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Asymptotics of Sums of Lognormal Random Variables

with Gaussian Copula

Søren Asmussen1 Leonardo Rojas-Nandayapa2

Abstract

Let (Y1, . . . , Yn) have a joint n-dimensional Gaussian distribution with a general mean
vector and a general covariance matrix, and let Xi = eYi , Sn = X1+· · ·+Xn. The asymptotics
of P(Sn > x) as n → ∞ is shown to be the same as for the independent case with the same
lognormal marginals. In particular, for identical marginals it holds that P(Sn > x) ∼ nP(X1 >

x) no matter the correlation structure.

Key words: Dependence, subexponential distribution, tail asymptotics, tail dependence,
Value-at-Risk.

Tail probabilities P(Sn > x) of a sum Sn = X1 + · · ·+ Xn of heavy-tailed risks X1, . . . , Xn are
of major importance in applied probability and its applications in risk management, such as the
determination of risk measures like the Value-at-Risk (VaR) for given portfolios of risks, evaluation
of credit risk, aggregate claims distributions in insurance, operational risk (Cruz, 2002; Frachot,
Moudoulaud and Roncalli, 2004). Under the assumption of independence among the risks, the
situation is well understood. In particular, from the very definition of subexponential distributions,
given identical marginal distributions, the maximum among the involved risks determines the
distribution of the sum and, on the other hand, for non-identical marginals the distribution of the
sum is determined by the component(s) with the heaviest tail (Asmussen, 2000, Ch.IX).

Over the last few years, several results in the direction of allowing dependent Xi have been
developed. A survey and some new results are given in Albrecher, Asmussen and Kortschak (2005).
For regularly varying marginals and n = 2, this paper gives bounds for P(Sn > x) in terms of the
tail dependence coefficient

λ = lim
u→1−

P
(

F2(X2) > u
∣

∣F1(X1) > u
)

,

and it is noted that the asymptotics of P(Sn > x) is the same as in the independent case when
λ = 0. Alink, Löwe and Wüthrich (2005) and references there contain approximations under the
assumption λ > 0. For general discussion of bounds, see Denuit, Genest and Marceau (1999),
Cossete, Denuit and Marceau (2002) and Embrechts and Pucceti (2005).

The overall picture is that, except for some special cases, the situation seems best understood
with regularly varying marginals. However, in particular in insurance and finance, lognormal
marginals is the more important case (a common folklore states that correlations of log-returns
of stock prices etc. are often of the order 0.4). This paper deals with the basic case of lognormal
marginals with a multivariate Gaussian copula. That is, we can write Xk = eYk where the ran-
dom vector (Y1, . . . , Yn) has a multivariate Gaussian distribution with E Yk = µk, VarYk = σ2

k,
Cov (Yk, Yℓ) = σkℓ (here σkk = σ2

k) and Corr (Yk, Yℓ) = ρkℓ. It is well-known that here λ = 0
when ρkℓ < 1 so that the results of Alink, Löwe and Wüthrich (2005) do not apply. We write
µ = (µk)k=1,...,n, Σ = (σkℓ)k,ℓ=1,...,n and LNn(µ, Σ) for the joint distribution of (X1, . . . , Xn).

When n = 1, we just write Fµ,σ2 and Fµ,σ2(x) for the tail. Our result is:
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Theorem 1. Let (X1, . . . , Xn) have a LN(µ, Σ) distribution with ρkℓ < 1 when σ2
k = σ2

ℓ (k 6= ℓ),

and let σ2, µ, mn be defined by

σ2 = max
k=1,...,n

σ2
k , µ = max

k: σ2
k=σ2

µk , mn = #
{

k : σ2
k = σ2, µk = µ

}

.

Then

lim
x→∞

P(Sn > x)

Fµ,σ2(x)
= mn . (1)

Remark 1. Note that it is well-known that

Fµ,σ2(x) ∼ σ√
2π(log x − µ)

exp
{

− (log x − µ)2

2σ2

}

(2)

(this follows, e.g., from the standard asymptotics P(Y > x) ∼ ϕ(x)/x as x → ∞ for a standard
normal r.v., where ϕ is the standard normal density and ∼ means that the limit of the ratio is 1).

2

Remark 2. For two distributions Fk, Fℓ, we say that Fk has a lighter tail than Fℓ if F k(x)/F ℓ(x) →
0 as x → ∞. From (2) it follows in particular by easy calculus that Fµk,σ2

k
(x) has a lighter tail

than Fµℓ,σ2
ℓ
(x) when either σ2

k < σ2
ℓ or σ2

k = σ2
ℓ , µk < µℓ, a fact that will be used repeatedly It

also follows that for any lognormal r.v. and 0 < β < 1,

lim
x→∞

P(X > x − xβ)

P(X > x)
= 1 (3)

(just note that logp(x − xβ) = logp x + o(1) for p = 1, 2). 2

Remark 3. The hypothesis that ρkℓ < 1 when σ2
k = σ2

ℓ can be dropped at the cost of some
technicalities. If ρkℓ = 1 and σ2

k = σ2
ℓ (k 6= ℓ), then Xk = Xℓ eµk−µℓ , so one can replace Xk + Xℓ

by (1 + eµk−µℓ)Xk. We omit the rest of the details. 2

The idea of the proof of Theorem 1 is to find upper and lower bounds for P(Sn > x) with equiv-
alent asymptotic behavior. It will be seen that the argument used to prove that the lower bound
proposed is asymptotically equivalent to mnFµ,σ(x) is based on the tail independence property of
the Gaussian copula. So, if we use any other tail independent copula with subexponential marginal
distributions, the argument used remains true. This is not the case for the upper bound; the proof
is based on the properties of the marginal distribution and the Gaussian copula. This means that
tail independence is not a sufficient condition. Albrecher, Asmussen and Kortschak (2005) present
an example of a bivariate and tail independent distribution with lognormal marginals which fails
to have the asymptotic behavior in (1). These remarks do not exclude the existence of other tail
independent copulas than the Gaussian such that (1) holds for lognormal marginals.

Proof of Theorem 1. We proceed by induction. The case n = 1 is straightforward. For the in-
duction step, we assume that the theorem holds for any arbitrary lognormal random vector with
Gaussian copula of size n. Next, we will prove that the theorem is true for a random vector of size
n + 1.

For the proof, the following assumptions (which are made w.l.o.g.) are convenient:

A1. X1, . . . , Xn+1 are ordered in such way that if ℓ < k then Xk and Xℓ either have the same
marginal distribution, or Xk has lighter tail than Xℓ (cf. Remark 2). Thus Fu,σ2(x) =
P(X1 > x).

A2. µ = 0. If not, replace Xk and x by Xke−µ and xe−µ in P(Sn+1 > x).

We also need the following lemma which is proved later:

Lemma 1. Under the hypothesis of Theorem 1, if A1 and the induction hypothesis hold, then there
exists 0 < β < 1 such that

lim sup
x→∞

P(Sn > xβ , Xn+1 > xβ)

P(X1 > x)
= 0.

2
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Choose β as in Lemma 1 and consider the following relations

P(Sn+1 > x) = P(Sn+1 > x, Sn ≤ xβ) + P(Sn+1 > x, Sn > xβ , Xn+1 ≤ xβ)

+ P(Sn+1 > x, Sn > xβ , Xn+1 > xβ)

≤ P(Xn+1 > x − xβ) + P(Sn > x − xβ) + P(Sn > xβ , Xn+1 > xβ).

Using Lemma 1, it follows that

lim sup
x→∞

P(Sn+1 > x)

P(X1 > x)
≤ lim sup

x→∞

P(Xn+1 > x − xβ)

P(X1 > x)
+ lim sup

x→∞

P(Sn > x − xβ)

P(X1 > x)
.

Here Remark 2 and the induction hypothesis guarantee that the two limsup’s on the r.h.s. are
actually limits, so that the r.h.s. becomes

lim
x→∞

P(Xn+1 > x − xβ)

P(Xn+1 > x)

P(Xn+1 > x)

P(X1 > x)
+ lim

x→∞

P(X1 > x − xβ)

P(X1 > x)

P(Sn > x − xβ)

P(X1 > x − xβ)

= lim
x→∞

P(Xn+1 > x)

P(X1 > x)
+ lim

x→∞

P(Sn > x − xβ)

P(X1 > x − xβ)
= lim

x→∞

P(Xn+1 > x)

P(X1 > x)
+ m∗

n

where the first step uses Remark 2 and the second step the induction hypothesis with m∗
n denoting

the number among X1, . . . , Xn in A1 which have the same tail as X1. From Remark 1 the limit in
the r.h.s. is 0 if Xn+1 has lighter tail than X1, or 1, if Xn+1 and X1 have the same distribution.
Observe that by A1, X1 cannot have lighter tail than Xn+1. We have proved

lim sup
x→∞

P(Sn+1 > x)

P(X1 > x)
≤ mn+1 (4)

for the appropriate value of mn+1.

For the second part of the induction step consider the next lower bound of P(Sn+1 > x):

n+1
∑

i=1

P(Xi > x, Xj ≤ x, for all j 6= i) ≥
n+1
∑

i=1

P(Xi > x) − P

(

⋃

j 6=i

{Xi > x, Xj > x}
)

≥
n+1
∑

i=1

P(Xi > x) −
∑

j 6=i

P(Xi > x, Xj > x).

If A1 holds with i < j then

P(Xi > x, Xj > x) ∼
{

o(1) P(Xj > x) ρij < 1 and σ2
i ≥ σ2

j

P(Xj > x) ρij = 1 and σ2
i > σ2

j .

The first asymptotic result comes out from writing the l.h.s. as P(Xi > x|Xj > x)P(Xj > x)
and using the tail independence of Xi and Xj and the second from the fact that if ρij = 1 then

Xi = eµi−µj X
σj/σi

j and therefore

P(Xi > x, Xj > x) = P(Xj > min{x, eµj−µixσi/σj}) ∼ P(Xj > x)

as x → ∞. Then it follows from Remark 2 that

lim
x→∞

P(Xi > x, Xj > x)

P(X1 > x)
= 0 ∀j 6= i.

We have proved that

lim inf
x→∞

P(Sn+1 > x)

P(X1 > x)
≥ lim inf

x→∞

n+1
∑

i=1

P(Xi > x)

P(X1 > x)
= mn+1

for the appropriate mn+1. Together with (4), this establishes the induction step and completes the
proof.

3
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Proof of Lemma 1. If σn+1 < σ choose σn+1/σ < β < 1. Then

lim sup
x→∞

P(Sn > xβ , Xn+1 > xβ)

P(X1 > x)
≤ lim sup

x→∞

P(Xn+1 > xβ)

P(X1 > x)
= lim

x→∞

P(X
1/β
n+1 > x)

P(X1 > x)
.

But the last limit is 0 since X
1/β
n+1 ∼ LN

(

µn+1/β, σ2
n+1/β2

)

has lighter tail than X1 because of
σ2

n+1/β2 < σ2.

If σ = σn+1 define γ = maxk=1,...,n{σk(n+1)/σ2}. By A1, we have that σ2
k = σ2 for k =

1, . . . , n + 1. Then γ is the maximum among the correlations between Xk and Xn+1 and by
the hypothesis of the Theorem 1 it should take values γ ∈ [−1, 1). Therefore, we can choose
β close enough to 1 to obtain max{1/2, γ} < β2 < 1 and (β − γ/β)2 + β2 > 1 (observe that
(1 − γ/1)2 + 12 > 1). Consider

lim sup
x→∞

P(Sn > xβ , Xn+1 > xβ)

P(X1 > x)
≤ lim sup

x→∞

P(Xn+1 > x1/β)

P(X1 > x)

+ lim sup
x→∞

P(Sn > xβ , x1/β > Xn+1 > xβ)

P(X1 > x)
.

Here the first limit is 0 since Xβ
n+1 ∼ LN

(

βµn, (βσ)2
)

has lighter tail than X1 because of β < 1.
For the second limit, we define

Xc(y) = (Xc
1(y), ..., Xc

n(y)) = (X1, ..., Xn|Xn+1 = y) , Sc
n(y) =

n
∑

i=1

Xc
i (y) .

So,

lim sup
x→∞

P(Sn > xβ , x1/β > Xn+1 > xβ)

P(X1 > x)
= lim sup

x→∞

1

P(X1 > x)

x1/β
∫

xβ

P(Sc
n(y) > xβ)fXn+1(y)dy.

Standard formulas for the conditional mean vector and conditional covariance matrix in the mul-
tivariate normal distribution yield

Xc(t) ∼ LN({µi +
σi(n+1)

σ2
(log t − µn+1)}i, {σij − bij}ij) where bij =

σi(n+1)σj(n+1)

σ2
.

We can restrict to consider values of t > 1. Since Xc
i (t) has the same distribution as Xc

i (1)e
σi(n+1)

σ2 log t,
it follows that Xc

i (t) is smaller than Xc
i (1)eγ log t in stochastic order. So, Sc

n(t) ≤ Sc
n(1)tγ in stochas-

tic order, and the last limit above can be above bounded by

lim sup
x→∞

1

P(X1 > x)

x1/β
∫

xβ

P(Sc
n(1) > xβ/yγ)fXn+1(y)dy. (5)

If γ ≤ 0, the integral in (5) is bounded by P(Sc
n(1) > xβ)P(Xn+1 > xβ) which by the induction

hypothesis is asymptotically equivalent to mc
nP(Xc

k(1) > xβ)P(Xn+1 > xβ) with the appropriate
integer value mc

n and index k. Now, from the form of the distribution of Xc(y) and A1 it follows
that Xc

k(1) and Xn+1 have lighter or equivalent tails than X1 , so bounding mc
n by n we have

proved that

lim sup
x→∞

P(Sn > xβ , x1/β > Xn+1 > xβ)

P(X1 > x)
≤ lim sup

x→∞

nP2(X1 > xβ)

P(X1 > x)
.

The last limit is 0 because of the choice 2β2 > 1, (2) and A2. In the case where γ > 0, the integral
in expression (5) can be bounded by P(Sc

n(1) > xβ−γ/β)P(Xn+1 > xβ). Observe that β − γ/β > 0
since we took β2 > γ; so we can use the same argument as above to conclude that

lim sup
x→∞

P(Sn > xβ , x1/β > Xn+1 > xβ)

P(X1 > x)
≤ lim sup

x→∞

nP(X1 > xβ−γ/β)P(X1 > xβ)

P(X1 > x)

4
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which is again 0 because of the choice (β − γ/β)2 + β2 > 1 and the asymptotic relation

P(X1 > xβ−γ/β)P(X1 > xβ) ∼ σ2

2π log xβ−γ/β log xβ
exp{− [(β − γ/β)2 + β2] log2 x

2σ2
}

[recall A2].

Numerical Examples

Consider a random vector (X1, . . . , X10) with multivariate Gaussian copula such that µi = i− 10,
σi = i and σkℓ = ρσkσℓ for k 6= ℓ. The two panels in Figure 1 correspond to ρ = 0.4, resp. ρ = 0.95.
The approximation given by (1) is then the r.h.s. of (2) with µ = 0, σ2 = 10 (note that mn = 1).
This is marked with a solid line with asterisks and a conditional Monte Carlo estimator with a solid
line, with the associated 95% confidence limits dotted. For details on the Monte Carlo algorithm,
see Asmussen and Rojas-Nandayapa (2006).

0.5 1 1.5 2

x 10
4

10
−3

10
−2

ρ=0.4

Monte Carlo estimator
Confidence interval
Approximation (1)
Approximation (6)

0.5 1 1.5 2

x 10
5

10
−4

10
−3

ρ=0.95

Monte Carlo estimator
Confidence interval
Approximation (1)
Approximation (6)

Figure 1: Tail probability P(S10 > x).
Comparison of approximations and simulations.

The numerical results show that the approximation is reasonably accurate but tends to under-
estimate. This could be explained by some r.v. Xi with tails being only slightly lighter than the
heaviest one. This suggests considering the adjusted approximation

P(Sn > x) ∼
n

∑

i=1

P(Xi > x) (6)

which from the proof of Theorem 1 has the same asymptotics and is included in the graphs (solid
line with crosses). It is seen that (6) is indeed an improvement, and in fact gives an excellent
fit for ρ = 0.4. The improvement is less marked for ρ = 0.95. However, this also represents an
extreme value given that we are approaching comonotonicity where none of the approximations
are no longer asymptotically valid, and that, as mentioned earlier, ρ = 0.4 is more often argued to
be a typical value in financial time series than ρ = 0.95.

Figure 2 considers a portfolio which has a similar dispersion of means and variances, but is
larger, n = 50. We took µ5i+j = i − 9, σ5i+j = i + 1 for i = 0, . . . , 9, j = 1, . . . , 5 and, as before,
σkℓ = ρσkσℓ with ρ = 0.4 or ρ = 0.95.

5
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Figure 2: Tail probability P(S50 > x).
Comparison of approximations and simulations.

The final Figure 3 shows relative differences compared to approximation (6) for the n = 10
portfolio. The solid line is the difference between (1) and (6) divided by (6). The solid line with
asterisks is the same with (1) replaced by simulated values. The graph is compatible with the
(obvious) fact that the relative difference between the approximations goes to 0, but shows that
the convergence is slow in the present case, as must be expected from the fact that the second
largest variance 9 is quite close to the largest one 10. It also indicates that approximation (6) has
an excellent fit in the set of parameters used in Figure 3.
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Albrecher, H., Asmussen, S. & Kortschak, D. (2005) Tail asymptotics for the sum of dependent heavy-tailed
risks. Extremes 9, 107–130.
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