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Abstract—The 2007 Data Fusion Contest that was organized by
the IEEE Geoscience and Remote Sensing Data Fusion Technical
Committee was dealing with the extraction of a land use/land
cover maps in and around an urban area, exploiting multitem-
poral and multisource coarse-resolution data sets. In particular,
synthetic aperture radar and optical data from satellite sensors
were considered. Excellent indicators for mapping accuracy were
obtained by the top teams. The best algorithm is based on a neural
classification enhanced by preprocessing and postprocessing steps.

Index Terms—Data fusion, European Remote Sensing satellite
(ERS), image classification, Landsat, neural networks (NNs), ur-
ban remote sensing.

I. INTRODUCTION

IN THE past two decades, monitoring urban centers and their
peripheries at a regional scale has become an increasingly

relevant topic for public institutions to keep track of the loss
of agricultural land and natural vegetation due to urban de-
velopment. In recent years, significant attention has focused
on multisensor data fusion for remote sensing applications
and, more specifically, for land cover mapping. Data fusion
techniques combine information from multiple sources, pro-
viding potential advantages over a single sensor in terms of
classification accuracy [1].

The characteristics of data acquired by optical and syn-
thetic aperture radar (SAR) sensors greatly differ. Multispectral
satellites such as Landsat provide information on the energy
scattered and radiated by the Earth’s surface in different wave-
lengths, from the visible to the thermal infrared, providing the
ability to discriminate between different land cover classes such
as vegetated areas, water surfaces, and urban centers. SAR sen-
sors such as the European Remote Sensing satellites (ERS) 1/2
provide measurements in amplitude and phase related to the in-
teraction of the Earth’s surface with microwaves. These acquisi-
tions (C-band) are characterized by high returns from buildings
in urban areas and low and very low values from vegetated
areas and water surfaces, respectively. Within residential areas,
further discrimination is achievable because the low-density
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TABLE I
DATA FUSION CONTEST DATA SET

areas are generally characterized by lower backscattering, given
the wide streets and the presence of trees. This means that
SAR sensors provide information that may not be obtained from
optical sensors, and therefore, data fusion potentially provides
improved results in the classification process compared to the
conventional single-source classification results [2].

Data fusion may be accomplished at different information
levels such as signal, pixel, feature, or decision. A signal-based
fusion combines data from different sensors, creating a new
input signal with improved characteristics over the original
(e.g., a better signal-to-noise ratio). Information from different
images can be merged in the pixel-based fusion to improve the
performance of the processing tasks. A feature-based fusion
combines features extracted from different signals or images,
whereas a decision-level fusion consists of merging very dis-
similar data at a higher level of abstraction [3].

In the data fusion literature, many alternative methods have
been proposed for combining multisensor decisions by weight-
ing the influence of each sensor. A common approach to mul-
tisource classification is to concatenate the data in a stacked
vector and treat it as a unique set of measurements [4], but
statistical classifiers can be difficult to deal with because it
is not always possible to formulate reasonable assumptions
about the distribution of features. Contextual information from
neighboring pixels improves the accuracy of a pixel-based
classification. For instance, the reliability of each information
source can be estimated for each pixel using spatial features
and can be integrated in a fuzzy-logic-based fusion scheme
[5]. Markov random fields (MRFs) also provide a powerful
methodological framework for modeling spatial and temporal
context, allowing the images from different sensors and map
data to be merged in a consistent way [6], [7]. Nonparametric
approaches such as neural networks (NNs) [8], [9] or support
vector machines [10] can be exploited because they do not
require any specific probabilistic assumptions for class distri-
bution. Hybrid approaches combining parametric methods and
NNs have been proposed by Benediktsson et al. [11] by first
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Fig. 1. Classification schemes. (a) All 21 inputs feed the NN. The feature reduction is obtained by applying (b) the PCA only to the SAR imagery and considering
the first component of dates (1 : 6) and (7 : 9).

separately treating each data source using statistical methods
and then using an NN to obtain the consensus decision.

This letter is organized as follows. The 2007 Data Fusion
Contest is presented in Section II, whereas Section III intro-
duces the methodology of the winning team, discussing how it
was designed. Finally, in Section IV, the classification results
are presented and discussed.

II. 2007 DATA FUSION CONTEST

The Data Fusion Contest has been organized by the Data
Fusion Technical Committee (DFTC) of the Geoscience and
Remote Sensing Society (GRSS) of the IEEE and has been
annually proposed since 2006. It is a contest open not only to
DFTC members, but to everyone. The aim of the Data Fusion
Contest is to evaluate existing methodologies at the research
or operational level to solve remote sensing problems using
data from different sensors. The main aim of this contest is to
provide a benchmark to the researchers interested in a class of
data fusion problems, starting with a contest and then allowing
the data and results to be used as reference for the wider
community, inside and outside the DFTC. The first issue of the
contest was devoted to pansharpening [12]. In 2007, the contest
was related to urban mapping using radar and optical data. A set
of satellite radar and optical images (ERS amplitude data and
Landsat multispectral data) was made available, and the task
was to obtain a classified map as accurate as possible, relative to
ground reference data. The reference data depicted land cover
and land use classes for the urban area of interest. The final
results led to an award for the methodology proposed in this
letter, and the award was announced at the 2007 International
Geoscience and Remote Sensing Symposium (IGARSS07) held
in July 2007 in Barcelona, Spain.

The data set contains different SAR amplitude images, refer-
ring to the urban area of Pavia, Northern Italy (45.11 N, 9.09 E),
acquired by ERS 1 and ERS 2 sensors during the period
between 1992 and 1995 and two Landsat images acquired in
1994 and 2000, respectively, as reported in Table I [13]. The site
has been chosen because it is typical of the diversity of urban
land covers, uses, and features. Pavia is a small town with a very
densely built center, some residential areas, industrial suburbs,
and the Ticino river running through it [14].

The data sets and the resulting evaluations were all provided
using a web portal specifically designed for the 2007 Data
Fusion Contest. The portal allowed anyone to register, read the
contest rules, understand the task for the contest, download
the data, and upload the results. It also provided immediate
feedback on the quality of the uploaded map by computing
a few quantitative indices and correspondingly upgrading the
top ten ranking list. In particular, because a classification map
was the final output of the algorithms proposed by the contest’s
participants, this map was evaluated against ground reference
data (unknown to the contestants), and the kappa index was
used as a ranking value. The top three classification maps
of the final list provided a kappa index larger than 0.93, an
extremely good result, showing the excellence of the teams and
the methodologies prompted by the contest task.

The contest attracted considerable attention in the remote
sensing research community. More than 70 individuals regis-
tered to download the data sets and try their own approach. In
the end, nine different teams uploaded more than 100 classi-
fication maps, most of them continuously refining their algo-
rithm performance. The best result, awarded with a Certificate
of Recognition during the Technical Committees’ Dinner at
IGARSS07, is presented in Section III.

III. WINNING ALGORITHM

The winning algorithm is based on an NN approach.
The classification procedure can be divided into three steps:
1) preprocessing; 2) NN classification; and 3) postprocessing.

A. Preprocessing

Different classification schemes may be developed to achieve
the desired classification accuracy. The first step to be consid-
ered regards the choice of inputs, which will successively feed
the NN. The simplest scheme, shown in Fig. 1(a), feeds an NN
with 21 inputs (9 SAR and 6 + 6 optical), which requires a long
training time. Therefore, the reduction of the input dimension-
ality is generally desirable. The principal component analysis
(PCA) was applied to decrease the number of inputs used to
train the NN. The PCA maps image data into a new uncorrelated
coordinate system in which the data have greatest variance
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Fig. 2. PCA eigenvalues for dates (a) (1 : 6) and (b) (7 : 9) of the SAR imagery.
The difference in magnitude of the eigenvalues in (a) and (b) is due to the
different value distributions of the data sets that are considered.

along its first axis, the next largest variance along a second
mutually orthogonal axis, and so on. The later principal compo-
nents would be expected, in general, to show little variance [15].

The input space reduction can be applied to both SAR
and optical imagery, but a loss of useful information may
be encountered during this processing if the input variables
significantly differ in magnitude because the PCA favors those
variables that show the greatest variance, which generally are
those with the larger absolute values.

Considering the different value distributions and character-
istics of the data, the PCA was first applied to similar fea-
tures, resulting in eight inputs: two from SAR, using the first
component from dates 1 to 6 (1 : 6) and from 7 to 9 (7 : 9),
as reported in Table I, and six from optical imagery, using for
each pair of bands only the first PCA component. In Fig. 2,
the PCA eigenvalues for the cases relative to dates (1 : 6) and
(7 : 9) of the SAR imagery are shown. As expected, only the
first principal component shows a large variance. However,
the obtained eight inputs did not appear to contain enough
information because a poor classification accuracy resulted
(k-coeff of 0.6091 with respect to the validation set obtained
by visual inspection). The successive experiment was to apply
the PCA method only to SAR imagery, resulting in 14 inputs:
two from SAR data [again, considering the first component
of dates (1 : 6) and (7 : 9)] and six + six optical, as shown in
Fig. 1(b). The resulting classification accuracy was k-coeff =
0.816. A further alternative might have been to exploit the
correlation matrix (instead of the covariance matrix) in the PCA
processing, but this resulted in a lower classification accuracy
than the one obtained with the methodology described above.

B. NN Classification

An artificial NN may be viewed as a mathematical model
composed of nonlinear computational elements named neurons
operating in parallel and connected by links characterized by
different weights. An NN is specified by its neuron structure,
architecture, and learning algorithm.
1) Neuron Structure: The basic building block of an NN

is the neuron. As described by many models over the years
[16]–[18], a single neuron is an information processing unit
generally characterized by several inputs and one output. Each
neuron consists of three main parts: 1) the synaptic weight vec-
tor; 2) the net function; and 3) the activation function. The net
function used is a weighted linear combination of inputs such as

o =
N∑

i=1

xiwi + θ (1)

TABLE II
CLASSES OF INTEREST WITH RELATIVE COLOR MAP AND THE

NUMBER OF TRAINING AND VALIDATION SAMPLES

where o denotes the net function output x1, x2, . . . , xN and
w1, w2, . . . , wN are the neuron inputs and the components of
the synaptic weight vector, respectively, whereas θ is called
the bias or threshold. The neuron output is achieved using the
activation function related to the net function output through
a linear or nonlinear transformation. The following Sigmoid
activation function was used:

y(o) =
1

1 + e−o
. (2)

2) Network Architecture: The multilayer perceptron (MLP)
is the most widely used NN for solving decision-making prob-
lems for many different applications [19], [20]. It approximates
an unknown input–output relationship, providing a nonlinear
mapping between its inputs and outputs.

The architecture consists of different layers of neurons,
whereas the interconnections are provided only between neu-
rons of successive layers of the network. The first layer
merely distributes the inputs to the internal stages of the
network—there is no processing at this level. The last layer
is the output, which provides the data that are processed. The
layers between the input and the output are called hidden layers.
The number of neurons that compose the input and output
layers are directly related to the dimension of the input space
and to the dimension of the desired output space, respectively.
To limit saturation within the network, we scaled all the values
of the input vector to the range [−1;+1]. At the same time, the
component of the output vector corresponding to the true class
has been set to 1, whereas the others are set to 0.

The five classes of interest considered for the contest are:
1) City Center; 2) Residential Areas; 3) Sparse Buildings;
4) Water; and 5) Vegetation. The number of training and valida-
tion samples are reported in Table II. The training pixels used
were part of the larger set provided, whereas the validation sam-
ples were selected by a careful visual inspection of the scene
and used only to have a rough estimation on the performances
of the networks during the designing process.

Once the input and the output of the network are established,
the critical step is to find the optimal number of units to be
considered in the hidden layers. In fact, if the number of these
neurons is too small, the input–output associative capabilities of
the network are too weak. At the same time, this number should
not be too large, otherwise, these capabilities might show a
lack of generality being too narrowly tailored to the training
set, and the computational complexity of the algorithm would
be increased in vain [21]. Therefore, a compromise has to be
found to select the most suitable number of hidden neurons for
the optimal NN topology.

Two different approaches can be used to find the best
architecture:

1) the growing method in which the starting network is
small and the neurons are subsequently added until the
optimization criteria is reached;
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2) the pruning method in which the starting network is
relatively large and the neurons are subsequently removed
until the optimization criterion is satisfied.

The latter approach is used here. Therefore, after a reasonable
evaluation in terms of classification accuracy, the chosen topol-
ogy was 14-200-200-5. This estimation involved the analysis
of the output variance of different topologies characterized by
an increasing number of hidden neurons (by a factor of 40)
starting from 14-40-40-5. In general, we expect that increasing
the number of hidden neurons is effective up to a given number,
after that, the overall error value does not significantly change.
3) Learning Algorithm: During the training phase, the net-

work learns how to approximate an unknown input–output
relation by adjusting the weight connections. This is done
by minimizing an error function that quantifies the difference
between the actual outputs and the desired outputs. There are
several learning algorithms designed to minimize this error
function. The learning algorithm used here is the scaling con-
jugate gradient method [22]. This is a member of the class
of conjugate gradient methods, general-purpose second-order
techniques that help minimize the goal functions of several
variables. Second order indicates that such methods use the
second derivatives of the error function, whereas a first-order
technique, like standard backpropagation, only uses the first
derivatives. To decide on when the training has to be inter-
rupted, the early-stopping criterion based on the validation set
was used [16].

A central problem in pattern recognition consists of mini-
mizing the system complexity. In NNs, this issue often consists
of minimizing the number of connection weights [23]. Pruning
algorithms try to make NNs smaller by pruning unnecessary
links or units. The advantages are the following.

1) The cost of an NN can be reduced (runtime, memory, and
cost for hardware implementation).

2) The generalization of the NN can be improved.
3) Unnecessary input units can be pruned to give evidence

of the relevance of input values.
To decide which links or units are less important and,

thus, are candidates for removal, it is necessary to assess
the relative importance of weight, namely its saliency. There
are different approaches to determine the saliency of an el-
ement. The magnitude-based pruning is the simplest weight
pruning algorithm [24], which is based on deleting links with
small saliency. After the standard training, the link having the
smallest magnitude value is removed (thus, the saliency of a
link is just the absolute size of its weight). The network is
then retrained, and the process is iteratively repeated until the
training error reaches a specified limit. Although this method
is very simple, it rarely yields worse results than the more
sophisticated algorithms such as optimal brain damage, optimal
brain surgeon, or skeletonization [25], [26].

Based on the validation set, the pruning process tried
to remove neurons and connections following two distinct
goals:

1) to reach the minimum of the classification error (on the
validation set). The network is then retrained and the
pruning is iteratively repeated until the classification error
does not increase;

2) to reach the minimum number of connections taking
into account a maximum decrease of the classification

TABLE III
ACCURACY DETAILS OF THE DIFFERENT TOPOLOGIES

accuracy of about 10% with respect to the fully connected
network. Note that this task is only academic and does not
address the contest.

After 4227 epochs of training, the fully connected NN
(43 800 connections) correctly classified 86.4% of the valida-
tion patterns, as shown in Table III, which lists the accuracy
details of the different network topologies.

The number of retraining epochs of the pruning phase has
been set to 50. This means that the network was retrained for
50 cycles after the pruning of each connection. The fully
connected NN has been pruned, reaching the minimum clas-
sification error with 43 657 connections (overall accuracy of
89.7%). Therefore, less than 0.5% of the initial connections
were removed, for an improvement, in terms of classification
accuracy, of 3.3%. However, no neuron was removed by the
procedure. Successively, the pruning continued to further re-
duce the number of connections, expecting a decrease in the
classification accuracy. As shown in Table III, 57 connections
were sufficient to decrease the classification accuracy from
89.7% to 84.3%. The decrease in the classification accuracy
of about 10% with respect to the fully connected network
was reached with 42 470 connections (3.0% of the initial con-
nections). These accuracies were based on the validation set
obtained by the visual inspection of the scene and were only
used to have a rough estimation on the performances of the
different topologies during the designing process.

C. Postprocessing

Classified images often suffer from a lack of spatial co-
herence, which results in speckle or holes in homogeneous
areas. This noise phenomenon appears as many isolated pixels
or small groups of pixels whose classifications are different
from those of their neighbors [27]. Postclassification processing
techniques can be applied to further increase the classification
accuracy. This is often achieved by analyzing the neighbor-
hood for each pixel and removing the isolated pixels (sieve
process) and then merging the small groups of pixels together to
make more continuous and coherent units (clump process) [28].
These sieve and clump procedures were used here to reduce the
effect of isolated pixels removing all regions smaller than the
designated cluster dimension.

The trial-and-error strategy was used to define the optimal
size with respect to the validation set, starting with a small
cluster dimension (10 pixels). The highest classification accu-
racy was reached using a dimension of 142 pixels. Therefore,
even though the smaller clusters may have been correctly
classified, they were considered unreliable.

The classification map obtained after the postclassification
processing reached an accuracy of 0.9698 in terms of k-coeff,
relative to the validation set obtained by visual inspection.
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Fig. 3. City of Pavia imaged by (a) SAR (backscattering amplitude) and
(b) optical (bands RGB-431) sensors. In (c) and (d), the final classification map
and the ground reference data are shown. The color code is in Table II.

TABLE IV
CONFUSION MATRIX WITH RESPECT TO THE

CONTEST GROUND REFERENCE DATA

IV. DISCUSSIONS AND CONCLUSION

One of the major advantages of NNs with respect to sta-
tistically based classifiers is that NNs directly draw their own
input–output discriminant relations from the data and do not
require that a particular form of a probability density function
be assumed [21].

The design of an NN-based framework for data fusion of
ERS 1/2 and Landsat data set has been presented in Section III,
highlighting the careful analysis that is required to find the most
suitable network topology. The final classification map, shown
in Fig. 3, reached an accuracy of 0.9393 in terms of k-coeff with
respect to the unknown ground reference data that were used to
rank the contest’s results (whose confusion matrix is shown in
Table IV).

Vegetated areas, sparse buildings, and water surfaces have
shown higher classification accuracies (stemming from a higher
class separability) with respect to the other two classes, which
is an expected result because the responses of the areas charac-
terized by high or moderate density of buildings (such as city
center and residential, respectively) are quite similar in both
optical and SAR sensors.
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