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1 – Introduction.

Since fast and reliable polarimetric equipments are available, many polarimetric imaging systems  
have  been  designed  for  a  variety  of  applications.  A  wide  bibliography  about  passive  imaging 
polarimetry was given by J.S. Tyo and al. in their review [1] on this topic. Recent examples of the  
applications  of  imaging  polarimetry  include  medical  [2,3],  biological  sample  analysis   [4,5], 
atmospheric physics [6],  or the quality control of manufactured objects [7,8] for instance. From a 
practical point of view, the imaging polarimetry term is applied for "Mueller imaging" or "Stokes 
imaging" as measurement of the Mueller matrix entries or Stokes parameters respectively, attached to 
each pixel in the image. In this paper we only address the analysis of Stokes imaging and are not  
interested in corrupted data by external noise such as measurement noise, for instance (for specific  
papers on this issue see [9,10]) since it is well known of the experimentalists that resulting vectors can  
be located outside of the Poincaré sphere which contains all vectors with physical meaning. We are 
dealing with the elements  of polarization that  depend on a random feature of illuminated objects. 
Under the hypothesis that external noise has been removed, the resulting Stokes vectors are samples of  
a random process always  located in a manifold known as Poincaré sphere. This set of data has a  
specific structure and geometry and it may be appropriate to take into account these properties in an  
estimation process. So, let us first remind the specific structure of the Stokes parameters and relations  
to coherency matrix. 

The coherency matrix  Φ is the covariance matrix of the components E i of the complex electric 
field vector E(r,t), then using the Jones vector formalism such a matrix is given by Eq. (1)  :

                                                   (1)
 

where † and * stand for a Hermitian and complex conjugate respectively. The brackets denote the time 
or  ensemble  average  with  a  hypothesis  of  ergodicity.  As  a  covariance  matrix,  Φ is  a  Hermitian 
nonnegative definite matrix. So, its eigenvalues are real and positive. As a 2x2 complex matrix, Φ can 
be expanded as a linear combination of the four Pauli matrices σi as given by Eq. (2):

 (2)

where S = [  S0 S1 S2 S3 ]T stands for  the  Stokes  vector  associated with the  light  beam.  Another 
complete set of  four matrices could be used for the decomposition but the Pauli  matrices are the  
natural  ones  to  use  because  they  underlie  the  geometry  of  the  Poincaré  sphere  and  provide  a  
fundamental connexion between  the  Mueller  and  coherency  matrices  [11].  Under  the  linear 
transformation of the electric field by a matrix J known as the Jones matrix [12], the coherency matrix 
Φin of the incident beam transforms into Φout as:
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The (DOP) degree of polarization of the light can be expressed either in terms of the invariants of 
the coherency matrix [13] (determinant and trace of the matrix) or in terms of the Stokes parameters 
as:

              (4)

The semi definite positive condition of coherency matrix involves det(Φ) ≥ 0. This condition is 
equivalent to:

   (5)

and then the positive  value of  the  degree of  polarization  must  be smaller  than  unity.  When one  
eigenvalue of Φ is zero, DOP =1 and we have a pure state of polarization. When the two eigenvalues 
of Φ are equal,  DOP=0, and we have a fully unpolarized light. All the other configurations with 0< 
DOP <1 are  mixed states  as  convex combinations  of  pure  states.  It  is  also well  known that  any 
polarization state (or coherency matrix) can be uniquely decomposed into a fully polarized part and a 
fully unpolarized part [14]. The Poincaré sphere representation  provides a natural coordinate system: 
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to analyze the effect of polarization transformation in which pure states of polarization are mapped 
onto the surface of the unit radius sphere while partially polarized states lie inside the sphere and  
unpolarized state lies at the center of the sphere.

The polarimetric effect of a material medium may be regarded as equivalent to that of a system 
composed of a parallel combination of different pure optical systems. This is true for the polarimetric  
images of a natural scene (this means for classical materials that constitute the most frequently imaged 
objects).  In  other  words,  the  Mueller  matrix  of  a  system can  be  considered as  a  convex sum of  
Mueller-Jones matrices or also named pure Mueller matrices.[16,17]. The transformation known as 
Jones matrix when acting on the two components of the transverse vector field, is known as Mueller-
Jones  matrix  when  acting  on  the  corresponding  Stokes  vector.  To  every  Jones  matrix  there  
corresponds a Mueller matrix  (named Mueller-Jones matrix) but the converse is not true [14-15].  
Thus, the state of polarization of the outgoing light beam is a convex sum of pure states and is a mixed  
state with a degree of polarization strictly smaller than the unity.  This is specifically verified with  
classical  examples  of  polarimetric  imaging  systems  where  the  temporal  and  spatial  resolution  of 
measurement is not precise enough to guarantee a pure state of polarization for each measured point. 
So, from an experimentalist point of view, we believe that the pure states of polarization are very 
unlikely  to  exist  in  polarimetric  images.  In  other  words,  a  state  of  polarization  with  very  small  
eigenvalues has a very low probability to appear in polarimetric images. Under this hypothesis, the 
actual set of coherency matrices may be restricted to HPD(2) set (the manifold of Hermitian Positive 
Definite matrices of dimension 2). 

On the other hand, from a mathematical point of view, computing on Stokes vectors is difficult 
due to the severe limitations of the standard Euclidean calculus: The mean of a set of Stokes vectors is  
a Stokes vector as the result of convex operation over a convex set as already mentioned. However, 
more  complex  operations  like  gradient  descent  or  Principal  Component  Analysis  (PCA)  that  are 
classical in standard Euclidean space, are not stable in Stokes vector space. One can quickly reach the 
boundaries of the space. 

We  will  demonstrate  the  Riemannian  metric  is  a  natural  way to  lead  to  a  solution  to  these 
constraints  and its  introduction on  HPD(2)  may be directly related to the  Jones  calculus.  After  a 
reminder of relations associated with the definition of a Riemannian metric on HPD(2), we derive the 
expression of the distance and introduce the notion of mean value in this particular metric space. We 
address the question of why use other distances than the Euclidean one and what are the appropriate 
data to analyze with these distances. Eventually,  applications on simulated data and real data of a  
geodesic version of the classical K-means clustering algorithm are presented. 
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2 – Riemannian metric for polarization space.

2.1 Mathematical background.

We consider a Stokes vector  S. Its corresponding coherency matrix  Φ was given by Eq. (2). If 
both the eigenvalues of  Φ are non zero,  Φ  is  an element  of  HPD(2),  the  manifold of Hermitian 
Positive Definite matrices of dimension 2. A smooth action group of a Lie group G on a manifold M is 
defined       ( [18], p.90) as a mapping ϕ : G x M → M satisfying two conditions:
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where e is the identity element of  G. We choose to use italic characters to denote the elements of a 
group and bold characters for their matrix representation. Demonstrating (see Appendix A) that the 
mapping  associated  with  Eq.  (3),  defines  a  smooth  action  group  of  GL(2,)  on  HPD(2),  is 

straightforward. GL(2,) denoted the group of all non singular 2x2 matrices with complex entries. In  
order to construct a Riemannian metric on the manifold HPD(2), we use the following theorem from 
[18] p.357. It is worth noting that a similar demonstration is proposed in [19] but for the set of real 
symmetric definite matrices. 

Theorem 1

“Let G be a Lie group acting transitively on a manifold M. Thus M as a Riemannian metric such that  
the transformation determined by each element of G is an isometry if the isotropy group H of a point p  
∈ M is a connected compact Lie subgroup of G”.
  

The importance of the Riemannian manifolds derives from the fact that it makes the tangent space 
Tp(M) at each point p into a Euclidean space, with inner product denoted by < Xp , Yp >p on Tp(M). This 
enables us to define geodesics and the length of curves on M. Let p be a point of M, and Xp a tangent 
vector at p, there is a unique geodesic γ ( p, X )(t) on M  with initial point  γ( p, X ) (0) = p and tangent vector 
γ'(  p, X )  (0) =  Xp .  γ(  p, X )  (1), the point on the geodesic at which the parameter takes the value 1, is the 
exponential mapping noted Exp( Xp ) or Expp( X ). Since d γ(t) /dt is constant along a geodesic, the 
length L from γ( p, X )(0) to    γ( p, X ) (1) is:

                                                       
1 1

0 0

dγ(t)L dt dt
dt

= = =∫ ∫ p pX X                                                                (8)

and Exp( Xp ) is the point on the geodesic γ( p, X ) (t) determined by Xp whose distance from p along the 
geodesic is the length of Xp .

We demonstrate in appendix B, GL(2,) acts transitively on HPD(2) and the isotropy subgroup of 

Id  under the mapping ϕ, is U(2), the group of unitary matrices of dimension 2. As U(2) is a connected 
compact Lie group, HPD(2) has a metric that is invariant under the GL(2,) action defined by ϕ. The 
inverse mapping of Exponential mapping is defined by X = Logp(x) and named Log mapping. 

With y = ϕ (g-1, x ) = g-1 x g-†  :
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( )1exp Log ( ) log( )p x−= ⇒ = =-† †y g Xg X g y g                                         (10)

where log stands for the classical logarithm of matrix. So, it is possible to derive a practical expression  
of the Riemannian distance between two points p and x of HPD(2). With X, defined as X = Logp(x),  p 
= g g† and y = ϕ (g-1, x ) = g-1 x g-† (from Eqs. (8)(10) and (B2) ):
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Then using the classical Euclidean matrix norm on the tangent space:

( )
1

22d( , ) Tr log( ) =  yp x                                                               (12)

where Tr (A) denotes the trace of matrix A.

From an algorithmic point of view, the computation of the distance between p and x is based on 
the diagonalization of both these matrices and we have (see Appendix B) with g=p1/2 :
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With  Eq.  (13),  demonstrating   that  the  distance  can also  be computed  as  the  sum of  the  square  
logarithm of the eigenvalues of p-1x (generalized eigenvalues of p and x), is straightforward.

2.2 Properties and physical interpretation of this distance.

We now address the question of why use other distances than the Euclidean one and what are the 
appropriate data to analyze with these distances. By selecting the metric, we define the topology of the 
set.  Therefore,  if  more  than  one  metric  is  admissible,  selecting  among  them must  be  based  on 
additional information and constraints derived from the topology of the space or from the physical  
nature of the quantity. 

When making noisy measurements of Stokes parameters or coherency matrix, the accuracy of the 
estimation  is  increased  by performing  repetitive  measurements,  under  the  assumption  of  constant 
quantities over time. So we deal with different realizations of a Stokes vector (or coherency matrix) in 
the same pixel and we may expect that temporal interpolation will preserve the intensity. Euclidean 
metric is thus well-adapted since the trace of the coherency matrix is linearly interpolated with this 
metric. This is the well known principle of summation of waves. The coherency matrix as a physical  
quantity has a non negative determinant. However, noise or artifacts can result in Stokes parameter  
measurements  leading  to  negative  values  of  the  coherency  matrix  determinant.  The  positiveness 
requirement does not seem plausible in this context, a Euclidean space and its classical associated  
distance seem to be appropriate. With the summation of waves, the energy conservation principle is 
obvious. The consequence on the distance properties are trace conservation.

But if two pixels measure the Stokes parameters or coherency matrix in different points along the 
same object, this latter principal of intensity preservation is not so obvious. To illustrate this statement,  
we will first examine an elementary example. This example is just chosen as an illustration since it is 
based on fully polarized Stokes vectors corresponding to coherency matrices that are not elements of 
HPD(2). Nevertheless extending the conclusions to the elements of HPD(2), is straightforward.
We consider the measurement of Stokes parameters of a horizontally linear polarized light passing 
through a perfect linear polarizer with a rotating axis of polarization. The resulting Stokes vector has 
the following expression : 
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where θ stands for the angle between the rotating axis of the polarizer and the horizontal  polarization. 
The point locus is represented by the blue curve in Fig. 1. Assuming a uniform distribution of  θ 
parameter between - π/2 and  +π/2 for example, gives a Euclidean mean Stokes vector Smean = [  S0 /2 , 
S0 /4, 0, 0] represented by a blue star point in Fig. 1. When using the Euclidean distance for calculating 
the mean value, the resulting mean vector outgoing of a perfect linear polarizer is then a partially 
polarized one. However, a more physical meaning solution seems to be possible when defining the 
mean Stokes vector as the outgoing vector for the mean position of the polarizer. In this case, the mean 
vector is the outgoing vector for θ=0 and we have Smean = [ S0, S0, 0, 0 ] represented by a red star point 
in  Fig.  1.  This  is  also,  the  mean vector  corresponding to  the  solution derived from the geodesic 
distance applied to the manifold described by the Eq. (14) with variables S0 and θ. Then the Euclidean 
mean Stokes vector does not always seem to be the best solution.
In another part, it is worth noticing that the same input Stokes vector passing through a rotator with a 
rotation angle  θ, produces an outgoing vector with the following expression [  S0 ,  S0 cos(2θ), - S0 

sin(2θ), 0] and the same geodesic mean Stokes vector. The point locus is represented by the red curve  
in Fig. 1 with S0 =1. In the Poincaré representation, both these outgoing vectors describe the same set  
of points. The only way to discriminate them is to take into account their intensity components.  But,  
due to the severe limitations of the standard Euclidean calculus, problems appear when the intensity  
component is explicitly taken into account since it is treated independently from Eq. (5) constraint. As 
a consequence, methods like clustering algorithms, often work only on reduced components or on 
physical quantities derived from states of polarization of the wave (angles of polarization, DOP,..) but 
lose a part of the information. This problem does not happen with the geodesic approach.

Fig. 1: 3D representations (S3=0) of point locus of outgoing Stokes vectors from a 
polarizer (blue curve) and from a rotator (red curve) for a fully polarized input vector 
with unitary intensity. The blue star point is the Euclidean mean vector and the red 
star point is the geodesic mean vector.

The third point  is  that  we have a context  dependent  solution [21].  Each solution assumes an  
underlying manifold where the data are located and a related geodesic distance. For instance, in the  
previous examples, data are only authorized to be located on the blue or red line (see Fig. 1) but not in  
the full  space of the light  cone or in the full  Euclidean space.  Since Stokes vectors or coherency 
matrices can have a maximum of four degrees of freedom, the dimension of the related manifolds 
takes values from 1 to 4. It is possible to capture the underlying manifold structure of the data and 
determine its dimension by using a manifold learning technique called Isomap [21-23. It is obvious 
that the proposed geodesic distance is related to data living on a manifold structure of dimension 4,  
since there is no specific restriction on the HPD(2) manifold we consider. 

Having formulated the Riemannian distance of polarimetric space and established when we can 
use this distance, we now apply this definition for computing statistics in this space.



2.3 Average of coherency matrices.

The intrinsic mean µ of a random variable x in an arbitrary metric space was defined by Fréchet 
[24] as the points that minimize the variance:

( ) 22
x (p) E d p, x σ =                                                                          (15)

where d is geodesic distance on the Riemannian manifold M and E(x) denotes the expectation of the 
random variable x. This intrinsic mean is thus obtained as the result of a minimization process :

( )2arg min E d( , )
p M

p x
∈

 µ =                                                                      (16)

Pennec [25] describes an iterative algorithm based on a gradient descent technique to compute this 
minimum (the question of existence and uniqueness of the mean is not treated in this paper but see 
[25] [26] for details on this topic). With the input x = x1,..., xn, output  µ is the result of the gradient 
descent term:
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It  is  worth  noticing  that  this  definition  of  the  intrinsic  mean  value  gives  a  test  condition  to  
experimentally characterize non singular Mueller-Jones matrices. Since the mapping associated with  
Eq. (3), defines a smooth action group of GL(2,) on HPD(2), the transformation determined by each 

element  of  GL(2,) is an isometry (from Theorem 1). Thus, the Riemannian distance of Eq. (12) 
between two coherency matrices (two Stokes vectors respectively) is not modified by the action of a 
Jones  matrix  (Mueller-Jones  matrix  respectively).  According  to  the  definition  of  the  mean  value 
previously introduced, this property can be applied to the average of coherency matrices. Given a set  
of input Stokes vectors Sin and Sout the set of input vectors multiplied by a Mueller matrix M, if this 
matrix is a Mueller-Jones one, the mean value of Sout is the product of mean value of Sin by M.

Another consequence of the distance properties is related to the variance defined by Eq. (15). The  
variance of a random coherency matrix is not affected by the action of a non-singular deterministic 
Jones matrix. In other words, this variance is independent from the particular polarization properties of 
the  mean  value  when  the  congruency  transformation  defined  by  Eq.  (3)  is  acting  on  a  random 
coherency matrix. It is worth noticing that the corresponding property exists for the Euclidean space 
but with the translation operation.

3 – Experimentation on simulated and real data.

It is important to understand the structure of the space induced by metric. In the Euclidean case,  
the Poincaré sphere is a part of 3 where the sphere is embedded (or the hyper-cone is part of 4 for 
the Stokes vectors). Geodesics can also be defined in the Euclidean space. These geodesics as the 
shortest paths between two points in the Euclidean space, are the well known straight lines in this case.  
As elements of  3,  these straight lines are not constrained   to stay inside the Poincaré sphere, the 
physical solution field. In the Riemannian case, all matrices are by nature Hermitian  Positive Definite. 
The Riemannian distance of Eq. (12) involves a non linear structure of the associated space. This  
property can be verified with the example of Fig. 2. The distance between a totally unpolarized Stokes 
vector  and a  Stokes  vector  with variable  DOP  is  depicted.  Intensity value is  fixed to  2.  For  the 



extrinsic Euclidean distance on the Poincaré sphere, the value of the distance between these Stokes 
vectors is given by the value of the  DOP (Fig. 2, dotted line). For the intrinsic geodesic distance, a 
numerical calculus from Eq. (12) gives the values of the distance (Fig. 2, solid line). Since one of both  
matrices is proportional to identity matrix, the generalized eigenvalues are the eigenvalues of the other 
matrix and in this case, an analytical expression of the geodesic distance as function of eigenvalues of  
the other matrix, can be derived. These eigenvalues are functions of DOP and of the intensity S0 of the 
wave [11]. A straightforward calculus gives:
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showing an expression of the distance as a function of intensity and degree of polarization. It is worth 
noticing that the result is obtained with one of the matrices equal to the identity one, and is not a  
general property of the proposed geodesic distance. If both matrices are different from the identity 
one, the distance depends on the intensity and polarization state and not only of degree of polarization.  
Non linear effects induced by the expression of Eq. (18) are reported by Fig. 2 where intensity value is 
fixed to 2.

Fig. 2 – Euclidean distance (dotted line) and geodesic distance (solid line) as function 
of DOP with S0 =2

As consequences  of  non linear effects on statistics,  random variables with the same geodesic 
variance as defined by Eq. (15) should have different Euclidean representations according to the mean 
state of polarization. So, the notion of polarimetric contrast may be revisited. This statement can be 
illustrated by the example of normal distributions of coherency matrices on the HPD(2) manifold.

3.1 Simulated data with a normal law.

We define Gaussian distributions on Lie group following Grenander [27], as a solution to the heat 
equation defined in the local coordinates of the Lie group. To construct the corresponding normal law, 
we use the approach proposed by Langlet & al. [28] based on the works of Pennec [25] The property 
that is taken for granted is the maximization of the entropy knowing the mean and the  covariance 
matrix. These authors show that such a method can provide computationally tractable approximations 
for any manifold in case of small variances.
We generate a set of random coherency matrices so that they follow a generalized normal law with a  
mean coherency matrix  Φ and a covariance matrix  Λ.  As the coherency matrices  have only four 
degrees of freedom (the four Stokes vector components for instance) the covariance matrix Λ can be 
defined by the covariance matrix of the associated Stokes vector components. See Appendix C for a 
description of the corresponding algorithm that we adapt from [28] to the case of HPD(2) manifold. 
Fig.  3  shows the points  locus in  the  Poincaré  sphere  representation of  samples  generated by the  
algorithm with different configurations of mean coherency matrix and the state of polarization of the 
mean point.



The value of the variance is constant and fixed to 0.005. Samples in Fig.3-a correspond to a mean 
coherency matrix associated to the Stokes vector [ 1, DOP, 0, 0] with DOP = 0.1 (blue), 0.6 (red) and 
0.9 (green). Samples in Fig. 3-b correspond to a mean coherency matrix  associated to the Stokes 
vector [ 0.3742/DOP  0.1, 0.2, 0.3] with DOP = 0.1 (blue), 0.6 (red) and 0.9 (green). In both figures, 
points for DOP = 0.9 are represented after a sign inversion in order to have a better representation. 
Although  DOP has  the  same  values  in  the  both  configurations,  the  set  of  generated  states  of 
polarization highly depends on intensity values.

                                                   (a)                                                           (b)

Fig.  3  :  Examples  of  Poincaré  sphere  representation  of  samples  with  generalized 
Gaussian distribution for a variance fixed to 0.005. The mean point has a DOP of  0.1 
(blue), 0.6 (red) and 0.9 (green). (a) : Intensity of the mean point is fixed to 1. (b):  
intensity of the mean point is variable.

The value of the variance is constant and fixed to 0.005. Samples in Fig.3-a correspond to a mean 
coherency matrix associated to the Stokes vector [ 1, DOP, 0, 0] with DOP = 0.1 (blue), 0.6 (red) and 
0.9 (green). Samples in Fig. 3-b correspond to a mean coherency matrix  associated to the Stokes 
vector [ 0.3742/DOP  0.1, 0.2, 0.3] with DOP = 0.1 (blue), 0.6 (red) and 0.9 (green). In both figures, 
the points for DOP = 0.9 are represented after a sign inversion in order to have a better representation.  
Although DOP has the same values in both configurations, the set of generated states of polarization  
highly depends on intensity values.

3.2 Mean value estimation.

Based on these simulated data, we perform an estimation of the mean coherency matrix using the 
algorithm depicted in section 2.3. Rather than the estimated values of matrices, which are not easy to 
analyze, we prefer to plot the computed DOP and polarization angle of the wave associated with these 
estimated mean coherency matrices. Fig. 4-a and 4-b show these estimated values (green star points) 
of DOP and polarization angle respectively. The mean coherency matrices to estimate, are related to  
the Stokes vectors [ 1, DOP, 0, 0] for DOP values between 0.05 and 0.95.The theoretical values are 
plotted as a blue line. The estimation with the classical Euclidean distance are plotted as a red line.  
Fig. 5-a and 5-b show the same quantities but for mean coherency matrices estimation  related to  the 
Stokes vectors                 [ 0.3742/DOP  0.1, 0.2, 0.3]. These results show the ability of our method to  
correctly estimate the coherency matrix and the difficulties of Euclidean estimation for points closed  
to the boundaries of the manifold (when the DOP is increasing).

3.3 Real data

As an illustration of advantages of geodesic distance to analyze real data, we address the K-means  
clustering technique [29]. K-means clustering partitions observations into K clusters in which each 
observation belongs to the cluster with the nearest mean. This algorithm uses a two-phase iterative 
process to minimize the sum of point-to-centroid distances. In a first phase each iteration consists of  
reassigning points to their nearest cluster centroid. Cluster centroids are recomputed. In the second 
phase, points are individually reassigned if doing so will reduce the sum of distances. Cluster centroids 



are  recomputed  after  each  reassignment.  So  this  technique  may  be  based  either  on  the  classical 
Euclidean distance or on the proposed geodesic distance. From a practical point of view, we define the 
Geodesic K-means algorithm as a K-means algorithm on the tangent space. It means that the samples 
are first transformed by the Log mapping as an element of the tangent space. A classical K-means  
algorithm is applied on this linear space and the results are transformed by the Exponential mapping as  
elements  of  the  original  space.  Obviously,  this  is  only  a  first  order  approximation  (linear 
approximation) of a full  geodesic K-means algorithm.  The error is minimal  around 0 and as it  is  
always possible to define a mapping   that is a tangent vector at  Id (see previous paragraphs), this 
mapping assures that the error is minimized. These clustering algorithms are tested on real data. Fig. 6 
shows an example of "Stokes imaging" as a measurement of the four entries of Stokes vectors attached 
to each pixel in the image. This is an image of a thin dielectric deposit (text) on a metallic object (the 
text was written with a lacquer for hair). In the experimental configuration, the polarimeter is fixed in  
the vertical reference direction, a linear +45° polarized light source ( S = [S0,0, S0, 0]T ) is illuminating 
the objects. A complete description of the measurement system can be found in [7]. Following the 
previous remarks of section 2.2 about the importance of the intensity component in clustering process,  
we applied the proposed geodesic approach on coherency matrices associated to the Stokes parameters  
of Fig. 6.

Fig. 4 : Estimated values (green star points) of DOP (a) and polarization angle (b) for 
the Stokes vector [ 1, DOP, 0, 0] as function of DOP values The theoretical values are 
plotted as a blue line. Estimation with the classical Euclidean distance are plotted as a 
red line. 

Fig. 7 shows the resulting clusters for both methods where the clusters number is fixed to 3. The  
pixels position belonging to these 3 Euclidean or geodesic clusters are depicted in Fig. 8 using a three 
grey levels scale. These images clearly demonstrate the advantages of  the geodesic approach



Fig. 5 : Estimated values (green star points) of DOP (a) and polarization angle (b) for 
the  Stokes  vector  [  0.3742/DOP   0.1,  0.2,  0.3]  as  function  of  DOP  values  The 
theoretical values are plotted as a blue line. Estimation with the classical Euclidean 
distance are plotted as a red line. 

Fig. 6: Images of the Stokes parameters of a thin dielectric deposit (text) on a metallic 
object

Fig. 7. Poincaré representation of Euclidean and geodesic K-means clusters

Fig. 7: Euclidean and geodesic clusters representation in the Poincaré Sphere 



Fig. 8: Euclidean and geodesic clusters representation in the image using a three grey 
levels scale

4 – Conclusion.

Working on the assumption that from an experimentalist point of view, pure states of polarization 
are  very unlikely to  exist  in  polarimetric  images,  we  introduced the  notion  of  geodesic  distance 
associated to the polarization space of non-singular coherency matrices. We showed how this distance  
can be directly related to the Jones calculus. We investigate the question of why use other distances  
than Euclidean one and what are the appropriate data to analyze with these distances. The question of 
generalized Gaussian distribution of coherency matrices is also addressed. Eventually, applications on 
simulated data and real data of a geodesic version of the classical K-means clustering algorithm are  
presented. The results demonstrate the advantages of the geodesic approach specially when  DOP is 
high since for low DOP, the non-linear effects are less sensitive.

Appendix A

The mapping ϕ  defined as : 

( )(2, ), , , x∀ ∈ ∀ ∈ = †g GL x HDP(2) g g x g£ ϕ                                          (A1)

is a smooth action group of GL(2,) on HPD(2). We first demonstrate ϕ  is a mapping of GL(2,) on 

HPD(2). If x ∈HPD(2), we have x† = x and then:

( ) ( )(2, ), ,∀ ∈ ∀ ∈ = =
† †† † † † †g GL x HDP(2) g x g g  x  g g x g£                           (A2)

So, ϕ (g,x) is Hermitian.

If we consider v ≠ 0 ∈ 2, v† (g xg†  )v = (v† g ) x (v† g )† = u† x u  with u =  g† v. We have u ≠ 0 since v 

≠ 0 and det(g)≠ 0. But for x ∈HPD(2) and   u ≠ 0 ∈ 2,  u† x u > 0 is the definition of positiveness of 

x and then ϕ (g,x) is positive definite. To conclude, ϕ  must satisfy the both conditions of Eqs. (7). The 
first condition of Eq. (7) is obvious. The proof of the second condition is given by:



( )
( )( ) ( ) ( )

, (2, ) (2, ), ,

, , ( ) ( ) ,

∀ ∈ × ∀ ∈

= = = =† † † †

1 2

1 2 1 2 2 1 2 2 1 1 2 1 2 1 2

g g GL GL x HDP(2)

g g x g ,g xg g g  x g g g g  x g g g g x

£ £

ϕ ϕ ϕ ϕ
               (A3)

Appendix B

Let G a group acting on a set M , the orbit of x ∈ M  is defined as the set Gx = {ϕ (g , x ) / g ∈ 
G }. If Gx = M for some x, then G is said to be transitive on M or the G-action to be transitive on M. 
In this case Gx = M for all  x.  GL(2,) is transitive on HPD(2), since all Hermitian definite positive 
matrix Φ can be decomposed as:

( ),φ g e= =†Φ gg                                                              (B1)

where e= Id is the Identity matrix of rank 2 and g ∈ GL(2,). 

The  isotropy subgroup of  x  ∈ M, is the subgroup of  G defined by the set of G  -elements that 
leaves the point x  fixed. This subgroup is  G.x = { g ∈ G /  ϕ (g , x  ) = x  }. For  HPD(2) under the 
mapping ϕ, the isotropy subgroup of Id is U(2), the group of unitary matrices of dimension 2, since ϕ 
(g , e ) = e gives from a matrix point of view  g Id g† = g  g†  = Id, that is a definition of g as a unitary 
matrix.

The Lie algebra  g of  a Lie group  G is  the tangent  space at  the identity with the Lie bracket 
operation defined by [X,Y] = XY-YX (For more information on this subject, the reader is referred to 
[20] ). Then, it is possible to identify Te(M). The Lie algebra of matrix Lie group G is the set of all 
matrices  X such  that  exp(tX)  is  in  G for  all  real  numbers  t  (where  exp stands  for  the  classical 
exponential of matrix).

For X ∈ H(2), the group of Hermitian matrices, y = exp(tX) is Hermitian definite positive ( y ∈ 
HPD(2) ). This property is straightforward since:

exp (tX) = exp [ t ( X/2 + X/2)] = exp [ t ( X† /2 + X/2)] = exp (t X /2)†  exp (t X /2)

( since the classical relation exp(A+B)=exp(A)exp(B) if [A,B]=0 is verified). This last expression is 
obviously an hermitian definite positive matrix. Then, H(2) the manifold of Hermitian matrices is the 
tangent space of HPD(2) at Id.

For the smooth action group of a Lie group G on a manifold M defined by the mapping ϕ( g , x ) ,  
the differential  dϕ (g , x  ) of  ϕ  at a point p ∈ M will be a map of Tp(M) to Tϕ ( g , p) (M). Thus, the 
mapping  ϕ associated with Eq. (3), gives  dϕ (g  , X  ) =  g X g†  , that is a tangent vector at gpg† to 
HPD(2). It is straightforward to check that all the resulting tangent spaces are  H(2) since each  p ∈ 
HPD(2) can be write as p = g g† then, it is always possible to define a map dϕ (g-1, X ) = g-1 X g-† that is 
a tangent vector at  Id to  HPD(2). According to Theorem 1, the corresponding transformations are 
isometries and we have:

( ) ( ), d , ,d ,-1 -1
p p p pp Id

X Y g X g Yϕ ϕ=                                           (B2)

For the geodesic with Y = dϕ (g-1, Xp ) = g-1 Xp g-† 

1
( ) ( ), (t) (t) exp(t )p ,X Id ,Ygϕ γ γ−  = =  Y                                                 (B3)

then

( )( ) ( )(t) , (t) exp tp , X Id ,Ygγ ϕ γ = = 
†g Y g                                               (B4)

As Exp( Xp ) =  γ( p, X ) (1) = x, we have:



( )( ) (1) expp ,Xγ = †g Y g                                                             (B5)

Appendix C

Algorithm for  the  generation of  coherency matrices  with a generalized normal  distribution  of 
small variance.

Input : Φ the mean coherency matrix of the distribution and Λ the covariance matrix
output : Φk 
1 – Perform the Cholesky decomposition Λ = HHT

2 – Generate a random vector  4z ¡∈  with independent and identically distributed components and 
with zero mean.
3 – Reshape  Xk =  Hz as an Hermitian matrix  ( an element  of the tangent  space of  HPD(2), see 
Appendix B )
4 – Compute  ( ) 1

exp
−

 = − 
-1

k kΦ Φ X Φ
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