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Abstract

During embryogenesis, Drosophila embryos undergo epithelial folding and
unfolding, which leads to a hole in the dorsal epidermis, transiently covered
by an extraembryonic tissue called the amnioserosa. Dorsal Closure (DC)
consists of the migration of lateral epidermis towards the midline, covering
the amnioserosa. It has been extensively studied since numerous physical
mechanisms and signaling pathways present in DC are conserved in other
morphogenetic events and wound healing in many other species (including
vertebrates).
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We present here a simple mathematical model for DC that involves a
reduced number of parameters directly linked to the intensity of the forces in
presence and which is applicable to a wide range of geometries of the Leading
Edge (LE). This model is a natural generalization of the very interesting
model proposed in Hutson, Tokutake, Chang, Bloor, Venakides, Kiehart, and
Edwards (2003). Being based on an Ordinary Differential Equation (ODE)
approach, the previous model had the advantage of being even simpler, but
this restricted significantly the variety of geometries that could be considered
and thus the number of modified dorsal closures that could be studied.

A Partial Differential Equation (PDE) approach, as the one developed
here, allows considering much more general situations that show up in ge-
netically or physically perturbed embryos and whose study will be essential
for a proper understanding of the different components of the DC process.
Even for native embryos, our model has the advantage of being applicable
since the early stages of DC when there is no antero-posterior symmetry
(approximately verified only in the late phases of DC).

We validate our model in a native setting and also test it further in em-
bryos where the zipping force is perturbed through the expression of Spastin
(a microtubule severing protein). We obtain variations of the force coeffi-
cients that are consistent with what was previously described for this setting.

Keywords: forces in embryogenesis, biomechanics, PDE models, tissue
movement, drosophila, embryonic development, epithelia, actin cable,
zipping, parameter optimization

1. Introduction

In this work we present a mathematical model of Dorsal Closure (DC)
in Drosophila embryos which is a widely used biological model system for
morphogenesis and wound healing. DC has been extensively studied as a
paradigm of epithelial fusion events. In fact, a significant number of physical
mechanisms and signaling pathways present in DC are conserved in many
other morphogenetic and tissue repair events not only in Drosophila, but
also in many other organisms (including vertebrates).

DC consists of the convergence of lateral epidermal cells towards the
midline covering the amnioserosa in a couple of hours (see figure 1 and movie
DCnative.mov). As it progresses, the left and right margins of the Leading
Edge (LE) are progressively knitted to each other in a zipping process and
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Figure 1: Scheme of tissues and forces implicated in dorsal closure in Drosophila
embryos. The first row shows a dorso-lateral drawing of the drosophila embryo at
stages 14 and 15. The second row shows a dorsal view of a stage 14 embryo and a
representation of some of the forces involved in the closure. Lines indicate the two
tissues involved (the amnioserosa consisting of thin and large polygonal epithelial
cells in brown, the epidermis consisting of columnar epithelial cells in yellow) and
in-between the Leading Edge (LE). In the last diagram we distinguish the LE’s
top margin ωt

i (in blue) and bottom one ωb
i (in red).

eventually seal the hole leaving no traces of its prior existence. In spite of the
fact that the lateral epidermis has to encompass an increasing amount of area,
DC does not involve any cell division but only a coordinated reorganization
and contraction of the actomyosin cytoskeleton in different populations of
epithelial cells.

The cells in the dorsal-most row of the lateral epidermis are called the
leading edge cells - these cells form the boundary of the lateral epidermis and
they accumulate filamentous actin and myosin II (a motor protein) at their
dorsal-most edge to form a contractile actomyosin cable. Such intercellular
cable elements are anchored into adherens junctions between neighboring
cells (which are locally reinforced for this purpose) and are thus all connected
forming a supra-cellular acto-myosin cable that encircles the area covered by
the Amnioserosa. This cable structure is continuously put under tension
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by the myosin molecular motors making the actin filaments slide relative to
each other thus producing a global contraction effect that helps closing the
epithelial hole (since this is a dynamic process, new tension can be created
by the molecular motors and the local cable tension does not necessarily
decrease as the contraction proceeds). The position of this cable, at the
boundary between the epidermis and the amnioserosa defines the Leading
Edge (LE).

The hole is roughly shaped like an ellipse with major axis along the dorsal
midline of the organism - which is along the anterior-posterior (AP) axis of
the embryo. By convention, we will always display our images with the
anterior on the left, the posterior on the right and a horizontal AP axis.
The anterior and posterior ends of the hole are called the canthi - the LE
has a rather singular geometry at these points. As indicated in figure 1, the
canthi separate the LE (also denoted ωi) into two halves - the top margin,
denoted ωt

i , and the bottom margin, ωb
i (in fact, in the original geometry of

the embryo, these correspond to the right and left margins, respectively).
In (Kiehart, Galbraith, Edwards, Rickoll, and Montague (2000)) DC was

described as involving the following forces: 1) resistive tension from the
stretched epidermis, 2) actin cable tension 3) amnioserosa contraction and
4) zipping.

The zipping force comes from the fact that LE cells extend actin pro-
trusions, called filopodia (or lamellipodia when they start having a two-
dimensional structure in the late stages of zipping), that intertwine near the
canthi drawing the two margins towards each other and knitting them - the
canthi advance towards the middle of the epithelial hole occupied by the
Amnioserosa a bit like zippers (see movie zip.mov). The zipping process is
essential for the proper matching of cells along the anterior-posterior axis.
As the two margins merge during dorsal closure the cells from each side of
the epidermis that meet end up establishing permanent (adherens) junctions
similar to those between the other epidermal cells. At the same time the
actin corresponding to the cable segment they contained is de-polymerized
and in the end there is no trace remaining of the fact that they were far apart
at the outset of DC.

In this paper we propose a simple model for simulating DC. Our approach
is a natural generalization of the one proposed in Hutson et al. (2003) which
consists of a system of two Ordinary Differential Equations (ODE) obtained
by considering the balance of the forces described above in a very symmetric
setting where the LE is supposed to consist of the union of two arcs of circle.
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In that case it is sufficient to have one equation concerning the forces acting
on the midpoint of each of these arcs plus a second equation to take the
zipping into account. Here, we use a Partial Differential Equation (PDE)
approach that allows us to go beyond these strong symmetry assumptions
(which had already been relaxed in an ODE setting in Peralta, Toyama,
Hutson, Montague, Venakides, Kiehart, and Edwards (2007)). A priori, the
PDE setting allows us to consider quite general geometries and inhomoge-
neous forces. In practice, the full generality allowed by our approach can
lead to optimizing a very big number of parameters which would be compu-
tationally too costly (and meaningless considering the precision of our present
data). Thus, we will present the case where the forces are supposed to be
determined by a small number of coefficients and by the geometry of the LE
(which can be quite general), as described below. We have already applied
this type of model to Drosophila embryo wound healing in Almeida, Bagner-
ini, Habbal, Noselli, and Serman (2009, http://hal.archives-ouvertes.fr/hal-
00480769/en/) obtaining quite satisfactory results (which confirms that this
approach can deal with a wide range of hole geometries).

Each of the coefficients in our model is associated with one of the forces
described and will thus give us a way of measuring the relative contribution
of that force (they are our force parameters). In fact, we make a movie of
each embryo going through DC and extract the contours corresponding to the
position of the LE at different times. To take full advantage of the linearity of
our model we start from the extracted contour at each time step and simulate
its evolution during one time step to obtain a simulated contour which we
compare to the extracted contour (experimental data) at the following time
step. We will optimize the set of force parameters so that the simulated
contours predicted by the model fit the best way possible (i.e. they minimize
an appropriate cost function defined below) the real contours extracted from
the film. This yields the force parameters of the embryo considered and is
thus a way of measuring the relative intensities of these forces.

The way that these force coefficients change between native (sometimes
also denoted as wild-type) and perturbed settings may give us a tool to
identify which genes play an important role in regulating each of the forces
present. Thus, we started by studying native (genotype arm-gal4, zipper-
GFP) embryos (n=10) and checked that the set of parameters obtained for
the different embryos was consistent. This is a strong indication of the per-
tinence of the model in this setting.

We further challenged our model to see what it yielded in a setting where
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the microtubule severing protein Spastin was ubiquitously expressed in the
tissues using the armadillo-gal4 driver. Expression of this protein in en-
grailed half-segments of the lateral epidermis had been extensively studied
in Jankovics and Brunner (2006) and they had observed that the zipping
was significantly downregulated in this setting. In fact, as described in Jac-
into, Wood, Balayo, Turmaine, Martinez-Arias, and Martin (2000), zipping
requires the filopodia (and lamellipodia) whose formation depends on the
actin organizing machinery which, in turn (as shown in Jankovics and Brun-
ner (2006)), is linked to microtubule activity. Our study of Spastin embryos
(genotype arm-gal4, zipper-GFP x UAS-spastin-GFP) (n=10) shows that the
coefficient associated to zipping (C4 in our model) we measured is consider-
ably lower than that obtained in the native setting. This is consistent with
the results of Jankovics and Brunner (2006) and comforts us in the choice of
this model.

Another advantage of our model is the direct way it links the coefficients
we measure with the intensity of the associated forces. For instance in the
case of the decrease of the zipping coefficient in the Spastin setting that we
measure, this means that the zipping force in the model is lower (since C4 is
the intensity of that force term) whereas a decrease in the zipping rate kz (as
defined in Hutson et al. (2003)) just directly means that the shape is changing
in a different way (and it is this that can then be indirectly associated with
a difference in the zipping force).

The model we present here is supposed to be valid at a tissue level: it
should be valid at correspondingly large space and time scales. This is why
we don’t describe the more complex phenomena implying cell rearrangement
at the intersection of the segment boundaries with the LE (see Gettings, Ser-
man, Rousset, Bagnerini, Almeida, and Noselli (2010)) nor the type of am-
nioserosa vibration behavior of Solon, Kaya-Copur, Colombelli, and Brunner
(2009). It is clear that there are oscillations of the leading edge with small
timescales (3 to 4 minutes) when compared to the 2 to 3 hours over which
DC takes place. The type of model presented here is intended to describe
the mean position of the leading edge at a larger timescale and not the fluc-
tuations around this mean resulting from the vibrational behavior.

We thank one of the anonymous referees for bringing to our attention
the existence of the recent paper Layton, Toyama, Yang, Edwards, Kiehart,
and Venakides (2009) where a so-called second generation model for DC is
proposed. The main motivation of that work is quite similar to that of the
present one: to develop a PDE generalization of the ODE model of Hut-
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son et al. (2003) that is applicable in more general settings. However, our
approaches are quite different and somewhat complementary. In fact, their
work explores more the mechanical aspects with a very interesting compari-
son of the differences between having a linear or a hyperbolic relation between
force and velocity. It also has a considerably larger number of parameters to
describe mechanical properties of the tissues involved.

In Layton et al. (2009), the authors first recall the model developed in
Hutson et al. (2003) and further extended in Peralta et al. (2007) for the
case of asymmetric canthi to account for situations where the zipping occurs
asymmetrically. Both references strongly lean on a constant leading edge
velocity assumption, which happens to be violated during mechanical jump
experiments (extensive laser ablation of the amnioserosa). Building upon the
latter references, in Layton et al. (2009) force balance equations are adjoined
to formulate a new model. Dropping the restrictive assumptions on the ge-
ometry of the leading edge (but staying within the restricted geometry of
DC), the position of each of the margins is then made dependent on time
and on the dorsal midline coordinate, allowing for more general amnioserosa
traction and purse string contractile forces. The forces present are gener-
ated by biological force-producing elements, which consist of elastic, viscous
and force-generating components but which are mostly positioned along the
dorso-ventral direction with very little coupling along the antero-posterior
direction. Canthi kinetics are also differentiated between posterior and an-
terior positions, and finally, the model parameters are identified through an
optimization process like in our case, but with a cost functional that mostly
takes into account the distance between the margins at the midpoint of the
closure (in the spirit of the ODE approach in Hutson et al. (2003)) instead of
the full geometry of the leading edge (as in the case of our PDE approach).
Our approach has more naive mechanics but has more natural mathematics
(the dorso-ventral direction is not so artificially singled out) with a truly
multi-dimensional approach that can be easily extended to more general ge-
ometries like the ones one can come across in wound-healing (as studied in
Almeida et al. (2009, http://hal.archives-ouvertes.fr/hal-00480769/en/)). In
Layton et al. (2009) a comparison between simulations and experimental data
for a native embryo is provided which show a remarkably good agreement.
In the future, it will be interesting to combine our two approaches to put
together their strong points and construct a more realistic model.

This paper is organized as follows: in section 2 we present and motivate
our simple mathematical model; in section 3 we present the way we optimize
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the force parameters and the numerical methods used for computing the
deformation fields and for simulating the movement of the LE; in section 4
we present the results we obtained for the force coefficients both in the native
and the Spastin settings. In section 5 we apply the previous model Hutson
et al. (2003) to our data sets in order to compare the results given by the two
models and in section 6 we analyze the results obtained. Finally, materials
and methods and the captions for the movies in the supplementary material
are gathered in sections Appendix A and Appendix B.

2. Simple Mathematical Model

For mathematical purposes, the LE will also be denoted by ω. Our simu-
lation domain will be a rectangle, M , which contains the amnioserosa in the
middle and part of the surrounding lateral epidermis all around it. The part
of the domain occupied by the epidermis is D = M \W (see figure 1). The
amnioserosa W (and therefore also D) change in time. Actual mechanical be-
havior of the tissues involved should at least obey nonlinear visco-elastic dy-
namics, involving a chemo-bio-mechanical coupling, as introduced in Olsen,
Sherratt, and Maini (1995), Olsen, Maini, and Sherratt (1998) and Murray
(2003). However, as we mentioned above, we did not take into account short
time (compared to the closure duration) dynamical behavior, like possible
short period pulsing of the amnioserosa or vibrations of the LE (described
in Solon et al. (2009)). Thus, one may neglect inertial forces and consider
the overall process as a succession of linear elastic equilibria, where we omit
as well the successive initial stress fields. We will adopt such a so-called
quasi-static approach to describe this evolution.

At each step i = 1, . . . , n, let Wi and Di denote, respectively, the positions
of the amnioserosa and the ectoderm, and let ωi = ωt

i ∪ ωb
i that of the LE

(see figure 1). We suppose (see below) the behavior of the epidermis to be
linearly elastic, homogeneous, isotropic and subject to four forces:

1) the epidermal tension. It pulls the leading edges apart opposing the
closure. We simulate it by constant normal forces applied at the top
(M t) and bottom (M b) boundaries of our simulation domain. The
actual forces should be considerably more complicated and are due to
the stress fields induced by the previous morphogenetic movements (as
well as those occurring during DC) but, for the moment, we use this
rough approximation to have a simple description.
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2) The actin cable tension. This term gives rise to a force that is propor-
tional to the curvature at each point and to the amplitude of the cable
tension, in the spirit of what was described in Hutson et al. (2003) for
the middle point of their arc of circle. In this paper we will suppose
the cable tension T to be constant (the general model is also valid with
non constant cable tensions but, in that case, the tension variation will
yield a tangential force along the cable proportional to the derivative
of tension with respect to the arc-length). Here, we extend this force
to all the points on the LE - we work in a PDE framework instead of
the ODE framework used in Hutson et al. (2003). It points towards
the exterior of Di (i.e. towards the interior of the amnioserosa Wi) at
the points of positive curvature of the LE and towards the its interior
at points of negative curvature.

3) A uniform normal force pointing towards the exterior of Di. This force
is associated to amnioserosa contraction (or lamellipodal crawling in a
wound healing context - see Almeida et al. (2009, http://hal.archives-
ouvertes.fr/hal-00480769/en/)).

4) The zipping force at the canthi.

We will discuss a bit further this last term, i.e. the modeling of zipping,
which plays a very important role in DC. As mentioned above (based on
Jankovics and Brunner (2006)) this is the term that we expect to change
significantly between the two settings we will consider in the present work
(native and Spastin). In general, we can model the zipping force (Z) by a
term of the type

Z(p) =

∫
ω

f(p, q)
q − p
|q − p|

dq for all p ∈ ω , (1)

where ω is the Leading Edge (LE), p and q are two-dimensional points belong-
ing to ω. Our present experimental tools and data do not enable us to obtain
enough information about the function f for making a more precise model-
ing of its contribution (f(p, q) describes the intensity of the force with which
the boundary points p and q are pulled towards each other by the filopodia).
Nevertheless, it is natural to suppose that f depends on the distance between
the points (|q − p|). Indeed, we can write, f(p, q) = φ(|q − p|)ψ(p, q), where
the function φ : R+ → R has compact support inside |q − p| < 2L, where
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L is the maximum length of filopodia in the situation considered and the
function ψ has no special restrictions.

As mentioned in Almeida et al. (2009, http://hal.archives-ouvertes.fr/hal-
00480769/en/), this approach should also be appropriate for modeling the
zipping in wound healing as long as the wound W (the set enclosed by the
LE in the wound-healing setting) is convex. In a general setting some caution
is needed in defining which filopodia can interact.

In DC, not only we are often in a (nearly) convex setting, but we also
have a particular geometry and behavior that simplifies the modeling of the
zipping force. In the native setting (and most genetically modified settings
we observed) there seems to be no zipping between points in the same margin,
which implies that f(p, q) = 0 if p and q belong to the same margin (so, in
practice, the integration in (1) is only over the opposite margin). Moreover,
the fact of filopodia interacting only with those coming from the opposite
margin eliminates the problem that each margin is not convex near the canthi
(the zipping zone).

There is even more structure that seems to constrain the zipping in DC:
the epidermis of the embryo is divided into 14 segments separated by sharp
boundaries, each of them constituted by anterior and posterior cells (green
and red cells, respectively, in movie track.mov). This spatial organization
is conserved at the end of DC by a proper segment adjustment potentially
mediated by filopodia (Millard and Martin (2008)). Tracking of segment
and parasegment boundaries during DC indicates that physical points on
the leading edge move approximately vertically, i.e. orthogonally to the AP
axis (figure 2).

If we want to take into account the fact that zipping plays a role in
segment matching, then f should also include specific information about
the matching genes expressed by the cells present at points p and q. In
the native context, in the beginning of DC the parasegments that should
match are placed (considering our orientation convention of horizontal AP
axis and symmetry relative to this axis) vertically to their counterparts in
the opposite leading edge. Moreover, as shown in figure 2, our experiments
indicate that they move approximatively vertically throughout DC. In this
work, we will consider only cases where we have this property, and simulate
them by supposing that we have a vertical zipping force which is supported
in the part of the leading edge where the vertical distance between the two
margins is smaller than 2L. To be precise, for each time point i, we suppose
that the upper leading edge (denoted ωt

i) is described by a function y = gi(x)
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Figure 2: Antero-posterior stretching of segmental boundaries during dorsal clo-
sure. The central curve (bold line) shows the closure of each parasegmental and
segmental boundaries during time, from a total opening (the exposed amnioserosa
extends from segment T2 to segment A7 at time 0) nearly up to the end of closure
(the exposed amnioserosa covers only parts of segments A2 and A3 at time 70’).
The solid and dashed lines indicate the positions of segmental and parasegmental
boundaries at each time, respectively. These curves were obtained by tracking the
half-segment boundaries during the dorsal closure of the embryo shown in movie
track.mov.
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and the lower leading edge (denoted ωb
i ) by y = hi(x) for x ∈ [ca, cp] where

ca and cp are the x coordinates (horizontal positions) of the anterior and
posterior canthi at time point i. The zipping will then be effective only in
the set Zi := {(x, y) ∈ ωi : gi(x)− hi(x) ≤ 2L}.

Treating the case where the zipping is stronger at one canthus than at
the other (as was done in an ODE setting in Peralta et al. (2007)) is also
easy in this model - it suffices to introduce one zipping parameter for the
anterior canthus and another one for the posterior canthus. However, for
both native closure and that of Spastin embryos considered in this paper,
one single zipping parameter is sufficient for obtaining a good agreement.
We will consider more complex situations in the future.

Coming back to the global model of DC, the cytoskeleton and membrane
of the cells of the epidermis are globally viewed as a mechanical contin-
uum, which can bear traction and compression loads but not bending nor
torsion. Assuming a linear elastic response of this medium considered as a
plane surface, the elastic deformations are then in-plane. The model derived
from elastic thin shell theory results in a coupled system, formed of a Laplace
term and a coupling term between the two planar displacements. To keep our
model simple, we rather use a so-called membrane model (uncoupled, keep-
ing only the Laplace operator) governed by a Poisson equation with suitable
boundary conditions (in particular, applied forces are introduced as Neu-
mann boundary conditions). This type of model is widely used in the shape
identification framework (see Allaire (2007)). Our approach, though being
mechanically questionable, turned out to be well suited from a computational
viewpoint, allowing us to perform an efficient parameter identification task,
and yielding a good predictor model.

We adopt the convention that the first image we consider in each film is
time point 1 for that film so that time point i will just be image number i
being considered. The simulation time step i will be the one starting at time
point i and yielding a simulated contour at time point i+ 1.

Therefore, in the simple model implemented in this paper, we assume
that at each time step i, the corresponding displacement field ui will satisfy
(see figure 3)
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−∆ui = 0 in Di,

ui = 0 on M l ∪M r,

∂ui

∂n
= C1n on M t ∪M b,

∂ui

∂n
= C2κn+ C3n on ωi \ Zi,

∂ui

∂n
= C3n+

(
0
−C4

)
on ωt

i ∩ Zi,

∂ui

∂n
= C3n+

(
0
C4

)
on ωb

i ∩ Zi .

(2)

where n is the external unit normal vector to ∂Di, κ is the curvature of ωi,
Zi is the effective zipping zone defined above and C1, C2, C3, C4 are constant
parameters (in this simple setting) which are determined using the experi-
mental data. The term C1n represents the ectoderm resistance force density
on the top (M t) and bottom (M b) edges of our simulation rectangular do-
main (the exterior normal, n, points vertically upwards on the top edge and
vertically downwards on the bottom one - notice that this corresponds to
the dorsoventral direction of the original fly embryo); C2 corresponds to the
cable tension (the effective force density acting on each point of the cable
being given by C2κn, where κ is the curvature of the LE at the point and n
is again the exterior normal to Di, now along it’s inner boundary - which is
thus pointing into the amnioserosa); C3n represents the force density along
the LE due to amnioserosa contraction, where n is as in the previous case;
finally, C4 is the amplitude of the force density due to zipping (this term is
active only on the zipping zone near each of the canthi).

Since we do not know the Young modulus of the tissues involved, the
coefficients C1, ..., C4 can only be determined up to this unknown value (which
is taken as unit-valued and thus not even appearing in equation 2 to make
things simpler). Therefore, in this work, these coefficients are presented as
numerical values (without physical units). This is sufficient for our analysis
since it is the relative variation of these coefficients between the native and
the modified setting that is used to detect phenotypes.
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Figure 3: The simulation domain Di, the two components of the zipping domain
Zi (in blue) and the exterior normal vector field n on its boundary (in red).

We notice that allowing for a more general operator (instead of the Lapla-
cian) and for time and space dependence of the coefficients gives us the pos-
sibility of going beyond the linear elastic, homogeneous and isotropic setting
that, for simplicity, we will consider in this paper.

As we mentioned, in our model forces appear as Neumann boundary
conditions since they should be equal to the normal component of the stress
tensor field, σn = σ · n which, with our assumptions, in time step i reduces
to ∇ui · n = ∂ui

∂n
.

Once ui is obtained, we consider its restriction the leading edge (LE) ωi

and displace this boundary (using a level set method) to obtain ωi+1. The
domain Wi+1 enclosed by ωi+1 is the new position of the LE. More precisely,
we compute the solution ui of (2) in the domain Di by using finite element
methods on a triangular mesh. We obtain a vector field ui, which is used as
a velocity vector in the level set method in order to move ωi (see figure 4)
and obtain ωi+1.

The position of ωi+1 obtained also defines the new epidermal domain
Di+1 = M \Wi+1 which could be used in the following step to solve equation
(2) in order to obtain ui+1, and so on. This would be the most natural way
of implementing our model in a general setting. However, as we said in the
introduction and will explain better in the following section, in this paper
we use Wi+1 to compare with the experimental contour at time point i + 1
and evaluate the error of the simulation time step but, to take full advantage
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Figure 4: Example of a computed solution ui alone (top right) and together with
its associated extension uint

i (bottom right) and the corresponding computational
meshes (left).
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of the linearity of the model, we will take the experimental contour at time
point i to initiate the simulation time step i.

We remark that we are doing all our analysis in 2D while the real dy-
namics is 3D. In fact, we try to obtain our original data keeping as much
3D information as possible (although the embryos are still flattened by their
own weight - see Appendix A) and avoiding to interfere with the dynamics
(in preceding works the embryos were squeezed between the coverslip and a
permeable membrane which, although it has the advantage of reducing the
spatial shifts, risks perturbing the movement and destroys the 3D character).
However, for the moment, we project the confocal images to obtain 2D data
which is simpler to treat (in particular for the contour extraction). Never-
theless, all the forces described in the model can be considered in 3D (in that
case, at each point, one should naturally work on the tangent plane to the
embryo at the point considered and project all the forces onto that plane).

The model presented here is a macroscopic model that does not take into
account the positions of the individual cells constituting each of the tissues
considered. Thus, we essentially expect to be able to use it to obtain re-
sults at a tissue level scale and not at a cellular scale where the geometry
of each cell and its neighbors should also play an important role. However,
recent and ongoing work shows that medial (bulk) actin and myosin (see, for
instance, Martin, Kaschube, and Wieschaus (2009) and Ma, Lynch, Scully,
and Hutson (2009)) play an important role in the mechanical behavior of the
tissue (contradicting previous approaches that supposed that it was mainly
due to the junctional acto-myosin network which concentrates along each
cell’s boundaries with its neighbors). The scale of the bulk actin network
is considerably smaller than individual cell size - this should be one of the
main reasons why continuous approaches, like the one presented here, yield
good results at a considerably smaller scale than what one would expect if
the mechanics was coming mainly from cell edges. Moreover, even for more
precise cellular level studies where we have to concentrate on a small patch
of cells, not being able to follow in detail all the cells in the tissue consid-
ered, this type of macroscopic models can be useful for providing reasonable
boundary or asymptotic conditions for the local problems.

In the same spirit, this model assumes a very simple mechanical behavior
of the tissue. Our original motivation for choosing a homogeneous, isotropic
and linear elastic model for the epidermis was, on the one hand, the fact
that the precision of our present data did not justify more complicated as-
sumptions and, on the other hand, the simplicity of the equations obtained
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(and, thanks to the linear aspect of the model, the great reduction that this
yields for the parameter optimization procedure - see section 3). However,
very recently, new techniques have been developed, which may make it pos-
sible to obtain more precise information about the forces involved. As a
matter of fact, the measures concerning relaxed strain patterns and radial
displacement (for hole drilling experiments in amnioserosa cells during DC)
published in Ma et al. (2009) comfort us in our choice of this simple model
at a macroscopic scale since they indicate that:

• correlation with the individual geometry of the cell walls is significant
only for distances below first neighbor distance (10 µm in their case),
and quickly becomes considerably more isotropic beyond this distance;

• a linear elastic, isotropic and homogeneous sheet approach gives a good
prediction of the observed radial displacements for distances above 10
µm.

Nevertheless, when the mechanical and 3D properties of the tissue can
be determined in a more precise way, it will be interesting to include them
to improve the present model.

3. Numerical Simulations

As said in the previous section, we assume that the dynamics of the Lead-
ing Edge is governed by equations (2) where the magnitude of the parameters
(Cj)1≤j≤4 have to be identified. Let C = (C1, C2, C3, C4). The aim of the
numerical simulations is to identify such global coefficients C by solving an
unconstrained optimization problem in both a native and a modified setting,
in order to validate our model.

First, we obtain experimental successive positions of the Leading Edge
by means of image processing/contour-extraction techniques. We consider
at each time step i the experimentally observed position of the LE, ωEXP

i ,
as initial position. For a given collection of parameters C, we solve equation
(2) in order to obtain a displacement ui, which is used to evolve the initial
position ωEXP

i of the LE into an updated one ωPDE
i+1 . Let W EXP

i and W PDE
i

denote the sets enclosed by ωEXP
i and ωPDE

i , respectively.
Since in the simple application of this model which will be implemented

in this paper we want to identify constant (space and time independent) force
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coefficients C which describe the whole process of closure, we consider the
optimization problem consisting of minimizing the cost function J given by

J(C) =
m∑

i=1

|W EXP
i+1 ∆ W PDE

i+1 |, (3)

where the expression |W EXP
i ∆ W PDE

i | denotes the area of the symmetric
difference set between W EXP

i and W PDE
i , i.e. the area of set of elements which

are in one of these sets, but not in both (exclusive disjunction in Boolean
logic). The symmetric difference provides a quantification of the error to
be minimized in order to obtain the correct values of the parameters C.
Here. m is the number of time evolution steps considered in the optimization
procedure and the cost of each step is evaluated at its end which explains
why we are evaluating the symmetric difference at time point i+ 1 to obtain
the cost of the error made in step i.

We use a global optimization approach, based on the Genetic algorithm
and Direct Search (GADS) toolbox (ga) provided by Matlab, to obtain a
solution. We eventually refine this minimizer by performing a direct search
optimization (patternsearch) around the previously found solution.

The genetic algorithm allows to solve both constrained and unconstrained
optimization problems by mimicking biological evolution. Roughly speaking,
at each step, the algorithm randomly selects individuals in a population and
uses them, through cross-over, mutation and best fit selection, to generate the
children for the next generation. In this way the population evolves toward
an optimal solution. It is a suitable method for problems where standard
optimization algorithms fail to converge since the objective function is for
instance discontinuous, non differentiable or highly nonlinear. In our case,
the cost function J is obtained by solving a PDE and then computing the
area of the symmetric difference between the approximated contour and the
experimental one. Therefore, J is non-smooth and classical gradient methods
are useless. Moreover, a priori one cannot exclude the existence of multiple
local minima, for which descent methods are inefficient. The genetic methods
overcome these two drawbacks, but it is necessary to carefully choose the
parameters (e.g. the population size, the amount of mutation, the crossover
rate, etc.) to obtain accurate results. For instance, one crucial factor is the
diversity of the population: if the diversity is too high or too low, the genetic
algorithm might not perform well.

A well known shortcoming of the above global minimizing algorithms is
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that they use extensive call to cost evaluation, which in our case amounts
theoretically to solve, for each time step i, a big number of large scale linear
systems coming from the finite element discretization (as many as the number
of generations times the number of individuals per generation).

Fortunately, we can take advantage of the linearity of (2) to solve just one
partial differential equation for each significant parameter: for j = 1, . . . , 4
and for each time step i = 1, . . . ,m, we define uj,1

i to be the solution of
problem (2) with Cj = 1 and Ck = 0 for k 6= j. Then, thanks to the linearity
of our model, the solution of the full problem (2) will be given by

ui =
4∑

j=1

Cju
j,1
i . (4)

To take full advantage of this linearity, in this paper where we are as-
suming the coefficients Cj to be constant (in order to have a small number
of parameters), we will always take as Di the experimental contour at time
point i (i.e. the one obtained using as inner boundary ωi the contour ex-
tracted from the image number i) of the film we are treating. This way, the
domain itself is also independent of the values of the coefficients Cj being
used, and thus the same basis of solutions is valid at step i independently of
the different evolutions that are obtained for different choices of the coeffi-
cients Cj in the previous steps. We then use the model to make the contour
evolve during one time step and obtain a simulated contour at time point
i+ 1 which we compare with the experimental contour at that time point.

We remark that even without starting from the experimental contour
at each time step, the linearity of the model still reduces significantly the
number of PDE to solve in the case where the coefficients Cj can change in
time.

Once we have the basis of solutions uj,1
i , for j = 1, . . . , 4, the general

solution ui will just depend linearly on the parameters Cj which simplifies
considerably their optimization.

Moreover, as we will see in the following section, we will in practice be
including the effect of the amnioserosa contraction, which in our model should
be measured by C3, in the coefficient C2 originally corresponding to the actin
cable tension (since the two effects are hard to distinguish in this geometry).
Therefore, we will take C3 = 0 and we just have to compute u1,1

i , u2,1
i and

u4,1
i .
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The numerical simulations are performed in Matlab code
(http://www.mathworks.com/) and by using Comsol Multiphysics software
(http://www.comsol.com/) to compute the numerical solution of (2) and (7)
by the finite element method.

The finite element method (see for instance Quarteroni (2009)) is the
most used numerical technique to approximate solutions of partial differen-
tial equations. The computation domain is subdivided into smaller regions,
typically triangles or quadrilaterals in two dimensions. Over each element of
the mesh, the unknown variables of the PDE are computed using polynomial
expansions which depend on the nodes used to define the finite element shape.
Instead of directly discretizing the PDE, finite element method consists in
multiplying the equation by a test function, chosen in a appropriate function
space, integrating over the computation domain and then using the integra-
tion by parts to transfer the derivatives onto the test function. In this way,
the boundary value problem is transformed into an equivalent form, called
weak or variational form, which requires less regularity. The weak form is
then discretized by choosing a subspace of piecewise polynomial functions
(generally quadratic) which leads to solving a set of linear equations. In our
case, we use a triangular mesh, quadratic polynomial functions and Umfpack
direct solver for computing the solution of the linear system.

Having obtained ui, we use level set methods to perform the evolution
of our contour (Osher and Sethian (1988)). Level set methods (also called
dynamic implicit surfaces) (Sethian (1999), Osher and Fedkiw (2003), Kim-
mel (2004)) are a set of popular numerical algorithms for solving a particular
class of first-order hyperbolic partial differential equations, called Hamilton-
Jacobi equations (HJ). They are used for tracking and simulating the motion
of dynamic surfaces (in two and three dimensions) in many fields as image
processing, computational fluid dynamics, seismic analysis and material sci-
ence. In this framework, the interface front (which, in our case, represents
the position of the LE) is implicitly represented as the zero level set of a
function Φ : R2 × R+ → R (or Φ : R3 × R+ → R in three dimensions), i.e.
the front is given by Φ(x, t) = 0 (see figure 5). If x(t) represents the path of
a point on the propagating front, differentiating with respect to t, we obtain
the Hamilton-Jacobi equation

∂tΦ(x, t) + ẋ · ∇Φ(x, t) = 0, (5)

where ẋ := dx(t)
dt

(the Lagrangian material particle velocity).
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Figure 5: At each time t the propagating front is the zero level set of a function
Φ(x, t) solution of a Hamilton-Jacobi equation (5).

Level set methods consist in solving (5) and then computing at each time
step the propagating front as zero level set of Φ. This approach requires
an initial function Φ(x, t = 0) with the property that the zero level of this
initial function corresponds to the initial position of the front: a possible
simple choice is given by the signed distance to the front (negative inside the
set enclosed by the front and positive outside this set).

There are three main advantages in evolving interfaces by level set meth-
ods instead of implementing particle or Lagrangian methods: changes of
topology are naturally handled and surfaces automatically merge and sepa-
rate; geometric quantities, like the surface normal, the curvature, etc. are
easy to compute; the extension to three and even higher dimensions is con-
ceptually straightforward.

In our particular case, at time step i, we apply level set methods to dis-
place the front (representing the position of the LE) from its initial position
ωi using the displacement field (obtained by solving equation 2). Thus, for
each point in x ∈ ωi the material particle velocity should be ui(x), and the
function Φi(x, t) we want solves

∂tΦi(x, t) + ui(x) · ∇Φi(x, t) = 0. (6)

We remark that in this equation t is just an artificial parameter for the level
set flow and does not represent real time. In fact, the only precaution is
to always follow the flow up to the same t value (which, for this paper, we
chose to be t = 0.1) so that we can compare the coefficients obtained for
the different embryos considered (in this paper, all the native and all the
Spastine ones treated).

The implicit representation of Φi displaces all the level sets throughout
the entire computational domain, not only the zero level set. Hence, we must
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be able to construct an extension velocity which, starting with the velocity
prescribed at the interface, builds an appropriate velocity field everywhere
in the computational domain. This extension is in general not straightfor-
ward and different approaches are proposed in the literature (see Sethian
(1999)). The main requirement for an extension velocity is that it smoothly
approaches the prescribed interface velocity near the zero level set. In our
case the velocity field, which is already defined in Di as the solution of 2,
has a natural extension in the domain inside the inner boundary ωi (i.e. in
the epithelial hole filled by the Amnioserosa Wi): the harmonic extension
obtained solving {

−∆uint
i = 0 in Wi,

uint
i = ui on ωi.

(7)

In this way, we obtain an extension of the original vector field ui to the entire
rectangular domain (which we will still denote by ui for simplicity). We then
solve the HJ equation (6) on a regular cartesian grid by using a second order
numerical finite differences scheme both in space and in time. The value of
ui in the regular grid is computed by interpolating ui on a triangular mesh.
Due to the hyperbolic character of equation (6), upwinded approximations or
artificial viscosity must be used in order to maintain stability. If the upwind
propagation direction can be computed, upwind schemes yield more accu-
rate results than artificial diffusion. At each grid point, the upwind method
corresponds to approximating ∂xΦi and ∂yΦi, the x and the y components of
the gradient of Φi, by left or right finite differences according to the direction
of propagation, i.e. to the sign of the x and the y component of ui. For in-
stance for the x-component, the left D−Φ(xj) and right D+Φ(xj) first-order
accurate approximation at node (xj, yk) are

D−Φ(xj, yk) =
Φ(xj, yk)− Φ(xj−1, yk)

∆x
, (8)

D+Φ(xj, yk) =
Φ(xj+1, yk)− Φ(xj, yk)

∆x

We perform spatial discretization by using an upwind second order Es-
sentially Non-Oscillatory (ENO) scheme (Osher and Shu (1991), (Kimmel,
2004, chap. 3)) which consists of making the second order left and right
correction to the first order approximation (8) and then choosing the least
oscillatory of the two. The time discretization is treated by a second order
total variation diminishing Runge-Kutta scheme. We use the Matlab tool-
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box of Ian M. Mitchell (Mitchell (2008)) (http://www.cs.ubc.ca/~ mitchell)
to implement level set methods.

4. Experimental results

In order to validate our model we applied it in a native and also in a
disrupted setting (Spastin embryos) which had already been described in
the literature (Jankovics and Brunner (2006)). We used ten embryos of each
type and filmed them during dorsal closure. The LE positions were extracted
from these films yielding the experimental contours (the ωEXP

i of the previous
section). The coefficients Cj, j = 1, 2, 4 for each embryo were then obtained
using our model, as described above (see figure 6). We recall their meaning

C1 is associated with ectoderm resistance;

C2 is originally associated to actin cable tension but which will also in-
clude the effect of amnioserosa contraction since in our analysis we are
dropping C3;

C4 corresponds to zipping force intensity.

As we mentioned before, we chose to drop the C3 term (the one associated
with amnioserosa contraction in our original model) since in the Dorsal Clo-
sure settings studied here the second and third forces considered (curvature
force corresponding to cable tension and constant normal force associated
to amnioserosa contraction) are collinear and have nearly constant relative
magnitudes (since, in the sweeping phase of DC and in the native and the
Spastin setting considered here, the curvature has small variations in the
central part of the LE, far from the canthi). As these two terms play nearly
interchangeable roles in the settings considered, we have an approximately
invariant direction of the cost function which makes it meaningless to op-
timize C2 and C3 simultaneously. This will no longer be the case when we
have more complicated geometries that appear in genetically modified set-
tings that strongly affect DC (or in wound healing).

We gathered in figure 6 the results obtained using our method as described
above for the optimized coefficients C1, C2, C4 of ten native and ten spastin
embryos. In figure 7 we show the averages and standard deviations of each of
the data sets presented. We will analyze this results in section 6 but notice
right away that, as expected, we obtained a significant downregulation of the
zipping coefficient in the Spastin setting.

23



Figure 6: The optimized coefficients C1, C2, C4 of ten native and ten modified
(arm-gal4 x UAS-spastin-GFP) embryos.
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Figure 7: Average of the optimized coefficients C1, C2, C4 of ten native and ten
modified (arm-gal4 x UAS-spastin-GFP) embryos. Error bars represent the stan-
dard deviation of the data in each class.
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Figure 8: On the left, for each fixed value C4, we show for Spastin embryo 3 the
minimum of the two dimensional function J(·, ·, C4) in the interval [0, 0.3]× [0, 0.3],
computed with constant step size 0.01. On the right, we show the cost surface
J(·, ·, 0.09), i.e. corresponding to the minimum C4 = 0.09 (the red point (C1, C2) =
(0.01, 0.1) minimizes the section J(·, ·, 0.09) of the cost function for this embryo).

We also studied the stability of our model by computing the cost function
J for an adequate number of values, in order to check the continuous depen-
dence of J on the parameters and check that we do not have a great number
of local minima where the minimization procedure could get trapped. In
particular, for Spastin embryo 3 we computed J(C1, C2, C4) with C1 and C2

varying from 0 to 0.3 and C4 varying from 0 to 1 with constant step size
0.01. A partial representation of these values is shown in figure 8. This
figure gives a clear indication that, at least in this case, it is unlikely for J
to have significant oscillations or multiple minima and that it depends con-
tinuously on the parameters. In particular, it is quite reassuring to see that
the profile of minimum of the cost function J(·, ·, C4) (which is a function
of C4 alone represented in the left of figure 8) around the value of C4 the
minimizes it (which will be the one chosen by our model) is not flat at all.
We notice that this type of computation for obtaining the corresponding sur-
face would not have been reasonably feasible if we were using a nonlinear
model. For this embryo, the coefficients obtained by the genetic algorithm
are C = (C1, C2, C4) = (0, 0.06, 0.18) (shown in figure 6).
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5. Comparison with the previous model Hutson et al. (2003)

In the previous model Hutson et al. (2003), the margins were approxi-
mated by two arcs of circle and the evolution was described by a system of
two ODE for the height H(t) (maximum dorso-ventral distance between the
two margins of the leading edge) and the width W (t) (antero-posterior dis-
tance between the two canthi) of the dorsal opening. It has explicit solutions
given by

H(t) = H(0)− V t , (9)

W (t) = W (0)

[
1− V t

H(0)

] kz
2V

. (10)

where H(0) and W (0) are the initial height and width, and V and kz are two
parameters. The first one, V , represents the vertical velocity, i.e. the rate of
change of the height H(t), which is quite well approximated by a constant
in the native setting (in the Spastin setting the fit is slightly worse, but still
acceptable). The second, kz, is the zipping coefficient associated with the
way the filopodial zipping acts near the canthi.

We applied this model to our data set, to compare with the results given
by our own model. For each embryo considered we first measured, for each
time, the height H(t) and the width W (t) of the dorsal opening. Next, we did
a linear regression to find the slope −V of the straight line that fitted best
(minimum square deviation) the experimental points for H as a function of
time (in the spirit of equation 9). Finally, using the V found in the previous
step and the values of V (0) and H(0) measured in the first frame of the
film, we did a nonlinear regression (again minimizing mean square deviation)
to obtain the exponent kz that gives the best fit in the exponential law of
equation 10. We used Matlab to perform linear and nonlinear regression, but
there are many equally good choices.

In this way we obtained the two parameters, the vertical velocity V and
the zipping coefficient kz that describe DC in the model of Hutson et al.
(2003). We present these results in figure 9. One can see that both the
height and the zipping coefficients tend to be slightly smaller for Spastin
embryos than in native closure, but that the data corresponding to the two
settings have some overlap.

For comparison with the results of our model shown in figure 7, we also
present the corresponding averages obtained using the model of Hutson et al.
(2003) in figure 10. We can see that both the average vertical velocity and
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Figure 9: The height and zipping coefficients (in nm/s) of the model of Hutson et al.
(2003) for the same ten native and ten modified (arm-gal4 x UAS-spastin-GFP)
embryos for which our model’s coefficients are shown in figure 6.
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Figure 10: Average of the optimized height and zipping coefficients (in nm/s) of
the model in Hutson et al. (2003) of ten native and ten modified (arm-gal4 x UAS-
spastin-GFP) embryos presented in figure 9. Error bars represent the standard
deviation of the data in each class.

the average zipping coefficients are downregulated in the Spastin setting but
that the latter (which is the one we expect to be change significantly in the
Spastin setting) is less well separated that in our model.

In table 5 we show the values of the cost function corresponding to the
simulated contours using our model and using the previous model (Hutson
et al. (2003)). For the model Hutson et al. (2003) we computed the values of
H(t) and W (t) with (9) and (10), we reconstituted for each time step the two
arcs of circle (symmetric relative to the dorso-ventral axis) to have the sim-
ulated dorsal opening and then, as before, we took the symmetric difference
between it and the experimental dorsal opening to define the cost at that
step. In order to correctly fit the model, at each time step we translated ver-
tically the intersection of the two arcs of circle to place them on the straight
line containing the experimental canthi. The cost function in the table 5 is
expressed as average percentage (over the set of frames considered in the film
being studied) of the area of the symmetric difference between the simulated
and the experimental contour at each frame i > 1 (|W EXP

i ∆ W PDE
i |, which,

for us, is the simulation error at the previous time step) with respect to the
area of the rectangular domain M used in the simulations.

These values are shown just as an indication because although it is clear
that our model yields significantly lower costs as indicated, this is not sur-
prising since, unlike that of Hutson et al. (2003), it was specifically optimized
to reduce the values of this cost function and moreover, being a PDE model
and having less restrictions on the geometry (the two arcs of circle are not
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Embryo Our model Model of [3]
native 1 0.32 % 1.73 %
native 2 0.31 % 1.54 %
native 3 0.37 % 2.34 %
native 4 0.46 % 2.44 %
native 5 0.47 % 3.03 %
native 6 0.53 % 3.54 %
native 7 0.42 % 2.83 %
native 8 0.40 % 2.22 %
native 9 0.39 % 2.26 %
native 10 0.36 % 2.01 %
spastin 1 0.36 % 2.23 %
spastin 2 0.48 % 1.79 %
spastin 3 0.47 % 1.61 %
spastin 4 0.63 % 2.49 %
spastin 5 0.76 % 1.75 %
spastin 6 0.54 % 1.69 %
spastin 7 0.45 % 1.26 %
spastin 8 0.29 % 0.72 %
spastin 9 0.39 % 1.31 %
spastin 10 0.46 % 1.10 %

Table 1: The values of the cost function using our model and using the model of Hutson
et al. (2003) of ten native and ten modified (arm-gal4 x UAS-spastin-GFP) embryos (the
corresponding coefficients are shown in figure 6 for our model and in figure 9 for model
of Hutson et al. (2003)). The cost function is the sum of the areas of the symmetric
differences between experimental and simulated contours at each of the frames of the
corresponding films. Here, it is expressed as an average percentage with respect to the
area of the rectangular domain size used in the simulations.
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always a very good approximation of the actual shape), it has more flexibility
to follow the actual contours and one more parameter.

6. Conclusion

The results obtained show very clearly that C4, the zipping coefficient, is
significantly downregulated in the Spastin setting: figure 7 shows a consider-
able decrease in this coefficient (on average). This is in agreement with the
previously published results Jankovics and Brunner (2006). It is thus a good
point for the pertinence of our model.

We notice that C1, the coefficient associated with ectoderm resistance,
is also downregulated. We were not looking for this effect but it is also
consistent with what was described briefly in Jankovics and Brunner (2006)
and with what we observe in our own movies. In fact, we can see that the
cells in the lateral epidermis of our embryos (as well as those in the engrailed
bands of the engrailed>spastin fly embryos in Jankovics and Brunner (2006))
are considerably less stretched in the dorso-ventral direction than those of
the native embryos. Since Spastin affects microtubule organization, it could
also affect the capacity of cells to generate and transmit forces. This might
be an explanation for obtaining a lower value for C1 in the Spastin setting.

Another point that is a good indication concerning our approach is the
fact that inside each group, the coefficients measured for the different mem-
bers are quite consistent - i.e. the dispersion of the data is relatively low
(except for the last embryo in the Spastin group which seems to zip nearly
like a native embryo). Moreover, the data presented in the previous section is
just for 10 native embryos which are the natural control for the Spastin used.
However, we also calculated these coefficients for several different native fly
lines we have filmed for other purposes (different genotypes to express the
GFP), and the values obtained were close to the ones shown here (data not
shown).

To illustrate the precision that we can attain with the present model,
we show in figures 11 and 12 (see also the supplementary material movie
spastin.mov) the simulated contours given by our model in a Spastin em-
bryo using the optimal constant force parameters we obtained. The results
are less precise than in the native case. This is, in part, due to the more
complex behavior of the canthi in the spastin setting. In fact, the zipping
force reduction we obtain does not seem to be uniform along the bound-
ary which allows some portions to zip before their neighbors on both sides
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yielding interior canthi and multiply connected holes (but his only happens
very locally close to the canthi and at the end of DC, when the geometry is
quite flat and the zipping is active in big portions of the boundary). It could
be due to non-uniformity of our gal4 driver or other cell dependent factors
influencing spastin’s effect on filopodia. It is beyond the level of precision we
aim for in this work (macroscopic, supracellular level) and is considered as
a slight perturbation to the predicted behavior (yielding variability). Notice
that level set methods are adapted to deal with this multiple connectivity of
the domains (but less adapted to follow individual cells - when necessary we
can use particle methods for that purpose).

Although a great part of the advantages of our model relative to the ODE
model in Hutson et al. (2003) rely on its applicability to a wider variety of
geometric situations which should be studied in future works, the compar-
ison made in section 5, shows that for this rather symmetric setting where
the two models are applicable our model’s zipping coefficient (C4) detects
more clearly the dowregulation of the zipping in the Spastin setting that the
previous model’s zipping coefficient (kz). This is already a good indication
of the added value provided by our approach - to detect weaker phenotypes
it might be worthwhile to go through the significantly heavier computational
effort of our model when compared to that of the previous one Hutson et al.
(2003).

The results shown obtained in both the native and the Spastin setting
are quite encouraging for using this model as a tool for identifying more
subtle DC phenotypes than those that are accessible through traditional
approaches. They should make it possible to single out new components
of the DC process and give a better understanding the way they are put
together to achieve such a precise and robust global behavior.

Appendix A. Materials and Methods

Genetics. The following fly lines were used: arm-gal4 (1560 from Blooming-
ton Drosophila Stock Center), zipper-GFP (CC01226 from Flytrap Database),
UAS-spastin-GFP (Trotta et al., 2004), ptc-gal4 (gift from N. Perrimon),
en-gal4 (gift from A. Brand), UAS-actin5C-GFP (7310 from Bloomington
Drosophila Stock Center) and UAS-Dαcatenin-GFP . The following recom-
bined lines or crosses were used for video time-lapse of dorsal closure 1)
w*,arm-gal4, zipper-GFP 2) w*,arm-gal4, zipper-GFP x UAS-spastin-GFP
3) w*, ptc-gal4, UAS-Dαcatenin-GFP 4) en-gal4 x UAS-actin5C-GFP.
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Figure 11: Dorsal Closure images at successive times with corresponding simulated
contours (in red) for a Spastin embryo: first eight images of movie spastin.mov
(genotype: arm-gal4,zipper-GFP x UAS-spastin-GFP).
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Figure 12: Dorsal Closure images at successive times with corresponding simulated
contours (in red) for a Spastin embryo: next seven images of movie spastin.mov
(genotype: arm-gal4,zipper-GFP x UAS-spastin-GFP).
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Live imaging and preliminary image treatment. Embryos are dechori-
onated in bleach then staged and placed dorsal side down on a coverslip. A
coating of halocarbon oil, a piece of damp paper and a hermetic chamber
ensure hydration (and normal development of 95% of embryos into larvae
in control experiments). Embryos are neither fixed, pressed, nor glued, to
ensure that the dynamics is modified as little as possible by external forces.
They naturally lay on their dorsal part when put in the viscous oil, which
is convenient to film dorsal closure. This method is sufficient to immobilize
the external part of the organism but movements are still possible inside the
vitelline membrane (the membrane is a protective layer outside the epidermis
- larvae hatch out of it after embryogenesis). Images are taken with a Zeiss
LSM 510 Meta confocal inverted microscope using x40 1.3 NA oil immersion
objectives. Films last from 2 to 3 hours with stacks of 25 images (thickness
from 30 to 40 µm) per time point. We assemble images and movies using
ImageJ. Stacks are projected using a maximal intensity projection.

Appendix B. Movie Captions

native.mov Confocal time-lapse images of a w*,arm-gal4, zipper-GFP em-
bryo, which has native closure dynamics (these are the control embryos we
use in this work).
zip.mov: Confocal time-lapse images of a en-gal4, UAS-actin5C-GFP embryo
during DC. Actin filopodia are visible in the posterior half part of the seg-
ments (actin-GFP expressed under the control of engrailed). Note that the
speed is twice slower in the second part of the movie, when a zoom is made
on the central segments. en-gal4 (gift from A. Brand), UAS-actin5C-GFP
(7310 from Bloomington Drosophila Stock Center).
track.mov: Confocal time-lapse images taken from an embryo showing in
gray a membrane marker only in the anterior compartments. Parasegmental
and segmental boundaries can thus be tracked during the closure. Note that
some cells in posterior compartments (see arrowheads on the first image)
are marked too but the segmental boundary lies just posterior to these cells.
(Genotype: ptc-gal4, UAS-Dαcatenin-GFP).
spastin.mov: Confocal time-lapse images of a w*,arm-gal4, zipper-GFP x
UAS-spastin-GFP embryo during DC (this is the movie used for making the
simulations presented in figures 11 and 12).
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