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Abstract

The debate between niche-based and neutral community theories centers around the ques-
tion of which forces shape predominantly ecological communities. Niche theory attributes
a central role to niche differences between species, which generate a difference between the
strength of intra- and interspecific interactions. Neutral theory attributes a central role
to migration processes and demographic stochasticity. One possibility to bridge these two
theories is to combine them in a common mathematical framework. Here we propose a
mathematical model that integrates the two perspectives. From a niche-based perspec-
tive, our model can be interpreted as a Lotka-Volterra model with symmetric interactions
in which we introduce immigration and demographic stochasticity. From a neutral per-
spective, it can be interpreted as Hubbell’s local community model in which we introduce
a difference between intra- and interspecific interactions. We investigate the stationary
species abundance distribution and other community properties as functions of the inter-
action coefficient, the immigration rate and the strength of demographic stochasticity.

Keywords: demographic stochasticity, immigration, Lotka-Volterra model, neutral com-
munity model, species abundance distribution
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1 Introduction

Community ecology aims at describing the forces that structure ecological communities.
Classical theories explain community dynamics in terms of species niches [1, 2]. Niche
theory states that the long-term coexistence of species is possible only if their niches are
sufficiently separated. Niche differences can be due to a range of mechanisms, such as
different ways to use resources, different interactions with competitors or mutualists, and
different spatial and temporal characteristics. The Lotka-Volterra competition model pro-
vides a convenient mathematical framework to deal with species niches [3, 4]. In this model,
niche differences are effectively taken into account as differences between the strength of
intra- and interspecific competition. The more species niches overlap, the larger the ratio
of inter- and intraspecific competition strength (equal to the parameter α in our model).
Hence, the Lotka-Volterra model can be considered as a minimal model of niche theory.

Neutral theory takes a quite different approach to community ecology [5, 6]. It starts
from the assumption that species are identical in all characteristics that may affect their
population dynamics. Community structure is the result of stochastic birth-death pro-
cesses. Species coexistence is guaranteed in a trivial way, by considering a constant species
flow into the community (interpreted as immigration or, on a larger scale, as speciation).
Hubbell’s local community model, in which a demographically fluctuating community of
fixed size receives immigrants from a large species pool, has become the reference neutral
model [6, 7]. This minimal combination of demographic stochasticity and immigration can
generate a range of community patterns, matching some empirical data surprisingly well.

It is now generally accepted that niche-based and neutral community models should not
be seen as radically opposed model paradigms [8, 9, 10, 11]. Rather, each of these model
classes emphasizes a distinct set of ecological mechanisms. Neither the niche-based nor the
neutral framework exclude the integration of additional processes in principle. Hence, it
should be possible to construct more general community models that take into account the
mechanisms involved in both niche theory and neutral theory. Such integrative models
would allow us to bridge the conceptual gap between the two theories. In particular,
they could reveal which mechanisms exactly underlie the simplifying approach of neutral
community models, and its empirical successes.

In this paper we build an integrative community model that incorporates demographic
stochasticity, immigration flow, and (competitive or mutualistic) species interactions. To
avoid intractable constructions, our model combines a minimal niche model and a minimal
neutral model. As a minimal niche model, we consider the Lotka-Volterra equations with
symmetric species interactions. This means that (a) intraspecific interaction strength is
the same for all species, and that (b) interspecific interaction strength is the same for all
species pairs (but intra- and interspecific interaction strengths can differ). As a minimal
neutral model, we consider Hubbell’s local community model. The resulting model has a
limited number of parameters, can be handled analytically, and allows a systematic study
of its stationary behaviour.

Recently, other proposals have been made to introduce niche features into the neutral com-
munity framework. Some papers have considered intraspecific interactions, or equivalently,
species-level density dependence, meaning that growth rates depend on the density of con-
specifics only [12]. Other papers have considered interspecific interactions, or equivalently,
community-level density dependence, meaning that growth rates depend on the total den-
sity of all individuals in the community [13, 14, 15]. The community model of this paper
includes both intra- and interspecific interactions, and therefore unifies previous, separate
treatments of species-level and community-level density dependence. Related models have
been studied by Loreau & de Mazancourt [16], who used a linear approximation to study
the synchronization of population fluctuations, and by Volkov et al. [17], who used moment
equations to infer species interactions from abundance data.

Niche processes can also be introduced more explicitly into neutral-like models. For ex-
ample, species-specific habitat preferences can be defined in a spatially heterogeneous
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environment, and regulate the stochastic birth-death dynamics of the different species.
This is close in spirit to metacommunity models [18], and has been considered in a neutral
setting by several authors [19, 20, 8, 21]. Here we do not consider spatial heterogeneity,
but restrict our attention to a local community. We consider immigration from a large
species pool, without modeling the species pool dynamics. We compare the effects of
the immigration process and the internal community dynamics (intra- and interspecific
interactions, and demographic stochasticity) on community patterns.

2 Population model

Before tackling the multi-species community model, we study a dynamical model for a
single species. The population model will be the basic building block for the community
model of the next section. It can be obtained from the logistic growth model by adding
demographic stochasticity and immigration. The resulting stochastic logistic model (with
or without immigration) has been studied extensively [22, 23, 24]. Here we recall some
basic model properties, and introduce a number of analytical tools; both properties and
tools will be useful for the study of our community model.

As a baseline model, we consider the deterministic population model with logistic growth
and immigration,

dN

dt
= rN

(
1− N

K

)
+ μ, (1)

with population size N , intrinsic growth rate r, carrying capacity K and immigration rate
μ. The model (1) has a single equilibrium N∗,

N∗ =
K

2

(
1 +

√
1 + 4

μ

rK

)
, (2)

which is globally stable. For weak immigration (μ � rK), the equilibrium population
size N∗ is close to the carrying capacity K. For stronger immigration, the equilibrium
population sizeN∗ increases with the immigration rate μ. In the latter case, the population
is externally forced to a larger size than its internal dynamics can sustain.

2.1 Construction of the stochastic model

To include demographic stochasiticity into (1), we take into account the discrete nature of
the population size N , i.e., the population size N can only take integer values 0, 1, 2, . . .,
in contrast to the continuous variable N of model (1). The stochastic model dynamics
consist of a series of events affecting the population size N : the population can increase by
one individual due to a birth or immigration event, and it can decrease by one individual
due to a death event. We have to specify the rate at which these events occur: denote
by q+(N) the rate of population increase, and by q−(N) the rate of population decrease.
This means that during a small time interval δt, the probability

that the population size increases by one equals q+(N)δt,

that the population size decreases by one equals q−(N)δt,

that the population size stays the same equals 1− (q+(N) + q−(N)
)
δt.

Note that by going from a continuous to a discrete variable N , we have simultaneously
gone from a deterministic to a stochastic model (see Appendix A for the notation we use
to describe stochastic models).

To construct a stochastic version of population model (1), we have to specify the transition
rates q+(N) and q−(N). In Appendix B we show that the deterministic part of a stochastic
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population model with transition rates q+(N) and q−(N) is given by the difference q+(N)−
q−(N). Formally,

E[δN ]

δt
= q+(N)− q−(N), (3)

where E[δN ] is the expected change in population size in a small time interval δt (see (B1)
for a more rigorous formulation). Hence, by requiring that

q+(N)− q−(N) = rN
(
1− N

K

)
+ μ, (4)

we guarantee that the expected, i.e. deterministic, behaviour of the stochastic population
model is identical to that of the corresponding deterministic model (1).

Condition (4) does not fix uniquely the transition rates q+(N) and q−(N). After imposing
the difference q+(N)− q−(N), we still can choose the sum q+(N) + q−(N) independently.
In Appendix B we show that the sum of the transition rates q+(N) and q−(N) measures
the intensity of the stochastic fluctuations superimposed on the deterministic model (3).
Formally,

Var[δN ]

δt
= q+(N) + q−(N), (5)

where Var[δN ] is the variance of the change in population size, see (B2). As a consequence,
there are different ways to incorporate demographic stochasiticity into model (1), leading
to different stochastic population models.

To illustrate this, we consider two possible choices for the transition rates q+(N) and
q−(N). As a first choice, take

q+(N) = r+N + μ

q−(N) = r−N +
r

K
N2, (6)

with r = r+ − r−. Transition rates (6) attributes density dependence entirely to death
events: the per capita death rate r−+ r

K
N increases as population size increases, whereas

the per capita birth rate r+ is constant. We call this the density-dependent mortality
version of the model. Rates (6) satisfy condition (4), so that the corresponding stochastic
model has deterministic part given by (1).

A second choice attributes density dependence entirely to birth events,

q′+(N) = r′+N − r

K
N2 + μ

q′−(N) = r′−N, (7)

with r = r′+ − r′−. The per capita birth rate r′+ − r
K
N decreases as population size

increases, whereas the per capita death rate r′− is constant. We call this the density-
dependent natality version. Again, transition rates (7) satisfy condition (4), and lead to a
deterministic part given by (1). Note that to avoid negative transition rates, there should
be a maximal population size for the density-dependent natality case (7).

The choice between (6) or (7) depends on the nature of the density dependence, whether
it affects birth or death rate. One could also consider intermediary cases, in which density
dependence is present in both rates q+(N) and q−(N), which would also be compatible
with condition (4). Because the density-dependent mortality (6) and natality (7) versions
can be considered as two limiting cases, we focus on these two versions to study the
sensitivity of our model to q+(N) and q−(N).

2.2 Stationary distribution

We have constructed two stochastic versions of our population model given by (6) and (7),
both adding demographic stochasticity to the deterministic model (1). We compute and
compare the stationary distribution for the population size N for both versions.
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The stationary distribution of population abundance can be computed explicitly, for any
combination of transition rates q+(N) and q−(N), see Appendix C. Figure 1A shows the
stationary distribution for different parameter combinations, and for the density-dependent
mortality (6) and natality (7) versions. Recall that, by construction, the two forms of
density dependence have the same deterministic behaviour (3), but the intensity of their
stochastic fluctuations (5) is different. Parameters were chosen such that at carrying
capacity K ≈ N∗ the variance of population fluctuations is the same (this condition is
satisfied by taking r+ = r′−). Note that the density-dependent mortality version (6) has
larger fluctuations for population size N > K, while the density-dependent natality version
(7) has larger fluctuations for population size N < K.

We compute the stationary distribution for different values of r−, which can be considered
as a proxy for the intensity of demographic stochasticity. The stationary distributions
for the density-dependent mortality version (6) (red curve) and for the density-dependent
natality version (7) (green curve) almost coincide for all values of r−. For small values of
r− (left panel), the distribution is concentrated at the equilibrium population size N∗ of
the deterministic model. When increasing the value of r−, the intensity of demographic
stochasticity increases, and the stationary distribution gets wider. The main mode of the
distribution is still located at N = N∗, but a second, smaller mode appears at N = 0
(middle panel). For even more intense demographic stochasticity, the mode at N = N∗

decreases and ultimately disappears, while the probability of a small population further
increases (right panel).

Figure 1A also shows the stationary distribution of a linear approximation that is often
used in population ecology [23, 24, 25]. The approximation consists in linearizing the
non-linear population model (1), and replacing the discrete randomness of demographic
stochasticity by continuous Gaussian random variables, see Appendix B. A first variant
of the linear approximation (blue curve) is based on a linearization in terms of the pop-
ulation size N , see Eq. (B4) in Appendix B; a second variant (magenta curve) is based
on a linearization in terms of the logarithmic population size lnN , see Eq. (B5). The two
versions of our model have the same linear approximations because they correspond to
the same deterministic population model (1), and they have the same fluctuation variance
at carrying capacity. Both approximations are excellent for small demographic stochas-
ticity, i.e. for small r−, but deteriorate rapidly for larger values of r−. In particular, the
approximations describe poorly populations for which the probability of extinction is not
negligible.

Population size can vary over orders of magnitude, and is therefore more conveniently
represented on a logarithmic scale. Figure 1B shows the same stationary distributions as
Figure 1A, but now as probability densities for the logarithmic population size log2 N . We
use a base-two logarithm, as is customary in Preston plots. The transformation is given
by

P[log2 N ] ≈ ln(2)N P[N ], (8)

where we assumed that the population size can be considered as a continuous variable.
Note that the population size N = 0 is not representable on a logarithmic scale, so that the
population size distribution is conditioned on N > 0. For small demographic stochasticity,
the distribution is log-normal, i.e. normal on a logarithmic scale. For larger demographic
stochasticity, the logarithmic population size distribution is left-skewed. Note that, al-
though the mode at N = N∗ disappears in the linear size distribution, it remains in the
logarithmic size distribution.

2.3 Population properties

We have compared the stationary population size distributions of the density-dependent
mortality and the density-dependent natality versions of our model. We have shown that
the two versions lead to very similar distributions over a wide range of parameter values.
We now perform a more systematic study for the density-dependent mortality case (6).
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Rather than computing the entire stationary distribution for all parameter combinations,
we consider here a limited number of population properties:

• the mean population size E[N ];

• the variability of population size, measured by the coefficient of variation CV[N ];

• the probability that the population is extinct, P[N = 0].

To facilitate comparison with the community model in the next section, however, we will
consider the mean number of species E[S] = 1 − P[N = 0] instead of the extinction
probability. Note that for the population model the statements S = 1 and N > 0 are
equivalent. Note also that extinction is not fatal in our model, because immigration can
initiate the population again.

Figure 2 plots the three population properties as functions of the intensity of demographic
stochasticity r− and the immigration rate μ. For small demographic stochasticity, the
population size has a sharp distribution (CV[N ] ≈ 0.1) centered at the equilibrium N∗. In
this parameter region, the stochastic model is close to its deterministic counterpart. The
correspondence between the deterministic and stochastic models gets even better for larger
immigration rates. For larger demographic stochasticity, mean population size decreases
below the equilibrium N∗, and population size variability increases rapidly. For small
immigration rate, there is a sharp transition to population extinction (E[S] ≈ 0).

It is interesting to compare the exact results of Figure 2 with the commonly used linear
approximations, see Appendix B. Figure S2 shows the same population properties as in
Figure 2 but computed using approximation (B4). The results for approximation (B5) are
very similar (not shown). In the linear approximation, mean population size and mean
number of species are independent of demographic stochasticity, and identical to the exact
values for small demographic stochasticity. The approximate variability CV[N ] coincides
with the exact values when demographic stochasticity is weak, but is too small for strong
demographic stochasticity. Again, we find that the linear approximation is accurate for
small values of r−, but deteriorates rapidly for larger values of r−.

3 Community model

In the previous section we added demographic stochasticity to a minimal population model.
Here we generalize this approach to a multi-species community model. We start from
the Lotka-Volterra model, which can be considered as a minimal community model with
species interactions. Analogously with the population model, we propose an individual-
based, stochastic community model, and compute its stationary distribution.

We build up from a deterministic community model, including (competitive or mutualistic)
species interactions and immigration. The internal community dynamics are governed by
the Lotka-Volterra equations,

dNi

dt
= rNi

(
1− Ni + α

∑
j �=i Nj

K ′

)

= rNi

(
1− (1− α)Ni + α

∑
j Nj

K ′

)
i = 1, 2, . . . , ST, (9)

with Ni the abundance of species i, r the intrinsic per capita growth rate, K ′ the species-
level carrying capacity, α the interaction coefficient, and ST the total number of species.

Species interactions are competitive for α > 0, and mutualistic for α < 0. When species
interactions are competitive, if the abundance of a species is increased by δN , then its
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own per capita growth rate is decreased by r
K′

δN , while the per capita growth rate of
another species is decreased by α r

K′
δN . Using the change in growth rate as a measure of

interaction strength, the interaction coefficient α can be interpreted as the ratio between
inter- and intraspecific interaction strength. When species interactions are mutualistic, a
similar interpretation holds, but in this case an increase in the abundance of one species
causes an increase in the growth rate of the other species. Note that the factor 1 − α is
proportional to the difference between intra- and interspecific interaction strengths.

The parameter K ′ appearing in model (9) is called the species-level carrying capacity,
because it is equal to the equilibrium population size in the absence of other species.
It should be contrasted with the community-level carrying capacity K, defined as the
equilibrium community size,

K =
∑
i

N∗
i =

STK
′

1 + α(ST − 1)
. (10)

with N∗
i the equilibrium abundance of species i,

N∗
i = N∗ =

K ′

1 + α(ST − 1)
.

When 0 < α < 1, the species-level carrying capacity K ′ is smaller than the community-
level carrying capacity K. Because the interaction between heterospecifics is weaker than
between conspecifics, the carrying capacityK ′ as perceived by an isolated species is smaller
than the carrying capacityK of the entire community. When α = 1, all individuals interact
with the same strength irrespective of their species identity, and both carrying capacities
K and K ′ are equal. When α = 0, the niches of the various species do not overlap,
their dynamics are independent, and the community-level carrying capacity is the sum of
the species-level carrying capacities, K = STK

′. For competitive interactions, we have
α > 0 and K < STK

′ due to niche overlap; for mutualistic interactions, we have α < 0
and K > STK

′. Note that for fixed K, the species-level carrying capacity K ′ goes to
zero for α → − 1

ST−1 ; for fixed K ′, the community-level carrying capacity K diverges for

α→ − 1
ST−1 .

The parameters r and K ′ are the same for all species, and the interaction coefficient α is
the same for all species pairs. This implies that the community model (9) has a symmetry:
permutating the species does not change the model equations.

Next, we add immigration to the internal dynamics (9). We assume that individuals can
immigrate into the community from a much larger species pool. All ST species are present
in the species pool, and have the same abundance. Although different from Hubbell’s
model, this assumption is natural for neutral community models [26]. As a result, the
immigration rate μ from the species pool is the same for all species. This leads to the
following equations,

dNi

dt
= rNi

(
1− (1− α)Ni + α

∑
j Nj

K ′

)
+ μ i = 1, 2, . . . , ST. (11)

Again, all species have the same parameters, so that this model has species permutation
symmetry. Model (11) has a single equilibrium

N∗
i = N∗ =

K

2ST

(
1 +

√
1 + 4

STμ

Kr

)
, (12)

which is globally stable for μ > 0 and α ≤ 1. For weak immigration (μST � rK), the
equilibrium species abundanceN∗ is close to the species carrying capacity K

ST

. For stronger
immigration, the species populations and the community as a whole are externally pushed
above their carrying capacities.

7



3.1 Construction of the stochastic model

To introduce demographic stochasticity into the deterministic model (11), we first re-
place the continuous species abundances Ni by discrete variables that can only take
values 0, 1, 2, . . .. The community composition is described by the abundance vector
�N = (N1, N2, . . . , NST

), a vector of ST integers.

The dynamics occur in the form of a series of stochastic events. During each event, one of
the species increases its abundance by one individual due to a birth or immigration event,
or decreases its abundance by one individual due to a death event. We have to specify
the transition rates. Given community composition �N , we denote the rate of increase for
species i by qi+( �N), and the rate of decrease for species i by qi−( �N ).

We look for a stochastic model the expected, i.e. deterministic, behaviour of which is given
by (11). In Appendix D we show that the deterministic part of the stochastic community
model is

E[δNi]

δt
= qi+( �N )− qi−( �N),

where E[δNi] is the expected change of species abundance Ni in a small time interval δt,

see (D2). Hence, the transition rates qi+( �N) and qi−( �N) have to satisfy

qi+( �N)− qi−( �N) = rNi

(
1− (1− α)Ni + α

∑
j Nj

K ′

)
+ μ.

Analogously with the population model, different choices are possible for the rates qi+( �N)

and qi−( �N). Here we use a generalization of the density-dependent mortality version of
our population model (6),

qi+( �N) = r+Ni + μ

qi−( �N) = r−Ni + rNi

(1− α)Ni + α
∑

j Nj

K ′
, (13)

with r = r+ − r−. Both species-level density dependence (first term in nominator of

qi−( �N)) and community-level density dependence (second term in nominator of qi−( �N))
are incorporated into the death rate. Transition rates (13) are only valid for α ≥ 0, because

qi−( �N) can become negative for α < 0. For α ≤ 0 we take

qi+( �N) = r+Ni + rNi

(−α)∑j Nj

K ′
+ μ

qi−( �N) = r−Ni + rNi

(1− α)Ni

K ′
, (14)

again with r = r+ − r−. Now species-level density dependence is part of the death rate,
and community-level density dependence is part of the birth rate. Note that definitions
(13) and (14) coincide for α = 0.

Transition rates (13–14) define the stochastic community model that we study in this
paper. Table 1 summarizes all model parameters. Putting r = 1 corresponds to fixing
time units, which can be done without loss of generality. Once r is fixed, the parameter
r− can be interpreted as a measure of the intensity of demographic stochasticity. Indeed,
increasing r− does not affect the deterministic part of the community model, but augments
the variance of stochastic fluctuations, as we show in Appendix D, see (D3).

3.2 Stationary distribution

We study the stationary species abundance distribution of the stochastic community model
defined by transition rates (13–14). A full derivation can be found in Appendix E; here
we give an outline of the computations.
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Table 1: Parameters of the stochastic community model. Three parameters (ST, r,K) are
unchanged in all figures (except in Figure 4B); three parameters (α, r−, μ) are varied over
the ranges indicated; two parameters (r+,K

′) are simple functions of the previous ones.

symbol meaning value

ST total number of species ST = 20
(some species can be absent from the community)

r per capita intrinsic rate of population increase r = 1

K carrying capacity of community K = 400 �

α interaction coefficient α ∈ [−0.05, 1]
(competitive for α > 0, mutualistic for α < 0)

r− per capita intrinsic death rate r− ∈ [0.1, 100]
(measure for intensity of demographic stochasticity)

μ immigration rate of a species μ ∈ [0.001, 100]

r+ per capita intrinsic birth rate r+ = r + r−

K ′ species-level carrying capacity see (10) �

� In Figure 4B the species-level carrying capacity K ′ is constant, K ′ = 100, and the
community-level carrying capacity K is computed from (10)

The stationary distribution can be solved exactly for two special cases. When α = 0, the
interaction between individuals is purely intraspecific, and the ST species have independent
dynamics. The stationary distribution of the community model is the product of the
stationary distributions of the various species, see (E2). When α = 1, the interaction
between individuals is completely symmetrical, i.e., individuals interact with each other
independently of the species they belong to. In that case, the model belongs to a class of
community models with community-level density dependence [14], for which the stationary
distribution is known explicitly, see (E4).

For other values of the interaction coefficient α, − 1
ST−1 < α < 0 and 0 < α < 1, we were

unable to obtain an explicit expression for the stationary distribution. In Appendix E we
present an approximation that matches closely the stationary distribution obtained from
stochastic simulations, see Figure S1. Moreover, by taking the limits α → 0 and α → 1
of our approximation, we recover (exactly, or with very good accuracy) the solutions for
α = 0 and α = 1. We also compared the results obtained in Figure 4A from simulating the
stochastic process with our approximation: the results were almost identical. Therefore,
we confidently use our approximation to investigate the stationary distribution of the
community model.

We also derive a linear approximation for the community model and compute the cor-
responding stationary distribution in Appendix D. The linear approximation is useful to
study the general behaviour of the community model. But the approximate stationary dis-
tribution can differ significantly from the exact solution, in particular when demographic
stochasticity is important, as in the population model (Figure 1).

Stationary distribution as a function of α and μ

Figure 3 shows the stationary probability distribution for a population size Ni (left panel)
and for the community size J (right panel),

J =

ST∑
i=1

Ni.

Note that due to the species permutation symmetry of model (13–14), all species have the
same population size distribution. We varied the immigration rate μ in each panel, and
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the interaction coefficient α between panels. We kept the community carrying capacity
K constant, so that the species-level carrying capacity K ′ changes when varying α, see
(10). The demographic stochasticity coefficient r− was kept constant. Population and
community sizes are represented on a logarithmic scale, using transformation (8).

For large immigration rates μ, the community and population size distributions are peaked;
the center of these distributions coincides with the equilibrium value (12) of the determin-
istic model. The peak of community size is located at ST times that of population size.
Hence, the distributions exhibit almost no randomness, and are well described by the de-
terministic model. The community composition is a somewhat blurred image of the species
pool. This deterministic behaviour is present for all values of α.

When the immigration rate μ decreases, the population size distribution gets wider, and its
mode shifts towards smaller population size. In this case, some species become extinct due
to demographic fluctuations. Note that their extinction is temporary, as immigration can
reintroduce them from the species pool in the community. The dynamical balance between
immigration and demographic stochasticity leads to a left-skewed population size distribu-
tion, which we also encountered in the population model (Figure 1). For any interaction
coefficient α, there is a range of parameter μ for which immigration and demographic
stochasticity are balanced.

When the immigration rate μ decreases further, we have to distinguish the cases of positive
and negative α. When α < 0, the community size distribution shifts to smaller values,
becomes wider, and community disappearance becomes probable. When α > 0, the com-
munity size distribution keeps a constant peaked shape down to very small values of μ.
In this case, community size regulation prevents community extinction. Simultaneously,
the population size distribution shifts to larger values, becomes more peaked, and closely
resembles the community size distribution. The community is then dominated by a few
species that have stochastically excluded the other species.

3.3 Community properties

Here we perform a more systematic study of the stationary properties of model (13–14),
in particular:

• the mean community size E[J ];

• the variability of the community size, measured by its coefficient of variation CV[J ];

• the mean population size E[Ni]; however, this property does not contain new infor-
mation compared to E[J ] because E[J ] = STE[Ni];

• the variability of the population size, measured by its coefficient of variation CV[Ni];
note that this property does contain new information compared to CV[J ];

• the mean number of species E[S] in the community; note that E[S] = ST

(
1−P[Ni =

0]
)
;

• the mean Simpson diversity index E[D] in the community, defined as the probabil-
ity that two randomly sampled individuals from the community belong to different
species.

Other properties can easily be derived from these properties. For example, community
synchrony as defined by Loreau & de Mazancourt [16] equals the ratio of CV[J ] and
CV[Ni]. Community evenness can be defined by comparing the Simpson diversity index
E[D] and the mean species richness E[S]. Most of these properties are readily obtained
from the approximate stationary distribution of the community model. Those for which
the computation is not straightforward are considered in Appendix F.
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Community properties as functions of α and μ

Figure 4 plots the above community properties as functions of the interaction coefficient
α (on x-axis) and the immigration rate μ (different colors). Demographic stochasticity r−
is kept constant. Both negative and positive values of α are plotted; we use a finer scale
for the mutualistic case (the scale for α < 0 is ten times finer than the scale for α > 0).
To help interpret the results, we plot the same community properties obtained from the
linear approximation in Figure S3.

In Figure 4A we keep the community carrying capacity K constant when varying α, as in
Figure 3. In this case, there is no direct effect of the interaction coefficient α on the mean
community size. Note that to keep K constant, the species-level carrying capacity K ′ has
to decrease for decreasing α.

The mean community size E[J ] increases with the immigration rate μ, as expected. More
surprisingly, the mean community size also increases with the interaction coefficient α.
As we keep the community carrying capacity K constant, the mean community size is
independent of α in the linear approximation, see Figure S3A. The dependence on α in
the full model is due to demographic stochasticity, which can drive the community to
extinction when μ and α are small. When α ≈ 1, community-level density dependence
prevents community extinction.

The variability of community size CV[J ] decreases with μ, and decreases with α, reaching
a minimum at α = 1. Community-level density dependence at α = 1 regulates the com-
munity size, decreasing its variability. For smaller and negative α, community extinction
is increasingly probable, and variability increases steeply. The variability of population
size CV[Ni] decreases with μ, decreases with α for α < 0, and increases with α for α > 0,
reaching a minimum at α = 0. Species-level density dependence at α = 0 regulates the
population sizes. For negative α, there is again a steep increase in variability due to
demographic stochasticity.

The expected number of species E[S] increases with μ, and is maximal for α = 0. The
latter result is due to density dependence regulating the size of each population, so that
population extinction is less probable. The number of species decreases for negative α
because the entire community can disappear; the number of species decreases for positive
α because the community is increasingly dominated by a few species, and eventually (for
small μ and α ≈ 1) by a single species. The Simpson diversity index E[D] has a similar
behaviour.

In Figure 4B we keep the species-level carrying capacity K ′ constant when varying α.
As a consequence, the interaction coefficient α directly affects the mean community size.
Increasing competition decreases community size, and increasing mutualism increases com-
munity size. Note that to keep K ′ constant, the community carrying capacity K has to
increase steeply for smaller α, especially when α < 0.

When α decreases, the mean community size E[J ] increases, and the variabilities CV[J ]
and CV[N ] decrease. Mutualistic (or less competitive) interactions lead to large population
sizes, eliminating entirely the effect of demographic stochastic observed in Figure 4A. When
α is negative, the number of species E[S] and the Simpson diversity index E[D] reach their
maximal value. Community extinction is extremely improbable and all populations have
the same size because demographic stochasticity does not affect large populations.

Community properties as functions of r− and μ

Figure 5 plots the community variables as functions of parameters r− (on x-axis) and μ (dif-
ferent colors) for either positive (Figure 5A, α = 0.5) or negative (Figure 5B, α = −0.02)
values of α. The same community properties obtained from the linear approximation are
plotted in Figure S4 for comparison.
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The mean community size decreases with demographic stochasticity r−, especially for
small immigration rates μ, both for positive and negative α. This is due to the increased
probability of species extinction. The variability of community and population size in-
creases with r−, both for positive and negative α. Increasing demographic stochasticity
increases the probability that either individual populations (α > 0) or the community
as a whole (α < 0) disappear, which further increases the variability of population and
community sizes. Similarly, the mean number of species and the Simpson diversity index
decrease with r− due to demographic stochasticity. This decrease is gradual for α > 0, as
species disappear one by one, and more abrupt for α < 0, as the entire community can
disappear at once.

4 Discussion

We have proposed a minimal community model that combines the basic ingredients of
niche-based and neutral community models. Our model can be interpreted as Hubbell’s
local community model in which we have replaced the condition of invariant community
size with a dynamical regulation of population and community sizes by intra- and in-
terspecific interactions. Alternatively, it can be interpreted as a classical Lotka-Volterra
model to which we have added demographic stochasticity and immigration from an exter-
nal species pool. The model is minimal in the sense that we exploited species symmetry
as much as possible: all species have the same birth rate, death rate, carrying capacity
and immigration rate, and all species pairs have the same interaction coefficient.

We have presented a detailed analysis of the properties of the stationary state as func-
tions of three model parameters: the immigration rate μ, the demographic stochasticity
intensity r− and the interaction coefficient α, defined as the ratio of inter- and intraspe-
cific interaction strength. The general conclusions of this analysis can be summarized as
follows:

• For strong immigration and weak demographic stochasticity, community structure is
deterministic, i.e. predictable. The local community is a faithful representation of the
species pool. The noise in this representation increases by lowering the immigration
rate μ or raising the strength of demographic stochasticity r−.

• Increasing noise when species interactions are competitive (positive and not too small
interaction coefficient α) yields a community in which some species start to dominate
others. As all species are equally abundant in the species pool, these fluctuations
cannot be predicted. Community size remains approximately constant. Further
increasing noise eventually leads to a community in which one species (stochastically)
excludes all others.

• Increasing noise when species interactions are mutualistic or weakly competitive
(negative, or positive but small interaction coefficient α) yields a community in which
not only populations but also the community as a whole are subject to random
fluctuations. This effect is stronger when interactions are mutualistic, as species
abundances are positively correlated. Further increasing noise (again, by decreasing
μ or increasing r−) eventually leads to the collapse of the entire community.

Mutualistic interactions result in unstable communities, in which even a small amount
of noise can induce high variability. However, this finding is strongly dependent on the
assumption that the community-level carrying capacity K is kept constant when reducing
the interaction coefficient α. If, alternatively, we keep the species-level carrying capacityK ′

constant, we obtain very different results. In the latter case, mutualistic interactions lead
to large and stable communities, because demographic stochasticity has a relatively small
impact on large populations, see Figure 4B. It should be noted that the deterministic Lotka-
Volterra model for mutualistic interactions also predicts rapidly increasing population
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sizes. This somewhat pathological behaviour has generally been considered as an indication
that the Lotka-Volterra model is too simplistic to give a realistic description of mutualism
[27, 28].

Our model does not exactly recover Hubbell’s local community model as a limiting case.
The assumption of invariant community size in Hubbell’s model imposes a strict regulation
of the community size, which cannot be reproduced exactly by our more flexible model.
However, strict community size regulation can be approximated well by community-level
density dependence. Indeed, Figure 3D shows that the distribution of the community size
J is sharply peaked for α = 1. Moreover, the stationary distribution of our model with
α = 1 conditional on a given community size J is identical to the stationary distribution
of Hubbell’s model, as can be seen explicitly from solution (E5) in Appendix E. Hence,
the community structure predicted by our model with α = 1 is close to Hubbell’s model
predictions. For example, the population size distributions in Figure 3D coincide with
Hubbell’s.

It has been observed previously that Hubbell’s model is robust to the introduction of niche
features. Volkov et al. [12] noticed that the immigration process in neutral models can be
reinterpreted as a particular form of species-level density dependence. Note that Hubbell’s
neutral model includes an implicit but strong form of community-level density dependence,
as community size is kept constant over time. Surprisingly, Etienne et al. [29] showed that
dropping the invariant community size condition does not affect the stationary species
abundance distribution (conditional on community size), so that Hubbell’s model can be
interpreted as a neutral model without any density-dependence. Other papers introduced
a class of neutral-like models with community-level density dependence [14, 15], for which
the stationary distribution (conditional on community size) is identical to Hubbell’s. In
fact, our model with α = 1 belongs to this class of models.

Since Hubbell’s neutral model is embedded in our neutral-niche model as a limiting case
when α = 1, we can ask how the community structure predicted by neutral theory changes
when taking into account niche processes, i.e., when going from α = 1 to α < 1. Our model
shows that the change in community structure is relatively limited. For example, the
community properties in Figure 4A have a rather smooth transition from α = 1 to α < 1.
Only the Simpson diversity index E[D] changes more abruptly, because the stochastic
exclusion of species is prevented by a limited amount of niche differentiation. Although
the set of abundance distributions is larger for α < 1 than for α = 1, community structure
when α < 1 is typically well approximated by community structure for α = 1, possibly
with different parameters μ and r−. It seems therefore difficult to infer the set of model
parameters from species abundance data.

Volkov et al. [17] studied a stochastic community model with birth-death events and species
interactions, which therefore has some relationship to our model. They used their model
to estimate interaction coefficients based on empirical abundance data. Specifically, they
divided a large plot of tropical forest into a myriad of small quadrats, and they argued
that the resulting replicated data sets suffice to reliably infer species interactions. This ap-
proach might provide a connection between our model and empirical data. Alternatively,
parameter estimation could be based on spatial and/or dynamical data, or data from dif-
ferent environmental conditions (e.g., varying immigration rates). A rigorous investigation
of the parameter inference problem requires further work and falls outside the scope of
this paper.

Species interactions in our model have a particular structure, as we assumed equal interac-
tion strength between all species pairs. This symmetry assumption for species interactions
is a natural extension of the neutrality assumption, in which birth, death and immigration
rates of all species are assumed to be equal. On the other hand, it is a rather uncommon
assumption in niche models. Symmetric interactions correspond to a niche space with
identical overlaps between all species pairs, which is only possible in a high-dimensional
niche space (e.g., as many dimensions as there are species). The more common interaction
structure, in which species are sorted along a one-dimensional niche axis, and which is

13



often considered in neutral-niche simulation models [19, 20, 8, 21], is not compatible with
species symmetry. Note that symmetric interactions can also be interpreted as an approx-
imation in which individuals effectively interact with all other species grouped together,
analogous to the mean field approximation in physics.

A description of species sorting along a niche axis requires species-specific interaction coef-
ficients, complicating model analysis. Species differences can be introduced more straight-
forwardly as species-specific birth and/or death rates [30, 31, 32]. Studies that have done
so showed that even small demographic differences can perturb neutral community pat-
terns, such as species abundance distributions. It would be interesting to see how the
relative fragility of neutral models with respect to species differences, as found in these
studies, interacts with the relative robustness of neutral model predictions with respect to
the addition of niche processes, as we found in this work. Conceptual models suggest that
the effect of species differences will be mitigated by niche processes [33, 11].

Our model analysis is restricted to the stationary structure of a single local community.
It would be interesting to look at spatial and dynamical properties of our model, and
see how niche processes affect neutral community behaviour. Although a direct analysis
might be difficult, moment closure techniques might be helpful [34]. These techniques
have been used successfully to study the stochastic logistic population model [35], and
are known to be exact for Hubbell’s neutral community model [36, 37]. Alternatively, the
spatial and dynamical behaviour can be studied using the linear approximation. We have
indicated the parameter region in which the linear approximation predicts the stationary
distribution accurately. Note that the linear approximation has been used to study the
effect of environmental stochasticity on community structure [38, 16].

Finally, it is worthwhile to note that we have constructed our stochastic community model
using a mathematically natural construction. The only choice we had to make was how
to distribute density dependence over birth and death rates. Our study of the population
model, however, suggested that the details of this choice have little effect on the model’s
stationary properties. Apart from this peculiarity, our model shares the genericity of
the Lotka-Volterra model and of Hubbell’s neutral model. Also, we exploited a number
of analytical tools (linear approximation, exact and approximate stationary distribution,
community properties) to obtain a rather complete picture of the model behaviour. We
hope that these tools and the model’s genericity will be instrumental in narrowing the
conceptual gap between niche and neutral theories in community ecology.
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A Random variables and stochastic models

Stochastic models require, compared to deterministic models, some dedicated notation,
which we define in this appendix. We use a simplified notation in the main text, to keep
it as readable as possible; we use a more specialized notation in the appendices, to clearly
present the mathematical arguments.

We use bold capital letters to denote random variables. We distinguish, for example, a
particular value N for the population size, and the corresponding random variableN . This
distinction allows us to write expressions as P[N = N ], which stands for the probability
that the random population size N takes the value N . We use the simplified notation
P[N ] in the main text, or when confusion is impossible.

The expectation (or average value) of the random variable N is denoted by E[N ],

E[N ] =

∞∑
N=0

NP[N ].

Similarly, we use Var[N ] for the variance,

Var[N ] = E

[(
N − E[N ]

)2]
,

and CV[N ] for the coefficient of variation,

CV[N ] =

√
Var[N ]

E[N ]
.

The covariance between, for example, the abundance N i of species i and the abundance
N j of species j is denoted by Cov[Ni,Nj ],

Cov[Ni,Nj ] = E

[(
Ni − E[Ni]

)(
Nj − E[Nj ]

)]
.

We use standard notation to denote the conditioning of one random variable on the value of
another random variable. For example, the probability that the abundance N i of species
i takes the value Ni given that the community size J equals J is denoted by P[N i =
Ni|J = J ], or simply P[Ni|J ]. Similarly, we use the notation E[N i|J = J ] or E[Ni|J ] for
the conditional expectation, and Var[N i|J = J ] or Var[Ni|J ] for the conditional variance.
The dynamical variables of stochastic models are random variables. Different formalisms
exist to describe the dynamics of (continuous-time Markovian) stochastic models [39, 40].
The one we mainly use, the master equation formalism, is based on a dynamical equation
(called the master equation) for the probability distribution of the random dynamical
variables. For example, a stochastic model for the population size N is described by a
system of differential equations for P[N = N ] (one equation for each value N). Examples
of the master equation formalism are (C1) and (E1).

Alternatively, one can use the formalism of stochastic differential equations, which are
dynamical equations for the random variables directly (and not for their probability dis-
tribution). To get an intuitive idea of these equation, consider a small time interval δt,
during which the random dynamical variableN changes by an amount δN . The stochastic
differential equation describes the dependence of δN on the current value of the dynamical
variable N , together with new randomness appearing in the time interval δt. Examples
of stochastic differential equations are (B3) and (D5).
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B Linear approximation of population model

We decompose the population model of Section 2 into a deterministic part and a purely
stochastic part. We use this decomposition to derive a linear approximation, which allows
us to quantify the impact of stochasticity on the deterministic population model (1).

To define the transition rates of the population model, consider the change δN of popu-
lation size in a small time interval δt. The probability of making a transition in this time
interval is proportional to δt, and the transition rates are the constants of proportionality.
More precisely,

P
[
δN = +1 |N = N

]
= q+(N)δt

P
[
δN = −1 |N = N

]
= q−(N)δt

P
[
δN = 0 |N = N

]
= 1− (q+(N) + q−(N)

)
δt.

We compute the mean of δN conditioned on N = N ,

E
[
δN
∣∣N = N

]
= (+1)q+(N)δt+ (−1)q−(N)δt

=
(
q+(N)− q−(N)

)
δt, (B1)

and the variance of δN conditioned on N = N ,

Var
[
δN
∣∣N = N

]
= E
[
(δN)2

∣∣N = N
]− E

[
δN
∣∣N = N

]2
≈ E
[
(δN)2

∣∣N = N
]

= (+1)2q+(N)δt+ (−1)2q−(N)δt

=
(
q+(N) + q−(N)

)
δt, (B2)

where we dropped terms in (δt)2.

Hence, in the small time interval δt, the population size N undergoes a deterministic
change given by (B1) with a stochastic fluctuation superposed on it. The mean of this
stochastic fluctuation equals zero, and its variance is given by (B2). Formally, this decom-
position can be written as

δN = E
[
δN
]
+
√
Var
[
δN
]
E

=
(
q+(N )− q−(N)

)
δt+

√
q+(N ) + q−(N )

√
δtE, (B3)

with E an appropriate random variable, with mean zero and variance one. Neglecting the
purely stochastic second term, we get the corresponding deterministic dynamical system,
given by the differential equation

dN

dt
= q+(N)− q−(N).

The stochastic differential equation (B3) is difficult to analyze in general. A useful ap-
proximation consists in (a) linearizing the deterministic part around a stable equilibrium
point N∗, and (b) replacing the stochastic part by a Gaussian random variable with mean
zero and constant variance, equal to the variance of the full equation at the equilibrium
point N∗. We get

δN =
(dq+
dN

(N∗)− dq−
dN

(N∗)
)
(N −N∗)δt+

√
q+(N∗) + q−(N∗)

√
δtG

= λ(N −N∗)δt+ σ
√
δtG, (B4)

with G a Gaussian random variable with mean zero and variance one, λ the slope of the
deterministic equation at N∗ (λ < 0 for a stable equilibrium point), and σ2 the variance
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of the full stochastic equation at N∗. The linear stochastic differential equation (B4) is
known as an auto-regressive model (in discrete time), or a Ornstein-Uhlenbeck process (in
continuous time). The stationary distribution for the population size N is Gaussian with
mean N∗ and variance σ2/2|λ| [40].
Another approximation for (B3) is based on the same linearization ideas, but uses the
logarithmic population size L = lnN as model variable. We have

δL = ln
(
N + δN

)− ln
(
N
)
= ln

(
1 +

δN

N

)
≈ δN

N
,

for small changes δN , which is satisfied in a continuum approximation. The linearized
stochastic differential equation reads

δL =
(dq+
dN

(N∗)− dq−
dN

(N∗)
)
(L− L∗)δt+

1

N∗

√
q+(N∗) + q−(N∗)

√
δtG, (B5)

with equilibrium logarithmic population size L∗ = lnN∗. The linearizations (B4) and
(B5) are similar, with one notable difference. Whereas Eq. (B4) has a Gaussian stationary
distribution for the population size N , Eq. (B5) has a Gaussian stationary distribution
for the logarithmic population size L, and thus a lognormal stationary distribution for the
population size N .
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C Stationary distribution of population model

We consider the population model of Section 2, and derive the stationary distribution of
the population size N using the master equation formalism. The master equation is a
differential equation for the distribution P[N = N ] = P[N ] of the population size N , see
[39]. It reads

d

dt
P[N ] = q+(N − 1)P[N − 1] + q−(N + 1)P[N + 1]− (q+(N) + q−(N)

)
P[N ], (C1)

and expresses how the probability P[N ] changes as a function of time: P[N ] increases by
transitions N − 1 → N (first term in right-hand side) and N + 1 → N (second term in
right-hand side); P[N ] decreases by transitions N → N + 1 and N → N − 1 (last term in
right-hand side).

We are looking for the stationary solution of (C1), i.e., the solution of the set of equations
obtained by putting the right-hand side to zero,

q+(N − 1)P[N − 1] + q−(N + 1)P[N + 1] =
(
q+(N) + q−(N)

)
P[N ] for all N .

This equation says that in stationary regime, the transitions arriving in state N (left-hand
side) are compensated by the transitions leaving state N (right-hand side). A stronger
condition, called detailed balance, is

q+(N − 1)P[N − 1] = q−(N)P[N ] for all N ,

stating that the transitionN−1→ N is directly compensated by the transitionN → N−1.
If there exists a solution of the detailed-balance condition, then this solution is necessarily
the stationary distribution [39]. For the population model, the solution of the detailed-
balance condition exists and can be constructed explicitly. To do so, we express P[N ] in
terms of P[N − 1], and by iterating we get P[N ] in terms of P[0],

P[N ] = P[0]

N∏
k=1

q+(k − 1)

q−(k)
. (C2)

We obtain P[0] by requiring that the distribution is normalized,

1 =

∞∑
N=0

P[N ] = P[0]

(
1 +

∞∑
N=1

N∏
k=1

q+(k − 1)

q−(k)

)
. (C3)

Eqs. (C2–C3) determine the stationary population size distribution P[N ].

Substituting transition rates (6) in the stationary distribution (C2), we get

P[N ] = P[0]
(a)N
(b)N

cN

N !
,

where we introduced the dimensionless paramaters a, b and c,

a =
μ

r+
, b =

r−
r
K + 1, c =

r+
r
K,

and where we used the Pochhammer notation,

(a)N = a(a+ 1) . . . (a+N − 1).

The normalization condition (C3) can be written in terms of the hypergeometric function
Φa,b(c) (sometimes called confluent hypergeometric function, or also Kummer’s function),

Φa,b(c) =

∞∑
N=0

(a)N
(b)N

cN

N !
, (C4)
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so that the stationary distribution can be written as

P[N ] =
1

Φa,b(c)

(a)N
(b)N

cN

N !
. (C5)

Analogously, the stationary distribution for the alternative choice (7) can be obtained by
substituting (7) in (C2–C3).
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D Linear approximation of community model

We decompose the community model of Section 3 into a deterministic part and a purely
stochastic part. We compute a linear approximation, and quantify the impact of stochas-
ticity on the deterministic community model (11).

First, we define the transition rates of the community model. In a small time interval
δt, one of the components of the abundance vector �N = (N1,N2, . . . ,NST

) can increase

or decrease by one individual. Hence, the vector of random abundance changes δ �N =
(δN 1, δN2, . . . , δNST

) can increase or decrease by the unit vector �ei,

�ei =
(
0, 0, . . . , 0, 1, 0, . . . , 0, 0

)
, (D1)

a vector with all components equal to zero, except component i which is equal to one. The
transition rates qi+( �N) and qi−( �N) are given by

P
[
δ �N = +�ei | �N = �N

]
= qi+( �N)δt

P
[
δ �N = −�ei | �N = �N

]
= qi−( �N)δt.

We compute the mean of δN i,

E
[
δN i

∣∣ �N = �N
]
=
(
qi+( �N)− qi−( �N)

)
δt, (D2)

the variance of δN i,

Var
[
δN i

∣∣ �N = �N
] ≈ E

[
(δN i)

2
∣∣ �N = �N

]
=
(
qi+( �N) + qi−( �N)

)
δt, (D3)

and the covariance of δN i and δN j ,

Cov
[
δN i, δN j

∣∣ �N = �N
] ≈ E

[
δN iδN j

∣∣ �N = �N
]
= 0, (D4)

where we dropped terms in (δt)2. Note that the absence of correlations is only valid
instantaneously, i.e., for the abundance changes during a single event, but it holds both in
and out of the stationary regime.

Eqs. (D2–D4) suggest a decomposition into a deterministic part and a purely stochastic
part. Stochastic fluctuations act on a determinisitic dynamical system given by

dNi

dt
= qi+( �N)− qi−( �N), i = 1, 2, . . . , ST.

The full stochastic model can be analyzed using a linear approximation [40]. We linearize

the deterministic equation at a stable equilibrium point �N∗, yielding the coefficient matrix
A,

Aij =
∂

∂Nj

(
qi+( �N)− qi−( �N)

)∣∣∣∣∣
�N= �N∗

.

Stability means that all eigenvalues λi of the matrix A have negative real part. The
stochastic fluctuations act additively on the components δN i, with mean zero and variance
σ2
i , see (D3),

σ2
i = qi+( �N

∗) + qi−( �N
∗),

and without correlation between different components δN i and δN j , see (D4). Hence,
the linear stochastic differential equation is

δ �N = A
(
�N − �N∗

)
δt+B

√
δt �G, (D5)

with B a diagonal matrix with components σi, and �G a vector of mutually independent
Gaussian random variables with mean zero and variance one.
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The linear stochastic differential equation (D5) is well-known (auto-regressive model or

Ornstein-Uhlenbeck process). Its stationary distribution for the abundance vector �N is

Gaussian with mean �N∗ and covariance matrix C, which is the solution of the Lyapunov
equation [40],

AC + CAT +B2 = 0, (D6)

where AT stands for the transpose of the matrix A.

For the community model with transition rates (13–14), the Lyapunov equation (D6) can
be solved explicitly [38, 16]. The matrix A is given by

Aij =

{
a1 if i = j

a2 if i 	= j,

with

a1 = r

(
1− 2 + α(ST − 1)

1 + α(ST − 1)

STN
∗

K

)

a2 = −r α

1 + α(ST − 1)

STN
∗

K
,

with equilibrium abundance N∗ given by (12). The matrix B is given by

Bij =

{
b1 if i = j

0 if i 	= j,

with

b1 =

⎧⎪⎨
⎪⎩
(r+ + r−)N

∗ + r
STN

∗

K
+ μ if α ≥ 0

(r+ + r−)N
∗ + r

1 − α(ST + 1)

1 + α(ST − 1)

STN
∗

K
+ μ if α ≤ 0.

Both matrices A and B have a special structure: all diagonal components are equal, and
all off-diagonal components are equal. The correlation matrix C has the same structure,
and is explicitly given by

Cij =

⎧⎪⎪⎨
⎪⎪⎩
−

(
a1 + (ST − 2)a2

)
b1

2(a1 − a2)
(
a1 + (ST − 1)a2

) if i = j

a2b1

2(a1 − a2)
(
a1 + (ST − 1)a2

) if i 	= j.

Hence, in the linear approximation, the variance of a species abundance N i is

Var[N i] = Var[N 1] = C11 = −
(
a1 + (ST − 2)a2

)
b1

2(a1 − a2)
(
a1 + (ST − 1)a2

) ,
and the variance of the community size J is

Var[J ] =
∑
ij

Cij = STC11 + ST(ST − 1)C12 = − STb1

2
(
a1 + (ST − 1)a2

) .
Note that, although there are no correlations between the components of δ �N , see (D4),
the dynamics generate correlations between the components of the stationary abundance
vector �N (i.e., Cij 	= 0 for i 	= j).
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E Stationary distribution of community model

We consider the community model of Section 3, and derive the stationary distribution of
the species abundance vector �N . As for the population model, we use the master equation,
which is a differential equation for the probability distribution P[ �N = �N ] = P[ �N ], see [39].
It reads

d

dt
P[ �N ] =

∑
i

qi+( �N − �ei)P[ �N − �ei] +
∑
i

qi−( �N + �ei)P[ �N + �ei]

−
∑
i

(
qi+( �N) + qi−( �N)

)
P[ �N ], (E1)

with �ei the i-th unit vector, see (D1). Explicit expressions for the transition rates qi+( �N)

and qi−( �N) are given in (13–14).

We give an exact solution of the stationary distribution for the cases α = 0 and α = 1.
For the cases α < 0 and 0 < α < 1, we present an approximation method that reproduces
accurately simulation results.

Community model with α = 0

The community model with α = 0 corresponds to a community in which species are
mutually independent. There is species-level density dependence: the growth rate of
species i is limited by the other individuals of species i, but not by the individuals of
another species j 	= i. Indeed, when α = 0, transition rates qi+( �N) and qi−( �N) only

depend on �N through Ni,

qi+( �N) = qi+(Ni) and qi−( �N) = qi−(Ni),

so that the master equation (E1) decouples into ST master equations for one-species abun-
dance distributions. For species i,

d

dt
P[Ni] = qi+(Ni − 1)P[Ni − 1] + qi−(Ni + 1)P[Ni + 1]

− (qi+(Ni) + qi−(Ni)
)
P[Ni],

which is identical to the master equation (C1) for the population model. The stationary
distribution P[Ni] is given by (C5),

P[Ni] =
1

Φa,b(c)

(a)Ni

(b)Ni

cNi

Ni!
,

with the dimensionless parameters

a =
μ

r+
, b =

K

ST

r−
r

+ 1, c =
K

ST

r+
r
.

The stationary distribution for the full abundance vector �N is a product of one-species
abundance distributions,

P[ �N ] =
1

Φa,b(c)ST

ST∏
i=1

(a)Ni

(b)Ni

cNi

Ni!
. (E2)

Community model with α = 1

The community model with α = 1 corresponds to community-level density dependence:
the growth rate of species i is limited by individuals of species i and species j 	= i alike.
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Mathematically, when α = 1, transition rate qi+( �N) depends only on Ni, and transition

rate qi−( �N) depends both on Ni and on J =
∑

i Ni, with linear dependence on Ni,

qi+( �N) = qi+(Ni) and qi−( �N) = Ni q̄i−(J).

We use detailed balance to compute the stationary distribution (recall that a solution of
the detailed-balance condition, if it exists, is necessarily the stationary distribution [39]),

qi+( �N − �ei)P[ �N − �ei] = qi−( �N)P[ �N ], (E3)

or,
qi+(Ni − 1)P[ �N − �ei] = Niq̄i−(J)P[ �N ].

One can check that the detailed-balance condition is satisfied by

P[ �N ] =
qi+(Ni − 1)

Niq̄i−(J)
P[ �N − �ei]

=

[
ST∏
i=1

(
1

Ni!

Ni−1∏
k=0

qi+(k)

)][ J∏
k=1

1

q̄i−(k)

]
P[�0],

with �0 the abundance vector of a community without individuals. Using the transition
rates (13), normalization can be computed explicitly using the hypergeometric function
(C4). The resulting multi-species abundance distribution is

P[ �N ] =
1

ΦSTa,b(c)

[
ST∏
i=1

(a)Ni

Ni!

]
cJ

(b)J
, (E4)

with the dimensionless parameters

a =
μ

r+
, b = K

r−
r

+ 1, c = K
r+
r
.

The stationary multi-species abundance distribution conditioned on the total number of
individuals J is

P[ �N |J ] = J !

(STa)J

ST∏
i=1

(a)Ni

Ni!
. (E5)

The stationary distribution for the total number of individuals J is given by

P[J ] =
1

ΦSTa,b(c)

(STa)J cJ

J ! (b)J
.

Community model for general α

The community model for general α contains both species-level and community-level den-
sity dependence. The detailed-balance trick we used to solve the cases α = 0 and α = 1
does not work in the general case: the detailed-balance equations (E3) cannot be satisfied
simultaneously. As we are not able to solve the full set of stationarity equations of (E1),
we introduce an approximation method to obtain the stationary distribution, and show
using simulations that this approximation is accurate.

The approximation strategy consists in first, finding an approximation Q( �N |J) for the

distribution P[ �N |J ], the multi-species abundance distribution conditioned on the total

number of individuals J , and next, using this approximate distribution Q( �N |J) to compute
an approximation R(J) for the distribution P(J), the stationary distribution for the total
number of individuals J . By combining the two, we get an approximate multi-species
abundance distribution,

P[ �N ] = P[ �N |J ]P[J ] ≈ Q( �N |J)R(J). (E6)
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First, we consider the case α > 0 with transition rates (13). Transition rate qi+( �N)

depends only on Ni, but transition rate qi−( �N) depends both on Ni and on J =
∑

iNi.

As we look for an approximation of the distribution P[ �N |J ] conditioned on J = J , we
expect to make a small error by assuming that the number of individuals J appearing in
transition rate qi−( �N) takes the fixed value J . Thus, we consider a modified stochastic

community model with transition rates qi+( �N) and q̃i−( �N),

q̃i−( �N) =

(
r− + r

(1 − α)Ni + αJ

K ′

)
Ni

=

(
r− +

r αJ

K ′

)
Ni +

r (1 − α)

K ′
N2

i , (E7)

in which J is no longer a variable but a parameter. Because transition rates qi+( �N) and

q̃i−( �N) depend only on the abundance Ni, we can apply detailed balance to compute

the stationary multi-species abundance distribution Q( �N) for the modified transition rate

q̃i−( �N). Conditioning this distribution on J = J , we get the approximation Q( �N |J) for

P[ �N |J ].

The computation of the stationary distribution Q( �N) for transition rates qi+( �N) and

q̃i−( �N) is analogous with the case α = 0. The result is

Q( �N) =
1

Φa,b(c)ST

ST∏
i=1

(a)Ni

(b)Ni

cNi

Ni!
, (E8)

with dimensionless parameters

a =
μ

r+
, b =

r−K
′ + r αJ

r (1− α)
+ 1, c =

r+K
′

r (1 − α)
.

Note the dependence of the parameter b on the parameter J .

To condition Q( �N) on J = J , we use the product structure of the distribution Q( �N). The

multi-species abundance distribution Q( �N) is the product of ST one-species abundance
distributions Q1(Ni),

Q1(Ni) =
1

Φa,b(c)

(a)Ni

(b)Ni

cNi

Ni!
.

Hence, the distribution Q(J) for J is given by the ST-fold convolution product of one-
species abundance distributions Q1,

Q(J) = (Q1 ∗Q1 ∗ . . . ∗Q1)︸ ︷︷ ︸
ST times

(J) = Q∗ST

1 (J).

As a result, we obtain the approximation

P[ �N |J ] ≈ Q( �N |J) = Q( �N)

Q(J)
. (E9)

To compute the approximation R(J) for the distribution P[J ], we consider the transition
rates for the total community size J ,

q+( �N) =

ST∑
i=1

qi+( �N) and q−( �N) =

ST∑
i=1

qi−( �N).

The transition rate q+( �N) from J to J + 1 depends only on �N through J ,

q+( �N) = q+(J) = r+J + μST.
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The transition rate q−( �N) from J to J − 1 depends also on the Simpson diversity of the
community:

q−( �N) = r−J +
r α

K ′
J2 +

r (1− α)

K ′

ST∑
i=1

N2
i .

We use the approximate distribution Q( �N |J) to compute an approximation Ẽ[q−( �N)|J ]
for the expected transition rate E[q−( �N)|J ],

E[q−( �N)|J ] ≈ Ẽ[q−( �N)|J ] = r−J +
r α

K ′
J2 +

r (1− α)

K ′
ST Ẽ[N2

i |J ]. (E10)

The resulting transition rate Ẽ[q−( �N)|J ] = Ẽ[q−(J)] depends only on J . We use q+(J)
and Ẽ[q−(J)] to compute the approximation R(J) for P[J ]. From detailed balance,

R(J) =
q+(J − 1)

Ẽ[q−(J)]
R(J − 1) =

[
J∏

k=1

q+(k − 1)

Ẽ[q−(k)]

]
R(0), (E11)

and R(0) can be obtained from normalization. Substituting (E9) and (E11) into (E6), we

finally get the approximation for P[ �N ].

The case α < 0 with transition rate (14) can be dealt with in a similar way. Transition

rate qi−( �N) depends only on Ni, but transition rate qi+( �N) depends both on Ni and

J =
∑

iNi. We introduce the modified transition rate q̃i+( �N),

q̃i+( �N) =

(
r+ +

r(−α)J
K ′

)
Ni + μ, (E12)

in which J is a parameter, not a variable, analogous with (E7). The stationary distribution

Q( �N) of the modified stochastic community model is given by (E8) with dimensionless
parameters

a =
μK ′

r+K ′ + r(−α)J , b =
r−K

′

r (1− α)
+ 1, c =

r+K
′ + r(−α)J

r (1− α)
.

The approximation Q( �N |J) follows as for the case α > 0. To obtain an approximation
R(J), we consider the transition rates for the total community size J . The transition rate

q+( �N) depends only on �N through J , but the transition rate q−( �N) depends also on the
Simpson diversity. We use the same trick as for the case α > 0, and use the approximate
expected transition rate Ẽ[q−( �N)|J ],

Ẽ[q−( �N)|J ] = r−J +
r (1− α)

K ′
ST Ẽ[N2

i |J ],

analogous with (E10). The remaining computation is the same as for the case α > 0.

Figure S1 compares the species abundance distribution found from the approximation
(E6) with the species abundance distribution found from a stochastic simulation over a
sufficiently long time (to reach stationary regime). The correspondence is excellent. Also,
we recomputed part of Figure 4A using stochastic simulations (the original version of
Figure 4A was computed using our approximation). The results were almost identical to
the results obtained using the approximation.

An additional verification of the approximation (E6) consists in studying the limits α→ 0
and α → 1, for which we have exact solutions, (E2) and (E4). For α → 0, one can verify

that P[ �N |J ] = Q( �N |J), i.e., approximation (E9) is exact, and that approximation (E11),

although not exact, is very accurate. For α → 1, one can verify that P[ �N |J ] = Q( �N |J),
i.e., approximation (E9) is exact, and that P[J ] = R(J), i.e., approximation (E11) is also
exact.

Finally, we summarize the computations to evaluate the approximation (E6):
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• Our goal is to compute an approximation for the stationary probability P[ �N ] for a

given abundance vector �N , and a given set of parameters. Denote the total commu-
nity size by J =

∑
i Ni.

• As a preliminary, we compute the functions Q1, Q
∗(ST−1)
1 and Q∗ST

1 . We do not have
an analytical expression for the convolution products, but they can be evaluated
numerically using the Fast Fourier Transform. Recall that the formulas for Q1 differ
whether α > 0 or α < 0.

• We compute the approximaton Q( �N |J) for P[ �N |J ]. This approximation is given by∏
i Q1(Ni)/Q

∗ST

1 (J), see (E9).

• Similarly, we compute the approximation Q(n|k) for P[n|k], i.e., the probability that
a species has abundance n given that the community has size k. This approximation

is given by Q1(n)Q
∗(ST−1)
1 (k − n)/Q∗ST

1 (k). We evaluate this formula for all n and
k with n ≤ k.

• We compute Ẽ[n2|k] = ∑n n
2Q(n|k) for all k, i.e., the mean of n2 when n is dis-

tributed according to Q(n|k). We evaluate this formula for all k.

• We compute the transition rates Ẽ[q−(k)] and q+(k) for all k, using Ẽ[n2|k]. Recall
that the formulas for Ẽ[q−(k)] and q+(k) differ whether α > 0 or α < 0.

• We compute the cumulative products c(m) =
∏m

k=1 q+(k−1)/Ẽ[q−(k)]. We evaluate
this formula for all m.

• We compute the approximation R(J) for P[J ]. The formula is given by R(J) =
c(J)/(1 +

∑
m c(m)), see (E11).

• Finally, the approximation for P[ �N ] is given by Q( �N |J)R(J), see (E6).
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F Computation of community properties

In this appendix we explain how the community properties introduced in Section 3.3
can be computed using the approximate stationary distribution of the community model
(Appendix E). The approximation method provides the community size distribution P[J ],
and the population size distribution conditioned on community size P[Ni|J ]. We express
the community properties in terms of these two probability distributions.

To compute the (unconditional) variance Var[N i], we use the law of total variance, or the
conditional variance formula,

Var[N i] = E
[
Var[N i|J ]

]
+Var

[
E[N i|J ]

]
(F1)

The notation in the first term of the right-hand side should be read as follows: first, the
variance of Ni is taken conditional on J = J for all J ; the result is then considered as a
function of the random variable J , of which the expectation is taken. The notation in the
second term of the right-hand side is defined similarly. From (F1),

Var[N i] = E
[
Var[N i|J ]

]
+

1

S2
T

Var[J ],

a formula in terms of distributions P[J ] and P[Ni|J ].
For the Simpson diversity index, we use the definition

D = 1−
∑
i

N i(N i − 1)

J(J − 1)
.

Taking the expectation in two steps, we get

E[D] = 1− ST E

[
E
[
N i(N i − 1)|J ]
J(J − 1)

]
,

where we used a notation similar to (F1). The inner expectation can be computed using
the distribution P[Ni|J ]; the outer expectation can be computed using the distribution
P[J ].

The different steps for the computation of Var[N i] and E[D] are (see end of Appendix E
for more details):

• Compute the functions Q1, Q
∗(ST−1)
1 and Q∗ST

1 .

• Compute the approximaton Q(Ni|J) for P[Ni|J ], for all Ni and J with Ni ≤ J .

• Compute Ẽ[N2
i |J ] with respect to the distribution Q(Ni|J), for all J .

• Compute the approximations for Var[Ni|J ] and E[Ni(Ni − 1)|J ], for all J .
• Compute the transition rates Ẽ[q−(J)] and q+(J), for all J .

• Compute the cumulative products c(J), for all J .

• Compute the approximation R(J) for P[J ], for all J .

• Compute the E[Var[Ni|J ]], Var[J ] and E[E[Ni(Ni−1)|J]
J(J−1) ] with respect to the distribu-

tion R(J).

• Compute the approximations for Var[Ni] and E[D].
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Figures

(A) Population size distribution – linear scale
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(B) Population size distribution – logarithmic scale
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Figure 1: Comparison of stationary population size distribution for different stochastic
models and their approximations. In red: density-dependent mortality (6); in green:
density-dependent natality (7); in blue: linear approximation (B4); in magenta: linear
approximation (B5). Left: r− = 1; middle: r− = 10; right: r− = 100. Other parameters
are K = 100, μ = 0.1, r = 1.0, r+ = r + r−, r

′
− = r+, r

′
+ = r + r′−.
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Figure 2: Population properties as functions of model parameters. Left: mean population
size E[N ]. Middle: coefficient of variation of population size CV[N ]. Right: expected
number of species E[S]. The demographic stochasticity coefficient r− is plotted on the
x-axis; the curves are parametrized by the immigration rate μ: 0.01 (magenta), 0.1 (red),
1 (green), 10 (cyan), 100 (blue).
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(A) Interaction coefficient α = −0.02
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(B) Interaction coefficient α = 0
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(C) Interaction coefficient α = 0.5
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(D) Interaction coefficient α = 1
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Figure 3: Species abundance and community size distributions as functions of interaction
coefficient α and immigration rate μ. The immigration rate μ takes values 0.001 (ma-
genta), 0.01 (red), 0.1 (yellow), 1 (green), 10 (cyan), and 100 (blue). The demographic
stochasticity coefficient r− is the same for all distributions, r− = 10. The interaction
coefficient α takes four different values: (A) = α = −0.02; (B) α = 0; (C) α = 0.5; (D)
α = 1. The community carrying capacity K is constant, K = 400.
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(A) Constant community-level carrying capacity K = 400

−0.05   0  0.5   1
0

400

800

1200
E[J]

−0.05   0  0.5   1
0

10

20

E[S]

−0.05   0  0.5   1
0

0.5

1
E[D]

interaction coefficient α

−0.05   0  0.5   1

10−1

100

101

CV[J]

−0.05   0  0.5   1
10−1

100

101

102

CV[N]

(B) Constant species-level carrying capacity K ′ = 100
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Figure 4: Community properties as functions of interaction coefficient α for different
immigration rates μ. The immigration rate varies from 0.001 to 100 with the same color
code as in Figure 3. The demographic stochasticity coefficient r− is the same for all curves:
r− = 1. The scale for mutualistic interactions (α < 0) is ten times finer than the scale
for competitive interactions (α > 0). In part (A) the community-level carrying capacity
K is constant, K = 400; in part (B) the species-level carrying capacity K ′ is constant,
K ′ = 100.
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(A) Competitive interactions, α = 0.5
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(B) Mutualistic interactions, α = −0.02
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Figure 5: Community properties as functions of demographic stochasticity coefficient r−
for different immigration rates μ. The immigration rate varies from 0.001 to 100 with the
same color code as in Figure 3. The interaction coefficient α takes two different values:
(A) α = 0.5, (B) α = −0.02. The community carrying capacity K is constant, K = 400.
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Figure S1: Comparison between simulated and computed stationary species abundance
distribution. The histograms give the species abundance distribution of a simulated tra-
jectory. The model was simulated during 2.104 time units. The first half was used to
eliminate the transient dynamics; the second half was used to sample the population size
every 10 time units (1000 samples in total). The red curves correspond to the approxima-
tion (E6). Parameters are r− = 1, α = 0.5, K = 400. Left panel: μ = 10. Right panel:
μ = 0.01.
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Figure S2: Same as Figure 2, but for linear approximation.
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(A) Constant community-level carrying capacity, K = 400
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(B) Constant species-level carrying capacity, K ′ = 100
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Figure S3: Same as Figure 4, but for linear approximation.
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(A) Competitive interactions, α = 0.5
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(B) Mutualistic interactions, α = −0.02
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Figure S4: Same as Figure 5, but for linear approximation.
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