal voters who voted for 12 
candidates.  If all ballots approving of 12 candidates are assumed equiprobable, the 
probability that no two of 25 ballots are identical is 

[t(t – 1)(t – 2)…(t – 24)]/t25 ≈ 0.999889, 

where t = 

24
12

 
 
 

 

 
 
 = 2,704,156, based on reasoning given in note 3.  The complement of 

this probability, 0.000111, is the probability that at least two voters cast identical 
ballots.17     

If there had been no restriction in the GTS election, the 5 candidates approved of by 
a majority – at least 81 of the 161 voters – would have been elected.  Adding the next 7 
biggest vote-getters gives the minisum outcome under the restriction that 12 candidates 
must be elected.    

Do these candidates best represent the electorate?  In fact, 4 of the 12 minimax 
winners differ from the minisum winners.  Each set of winners is given below—ordered 
from most popular on the left to least popular on the right—with differences between 
those elected to each council underscored.18 

                                                 
17 We have made this calculation for each category of voter—from those who cast 1 vote to those who 
cast 18 votes—excluding only the category containing the one voter who voted for all 24 candidates 
(because there is only one such ballot).  The voters most likely to cast an identical ballot are the three who 
vote for one candidate; the probability that at least two of them cast the same ballot is 0.121528.  To 
generalize for all voters, let pi be the probability that no two voters who cast i votes chose an identical 
ballot.  It follows that the probability that no two voters in any category cast an identical ballot is 
p1p2…p17p18, so the complement of this probability is the probability that at least two voters in one or 
more categories cast identical ballots.  The latter probability in the GTS election is 0.131009; it is far 
greater than the probability that we calculated in note 3 (0.000768), which did not take into account the 
18 categories into which voters sorted themselves empirically.  But even this greater probability is likely 
an underestimate, because it does not reflect the fact that some candidates were far more approved of than 
others, rendering dubious the assumption that all ballots in each category are equiprobable.  
18 It is worth pointing out that minisum outcomes are always Pareto-optimal; if this were not the case, 
then there would be some other outcome such that some voter is less distant and no voter is more distant, 
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Council Restricted to 12 Members 
Minisum:  111111111111000000000000  

Minimax:  111111011000111000000001  

Observe that four of the minisum winners would have been displaced by candidates 
who received fewer votes, one of whom was the candidate who received the fewest 
votes.19  

To exclude this candidate would have put some voters at a greater weighted distance 
than including him or her.  Thereby minimax gives voice to voters who approve of 
unpopular candidates if they make the council more representative by not leaving some 
voters “out in the cold.”  

If the size of the council had not been restricted to 12 winners but instead had been 
endogenous, the minisum and minimax councils would have differed substantially:   

Unrestricted Council (Minisum, 5 Members; Minimax, 8 Members)  
Minisum:  111110000000000000000000  

Minimax:  111100001010101000000000  

As noted earlier, the minisum council would have comprised only the 5 majority 
winners. By contrast, the minimax outcome includes 8 candidates; four of these are 
candidates came in 11th, 13th, 15th, and 17th.  

We showed in section 5 that it was possible, in theory, for a voter successfully to 
manipulate a minimax outcome, but we contended that this would be well-nigh 
impossible in most elections.  As a case in point, consider the single voter who voted for 
all 24 candidates in the GTS election and who, we presume, was indifferent among all 
the candidates.20   

Might this voter have influenced the outcome if the size of the council had been 
endogenous?  In fact, if minisum had been the procedure, the 5 biggest vote-getters 
would still have been elected had this voter not voted.   But the minimax outcome 
would have changed  

                                                                                                                                               
contradicting the defining property of minisum.   By contrast, minimax outcomes need not be Pareto-
optimal.  To illustrate, we revisit the example in note 8, in which the top preferences of 4 voters for 3 
candidates are as follows: (1) 110; (2) 101; (3) 010; (4) 001.  There are four minimax outcomes: (a) 000; 
(b) 100; (c) 011; (d) 111.  Because outcome (c) is at least as good as outcome (a) for all voters, and better 
for voters (3) and (4), and outcome (b) is at least as good as outcome (d) for all voters, and better for 
voters (1) and (2), only outcomes (b) and (c) are Pareto-optimal.   
19 Fishburn (2004) shows that the 12 minisum winners tended to be supported somewhat more strongly by 
voters who voted for few candidates, whereas the reverse was true for the losers.  In effect, voters who 
approved of few candidates were more discriminating, helping to put the minisum winners over the top. 
20 Of course, this voter might simply have relished the role of being an outlier by approving of everybody, 
even though he or she had no effect on the actual (minisum) outcome under the GTS rules.   
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From:  111100001010101000000000 (with voter who approved of all candidates) 

    To:   111000001010001000010000 (without this voter).   

Thus, the absence of this voter would have reduced the number of winners from 8 to 
7, consistent with the reduced approval that all candidates would have received.   

This voter’s absence would have had no effect on the composition of the 12-member 
minimax council we gave earlier, however.  This suggests that outliers are unlikely to 
be consequential when the size of a committee is fixed.  Thus, fixing the size of the 
committee may make the minimax procedure less vulnerable to this form of 
manipulation.  

Making the number of candidates to be elected endogenous, and using the minisum 
procedure, is tantamount to electing only candidates approved of by a majority (5 
candidates in the case of the GTS council).  In fact, this rule is used to determine who is 
admitted to certain societies, though the threshold for entry is not always a simple 
majority. 

In the concluding section, we summarize our results and comment on the feasibility 
of the minimax procedure in different kinds of elections.  Not only may this procedure 
give a dramatically different outcome from the minisum procedure, but this outcome 
may better reflect diverse views within the electorate. 

 

7  Conclusions 
 

Under approval balloting, each voter approves of a subset of candidates.  The 
minisum and minimax procedures find subsets that are as close as possible to the ballots 
of all voters, but according to two different senses of “closeness.”  Whereas the 
minisum procedure selects the outcome that minimizes the sum of Hamming distances 
to all voters—or, equivalently, the average Hamming distance—which uses count 
weights, the minimax procedure finds the outcome that minimizes the maximum 
weighted Hamming distance, which uses proximity weights.  

Geometrically, the latter can be visualized in terms of voters moving from their 
nodes of a hypercube, which represent their ballots, along the edges at speeds 
proportional to their proximity weights (or inertias).  Minimax outcomes are the node or 
nodes that all voters reach first.  

Minimax and minisum may yield diametrically opposed outcomes, or antipodes, if 
there are as few as four candidates (with ties), five candidates (without ties).  If 
“representation” means not antagonizing any voters—especially those with similar or 
identical preferences—too much, then minimax outcomes seem more representative of 
the entire electorate than minisum outcomes. 
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We analyzed the 2003 election by the Game Theory Society (GTS) of 12 new 
members to its council.  The minimax procedure would have given 4 different winners 
from the minisum procedure, which was the procedure actually used by the GTS.    

There would have been a greater difference if the number of candidates to be elected 
had been endogenous.  The minisum procedure would have elected only the 5 
candidates who were approved of by a majority, whereas the minimax procedure would 
have elected 8 candidates, including 4 relatively unpopular candidates that better 
represented certain sets of voters.  

In single-winner elections, the approval-voting winner (minisum outcome) would 
seem the normatively most desirable choice.  But as we showed in an example in 
section 4, a different candidate may less antagonize a minority (1 of the 4 voters in this 
example), so it is not apparent—even in single-winner elections—that the minisum 
winner should always triumph.  

Whereas the minisum procedure is not manipulable, the minimax procedure is.  In 
practice, however, it would be virtually impossible for a voter to induce a preferred 
outcome because of (i) a lack of information about other voters’ intended ballots and (ii) 
the computational complexity of processing such information, even if it were available.   

In the GTS election, the absence of the outlier who voted for all 24 candidates would 
not have changed the minimax outcome.  But if the number of winners had been 
endogenous, the minimax outcome would have been reduced from 10 to 9 winners.  In 
effect, this voter “pulled” the outcome in the direction of a larger council, which is 
consistent with his or her approval of all candidates.  We do not view this choice as 
manipulative if this voter was genuinely unconcerned about the composition of the 
council.  

We think that the unanimity rule in fallback bargaining—that the descent continues 
until all voters approve of an outcome—is plausible in the election of most committees, 
though less stringent rules are possible (Brams and Kilgour, 2001; Brams, Kilgour, and 
Sanver, 2004).  Whether the size of a committee should be fixed or endogenous 
(perhaps within a range) will depend, we think, on the importance of electing a 
committee whose size significantly affects its ability to function.  

Even if size is made endogenous, voters should probably be given some guidance as 
to roughly what size would be appropriate.  Without this information, it may be hard for 
them to gauge how many candidates to approve of in an election.  

These practical considerations aside, we believe that more theoretical research on the 
properties of the minimax procedure is needed.  For example, if this procedure is used, 
is it appropriate to break ties among the minimax winners using minisum?  Are there 
other ways of combining criteria?  What effects do the correlated preferences of voters, 
or perceived similarities in candidates, have on the minimax and minisum outcomes, or 
on the likelihood of antipodes?  How might information (e.g., from polls) affect the 
manipulability of the procedure?   
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In addition to these questions, other procedures, especially those that allow for 
proportional representation (Potthoff and Brams, 1998; Brams and Fishburn, 2002; 
Ratliff, 2003), should be considered.  Just as approval voting in single-winner elections 
stimulated considerable theoretical and empirical research beginning a generation ago 
(Weber 1995; Brams and Fishburn, 2002, 2004; Brams and Sanver, 2004), we hope that 
the minimax procedure generates new research on using approval balloting to elect 
committees under the minimax procedure. 
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Appendix 
 
Proposition 4.  When the size of a committee is restricted to c members, the minisum 

outcomes are the sets of c candidates receiving the most votes.  

Proof: Assume that there are n voters and k candidates, and that mh > 0 voters cast 

the ballot qh = (q1
h, q2

h, . . ., qk
h), where h = 1, 2, . . .,t.  Note that   For an 

arbitrary binary k-vector x = (x

mh
h=1

s

∑ = n.

1, x2, … , xk), define 

d j (x,qh ) =
0   if x j = q j

h

1   if x j ≠ q j
h

 
 
  

for h = 1, 2, …, t  and j = 1, 2, …, k.   Then it is clear that the Hamming distance 

from x to qh is given by .  The endogenous minisum winner is any 

x that minimizes , whereas the restricted minisum winner is any x 
that minimizes D(x) among all x’s containing exactly c 1’s.  We first find an equivalent 
representation for D(x). 

d(x,qh ) = d j (x,qh

j=1

k

∑ )

= mh
h=1

t

∑ d(x,qh )D(x)

For any x and j, define 
S j (x) = mhd j

h=1

t

∑ (x,qh )
.  Sj(x) represents the number of voters 

who disagree with k-vector x on candidate j.  Note that , and that S
∑

=

=
k

j
j xSxD

1
)()(

j(x) 
depends only on xj and not on the other k – 1 components of x.  Therefore x represents a 
minisum winner if and only if x minimizes 

D(x) = mhd(x,qh ) = s j (x)
j=1

k

∑
h=1

t

∑
.          (A1) 
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Annales du LAMSADE n°6 

With equation (A1) we can characterize all minisum committees.  Define 

, so K
K j = mhq j

h

h=1

t

∑
j is the number of voters who vote for candidate j; clearly, n – Kj is 

the number of voters who vote against j.  Now21 





=
=−

=
0 if           
1 if     

)(
jj

jj
j xK

xKn
xS

           (A2) 

Next consider how to choose x = (x1, x2, … , xk) so that exactly c of the xj’s equal 1 
and D(x) is minimized.  By equation (A2), D(x) will be the sum of c values of n – Kj   
(corresponding to the members of the winning committee) and k – c  values of  Kj  
(corresponding to the unsuccessful candidates).  Clearly, putting the c candidates with 
the largest values of Kj on the committee minimizes D(x).  In other words, the minisum 
winners under the restriction that a committee of size c is to be elected must correspond 
to a vector x such that xj = 1 if and only if j belongs to some subset of c candidates that 
receives the most votes.  Q.E.D. 

Proposition 5. The minimax procedure is manipulable, whereas the minisum 
procedure is not. 

Proof that minisum is non-manipulable: We apply the preference model 
introduced in the text to equations (A1) and (A2) to show that a voter is best served by 
voting for his or her top preference.  Assume that voter i is one of the mh voters whose 
top preference is qh = pi.  We show that i cannot do better than to cast ballot qh = pi. 

Suppose that i’s top preference, xj, satisfies xj = 1 for some j.  Then our preference 
assumptions imply that voter i prefers any committee with xj = 1 to the committee that is 
otherwise the same but has xj = 0.  Consider i’s decision to vote truthfully (pj

i = 1) or 
untruthfully (pj

i = 0) on candidate j.  According to equation (A2), selecting pj
i = 0 rather 

than pj
i = 1 reduces the value of Sj(x) from Kj to Kj – 1.  The four possibilities implied 

by equation (A1) for whether candidate j belongs to the minisum winner(s) are set forth 
in the table below: 

 j elected if pj
i = 1? j elected if pj

i = 0? 

Kj  < n – Kj  Never Never 

Kj = n – Kj  Sometimes Never 

Kj = n – Kj + 1 Always Sometimes 

Kj > n – Kj + 1 Always Always 

 
                                                 
21 From equation (A2) it follows that among all possible committees, x = (x1, …, xk) minimizes D(x) if 
and only if, for each j, xj = 1 if  n – Kj  < Kj and xj = 0 if  Kj  < n – Kj .  This minimization proof is different 
from, and more general than, the proof given in Brams, Kilgour, and Sanver (2004). 
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In the table, “sometimes” means that the total votes for and against candidate j are 
equal; if such a tie occurs, the set of minisum committees consists of one or more pairs 
of committees that differ only in that one includes candidate j and one does not.)   

Because the voter always prefers that candidate j be a member of the committee, it 
follows from the table that voter i is never worse off by voting truthfully (i.e., for 
candidate j) and may be better off.  The argument is analogous if i’s top preference 
satisfies xj = 0.  Q.E.D. 

 

 

 

 

 




