
HAL Id: hal-00708525
https://hal.science/hal-00708525v1

Submitted on 15 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Which conditions promote negative density dependent
selection on prey aggregations?

Colin R. Tosh

To cite this version:
Colin R. Tosh. Which conditions promote negative density dependent selection on prey aggregations?.
Journal of Theoretical Biology, 2011, 281 (1), pp.24. �10.1016/j.jtbi.2011.04.014�. �hal-00708525�

https://hal.science/hal-00708525v1
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/yjtbi

Author’s Accepted Manuscript

Which conditions promote negative density
dependent selection on prey aggregations?

Colin R. Tosh

PII: S0022-5193(11)00214-1
DOI: doi:10.1016/j.jtbi.2011.04.014
Reference: YJTBI6445

To appear in: Journal of Theoretical Biology

Received date: 11 January 2011
Revised date: 8 April 2011
Accepted date: 11 April 2011

Cite this article as: Colin R. Tosh, Which conditions promote negative den-
sity dependent selection on prey aggregations?, Journal of Theoretical Biology,
doi:10.1016/j.jtbi.2011.04.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2011.04.014


Which conditions promote negative density dependent selection on prey 1 

aggregations? 2 

 3 

 4 

Colin R. Tosh 5 

 6 

 7 

 8 

School of Biology, Room 5.67, Ridley Building 2, Newcastle University, Newcastle 9 

Upon Tyne NE1 7RU, UK 10 

 11 

E-mail: colin.tosh@ncl.ac.uk 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 



Negative density dependent selection on individuals in prey aggregations (negative 25 

DDS, the preferential selection by predators of spatially isolated prey) is assumed to 26 

contribute in many cases to the evolution and maintenance of aggregation. Both 27 

positive and negative DDS on prey groups have been documented in nature but there 28 

is no existing framework to predict when each of these forms of natural selection is 29 

most likely. By exploiting the tendency of artificial neural networks to exhibit 30 

consumer-like emergent behaviours, I isolate at least two environmental factors 31 

impinging on the consumer organism that may determine which form of density 32 

dependent natural selection is shown: the distribution of prey group size attacked by 33 

the predator and the spatial conformation (dispersed or compacted) of the prey group. 34 

Numerous forms of DDS on artificial prey (positive, negative, and non DDS) are 35 

displayed through different combinations of these factors.  I discuss in detail how the 36 

predictions of the model may be tested by empiricists in order to assess the usefulness 37 

of the framework presented. I stress the importance of understanding DDS on prey 38 

groups given the recent emergence of these systems as test beds for ideas on 39 

biological self-organisation.               40 
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Introduction 50 

Selection by predators of individuals from high (positive DDS) or low (negative 51 

DDS) density areas of a prey group is assumed to contribute to the evolutionary 52 

dynamics of an aggregation’s spatial form, with negative DDS contributing to 53 

evolution and maintenance of aggregation (Hamilton 1971; Milinski 1977; Krause & 54 

Ruxton 2002; Stankowich 2003; Morrell & James 2008; Ioannou et al. 2009). Both 55 

positive and negative DDS on prey groups are documented in nature (see above refs.) 56 

but we have little idea of the conditions that favour the operation of these different 57 

types of natural selection. Understanding this is important for two reasons. Firstly, 58 

prey groups are a fundamental part of many animal communities (Fryxell et al. 2007) 59 

and many of the best know examples of the demise of animal species apply to large 60 

groups of prey (Branch 1929). It is necessary to understand the forms of natural 61 

selection imposed on prey aggregations to promote their conservation. Secondly, prey 62 

groups have recently become something of a test bed for ideas on the maintenance 63 

(Couzin et al. 2002; Ballerini et al. 2008) and evolution (Hamilton 1971; Wood et al. 64 

2007) of biological self-organisation. Studies of the evolution of self-organisation in 65 

animal groups (Hamilton 1971; Wood et al. 2007) have assumed random selection of 66 

prey but, as aforementioned, this is usually not the case in nature. Inevitably, further 67 

progress in this area will require a framework for understanding the various forms of 68 

DDS imposed on prey animal groups. 69 

 In this article I analyse the emergent behaviours of artificial neural networks in 70 

an attempt to understand some of the dynamics of natural selection on resource 71 

organisms (e.g. prey) that may arise from the interaction of consumer organism (e.g. 72 

predator), resource group, and key ecological variables associated with this type of 73 

system. I and colleagues have successfully modelled the behaviour of consumer 74 



organisms using these models in numerous previous studies (see Tosh et al. 2009 and 75 

refs. therein) and the tendency of these models to produce consumer-like behaviour is 76 

well known (reviewed in Enquist and Ghrilanda 2005; McClelland and Rogers 2003). 77 

Nevertheless, as used here, these models are a very simplified and abstracted 78 

representation of organic information processing and decision making, and in the 79 

discussion of the article I emphasise the need for empirical testing of the predictions 80 

arising from the present article and outline how this can be achieved by empiricists. In 81 

this article I examine the dynamics of DDS on artificial prey groups emerging from 82 

artificial neural networks in relation to two key ecological variables associated with 83 

predator prey-group systems: the spatial conformation of the prey group (i.e. the 84 

shape of each group – dispersed or compacted) and the statistical distribution of prey 85 

group size attacked by predators. I present simple feedforward neural networks with 86 

compacted and dispersed artificial prey groups whose size distribution varies 87 

according to naturally observed distributions of prey group size attacked by predators. 88 

Put another way, a group of a specific size can be compact or dispersed, and size of 89 

these groups varies according to different statistical distributions. Networks are 90 

trained to optimise strike success on individual prey within the group but are 91 

undirected with regard to strategy. Behaviour of the networks is then tested on a 92 

separate set of groups, both dispersed and compacted, but standardised with regard to 93 

group size distribution. During this testing phase numerous forms of DDS on prey 94 

emerge from the system, all of which have been observed in real predator-prey group 95 

systems. The presence of ‘consumer’ and ‘resource aggregation’ in the model 96 

presented here and the emergence of numerous well documented forms of natural 97 

selection from it, indicate that the model could provide a useful framework for 98 



understanding and predicting the forms of natural selection imposed on prey groups 99 

by predatory animals. 100 

Essentially what I am proposing in this paper is that patterns of visual 101 

attention and consequent prey preference of predatory animals can arise as an 102 

emergent property of their neural information processing systems. Prey preferences 103 

that are evolved are efficient (perhaps optimal), as networks are trained to maximise 104 

prey capture, but there are thousands of similarly efficient solutions available and the 105 

one chosen is simply a function of biases associated with neural information 106 

processing in the predator.         107 

 108 

Materials and Methods 109 

 110 

The network used (fig. S3) was a 3-layer (5x5, 3x4, 1x5) feed-forward network with 111 

binary, stochastic artificial neurons (see Electronic Supplementary Information), fully 112 

interconnected adjacent layers, and trainable bias weights in the hidden and output 113 

layers. Resources in the resource group produced an output of ‘1’ from each of the 114 

layer 1 (network input) elements on which they were projected. Background areas in 115 

the resource group produced an output of ‘0’. The five-element output layer produced 116 

a maximum of 32 binary codes, five of which were redundant and selected against 117 

during training (see below). The remaining 25 codes represented elements of the 5x5 118 

input layer. Thus, stimulation of the input surface led to the output of one of these 25 119 

codes. The element that was represented by this code was identified, and presence or 120 

absence of a resource projected onto that element was determined. The stimulus 121 

input-behavioural output sequence just described was designated ‘successful’ if a 122 

resource was projected onto the chosen input element and ‘unsuccessful’ if 123 



background was projected onto that element. This designation forms the basis of 124 

training (below). Strictly speaking, within the proposed ecological context of the 125 

model, the system represents information processing and decision making after 126 

recognition of the prey group by the predatory organism. Different assumptions 127 

regarding predator recognition of prey groups are, however, introduced into the model 128 

through exposure of networks to different distributions of group size (below). It is 129 

assumed that prey selected are always successfully captured and I do not consider the 130 

potential effects of motor inefficiency / successful evasion by prey on the evolution of 131 

prey selection behaviour in predators. Perfect accuracy is probably not a bad 132 

assumption for systems where the predator is more mobile than the prey, and future 133 

work is planned to thoroughly investigate the importance of accuracy on the observed 134 

effects in this study.  135 

 Training was accomplished using a simple genetic algorithm in which 30 136 

networks were run in each generation and all weights of the top performing five nets 137 

were mutated by ± 0.05 (sign random) and cloned six times to form the next 138 

generation of networks. Networks weights were initiated from a uniform random 139 

distribution between -1 and 1. Five thousand 5x5 arrays, each containing a single 140 

resource group (represented by a pattern of 1s – resources – and 0s – background), 141 

were input into each network in each generation and the performance of each net at 142 

the end of each generation was determined through summation of the following scores 143 

over the 5000 inputs: resource selected = 1, background selected = -0.2, redundant 144 

code output = -0.2. These scores assume that capturing of a prey item by a predator 145 

makes a positive contribution to fitness and selecting and attempting to capture a 146 

resource from an empty area makes a small negative contribution to fitness. Training 147 

was run for 1000 generations. Finally, because it was observed that training on the 148 



same set of inputs could lead to fundamentally different terminal network behaviour 149 

(Tosh & Ruxton 2007), all training procedures described were repeated 100 times.  150 

 The distribution of resource group size within the 5000 training arrays was 151 

varied. While the distribution of animal group size in nature often follows a power 152 

law with exponent of around -1.5 (Bonabeau et al. 1999), the distribution of prey 153 

groups actually attacked by predators (a function of raw group size distribution and 154 

predator group recognition capabilities; a measure more appropriate to the present 155 

model) varies considerably. Negative, positive and neutral relationships have all been 156 

reported (Lindstrom 1989; Cresswell 1994). Here I considered distributions at the 157 

extremes and centre of possibilities by running a power law distribution with an 158 

exponent of -1.5 (assuming all groups are recognised and attacked), a flip of this 159 

relationship (assuming mostly large groups are recognised and attacked), and a 160 

uniform distribution of group sizes (recognition and attack somewhere in-between the 161 

previous two scenarios) (range 1-25 individuals per group, fig. S1A-C, and see 162 

Electronic Supplementary Information). 163 

 ‘Dispersal’ of resource groups was achieved simply by spatially random 164 

placement of all resources within each of the 5000 input arrays. ‘Compaction’ was 165 

achieved using an accretion algorithm: the position of the first resource in the group 166 

was spatially random. The next resource was placed in the position that maximised 167 

the number of resources surrounding it (in the 8-element ring surrounding the 168 

individual). If more than one position within the array satisfied this criterion, position 169 

within legitimate elements was random. Further elements were filled identically to the 170 

second. 171 

 After training, the behavioural preference of networks for different density 172 

types of resource (defined here as the number of other prey surrounding an individual 173 



prey animal) was tested. A separate set of groups was created, both dispersed and 174 

compacted but standardised with regard to group size distribution(a uniform 175 

distribution of group size was used; distribution used for behavioural testing is 176 

arbitrary and qualitative model predictions are not sensitive to this arbitrary choice). 177 

Only three density types were considered to simplify analysis: low (surrounded by 6-8 178 

empty spaces on the network input surface), intermediate (surrounded by 3-5 empty 179 

spaces on the network input surface) and high (surrounded by 0-2 empty spaces on the 180 

network input surface) density types (see fig. S3). Twenty five sets of 1000 input 181 

arrays were created. The first set contained a single resource in each array (a group 182 

size of one), the second set two resources in each array (a group size of two), and so 183 

on, up to a group size of 25. Each set of input arrays was passed through each of the 184 

30 networks after the final generation of training. For each input set, the total number 185 

of hits on resources (1s) of a given density type (Ad), the total number of hits on 186 

resources of all density types (At), the expected (assuming random strike across 187 

30,000 presentations) number of hits on resources of a given density type (Ed), and the 188 

expected number of hits on resources of all density types (Et), was determined. 189 

‘Positive behavioural preference’ was defined as (Ad / At) > (Ed / Et). The influence of 190 

an alternative definition is considered in the Electronic Supplementary Information. 191 

The number of positive behavioural preferences for each resource density type over 192 

the 100 repeats of training was plotted against set of input arrays (resource group size) 193 

in figs. 1, 2, and 3. Note that while training included resource selections from all 194 

elements of the visual field, behavioural testing only considered selections within the 195 

inner 3x3 area, to avoid ambiguities in defining density type associated with the edge 196 

of the visual field.  197 

 198 



Results 199 

 200 

This results section only presents a small proportion of the extensive results in full 201 

(figs 1, 2, and 3), in order to assist understanding and interpretation. The full result are 202 

summarised in fig. 4 and readers are directed to the Electronic Supplementary 203 

Information for a detailed description of all the results summarised in fig. 4. Fig. 1 204 

shows an example of positive DDS for one combination of three model parameter: 205 

(resource groups dispersed during training, dispersed during behavioural testing, and 206 

group size following a power law with exponent -1.5 during training). By looking 207 

down the dashed lines in fig. 1 it can be seen that when low and intermediate resource 208 

density types are equally abundant in the behavioural testing groups (leftmost line) the 209 

networks have a preference for the intermediate density types. When intermediate and 210 

high density types are equally abundant (rightmost line) the networks have a 211 

preference for the high density resource types. Fig. 2 shows an example of negative 212 

DDS when one of the three parameters is changed: (resource groups dispersed during 213 

training, dispersed during behavioural testing, and group size following a uniform 214 

distribution during training). By looking down the dashed lines in fig. 2 it can be seen 215 

that when low and intermediate resource density types are equally abundant in the 216 

behavioural testing groups (leftmost line) the networks have a preference for the low 217 

density types. When intermediate and high density types are equally abundant 218 

(rightmost line) the networks have a preference for the intermediate density resource 219 

types. Fig. 3 shows a parameter combination (resource groups dispersed during 220 

training, compacted during behavioural testing, and group size following a power law 221 

with exponent -1.5 during training) leading to weak DDS relative to other parameter 222 

combinations. Network preference for the different density types (part B) does not 223 



change much (relative to other parameter combinations, Figs. 1, 2, S1, and S2) 224 

regardless of the incidence of density types in the behavioural testing groups (part A). 225 

The results shown in figs. 1-3 are summarised in elements 1,1, 1,2, and 1,4 of fig. 4. 226 

Fig. 4 shows the form of DDS expressed for all parameter combinations considered. 227 

The other data summarised in this fig. is presented in full and can be interpreted as 228 

described here in figs. S1 and S2 of the Electronic Supplementary Procedures.      229 

  Further analyses, including a dissection of mechanisms underlying selected 230 

phenomena described, a description of more complex training scenarios, and further 231 

discussion of the implications of model output can also be found in the Electronic 232 

Supplementary Information.  233 

 234 

Discussion  235 

 236 

Accepting the inherent limitations of this highly simplified model and the need for 237 

empirical validation of if (see below), let us ask: what does the model presented in 238 

this article tell us about natural selection imposed by simple artificial neural networks 239 

on aggregated resource groups and what might be biological analogies of these 240 

phenomena? Firstly, it appears that experience during ‘training’ and not subsequent 241 

behavioural testing is important in determining the form of DDS imposed on resource 242 

aggregations (fig. 4). In fig. 4 patterns of DDS on artificial prey are similar within 243 

treatments where groups were dispersed or compacted during training but quite 244 

different between these treatments and, generally, group conformation during 245 

behavioural testing makes little difference to the pattern of natural selection imposed. 246 

While the model uses an evolutionary algorithm to optimise networks during training, 247 

I make no distinction between evolution of behaviour and within-lifetime learning as 248 



an analogy of training. The performance surface of a neural network (the multivariate 249 

relationship between network weights and task efficiency) is determined by the task at 250 

hand, network architecture, and the functions chosen to embody artificial neurons. 251 

The optimisation algorithm simply traverses this surface and evolutionary and 252 

ontogenetic optimisation methods will ideally reach the same point on the surface. 253 

This claim is consistent with empirical data, which show no intrinsic difference in 254 

generalization behaviour for innately recognized stimuli vs. recognition resulting from 255 

individual experience (Ghirlanda & Enquist 2003). The prediction that ‘training’ is 256 

important in determining the form of DDS imposed on resource aggregations 257 

indicates that in consumers that learn little during their lifetime, their evolutionary 258 

experience of resources aggregations and not experience during any one lifetime will 259 

determine the type of DDS they impose on resource aggregations. In consumers that 260 

learn during their lifetime through experience with resource aggregations, it is 261 

expected that their within-lifetime history of experience rather than the conformation 262 

of any new group encountered will determine the type of DDS they impose. Secondly, 263 

the model indicates that evolution of resource aggregation through predator pressure 264 

(via negative DDS) is not expected to occur when the distribution of resource group 265 

size experienced and processed by the predator nervous system follows a power law 266 

with an exponent of -1.5 (fig. 4). In fig. 4 negative DDS is completely absent when 267 

networks are trained with this group size distribution. In prey where the raw 268 

distribution of group size follows this distribution (Bonabeau et al. 1999), it will be 269 

necessary that the smallest resource groups are not recognised by the predator in order 270 

for negative DDS and so evolution of aggregation to occur. It should be noted that the 271 

first and second predictions above are explicit and amenable to empirical testing. 272 

Thirdly, a dynamic for the evolution of resource aggregation through predator 273 



pressure is suggested. The presumed conditions for the evolution of aggregation 274 

(negative DDS: preferential selection of spatially isolated individuals) does not occur 275 

under any circumstances when networks train on compacted resource groups. It only 276 

occurs when network train on dispersed groups and even then under a restricted set of 277 

circumstances (fig. 4). This indicates that evolution of aggregation from initially 278 

dispersed groups through predator pressure will not occur indefinitely to produce 279 

extremely compacted aggregations, but rather evolution will proceed until a sufficient 280 

level of compaction occurs to terminate the operation of negative DDS, after which it 281 

will stop. As selection on compacted groups tends to be positive DDS (fig. 4) one can 282 

also envisage how this terminal process could lead to a cyclical evolutionary dynamic 283 

of group compaction and dispersal. Fourthly, an alteration in the form of natural 284 

selection imposed by predators on aggregated prey is predicted in response to 285 

anthropomorphic influences on prey. Mean prey group size is positively related to 286 

population density in many prey organisms forming unstable groups (see refs. in 287 

Pepin & Gerard 2008). Depletion of prey numbers through human influences is, 288 

therefore, likely to change the distribution of group size detected and processed by the 289 

predator and so alter the selective regime imposed by it on prey in aggregations (fig. 290 

4). 291 

Although I have termed the manipulations carried out on resource groups 292 

within simulations, ‘changes in the spatial conformation of resource groups’, similar 293 

changes in the projection onto the visual sensory surface could be obtained by 294 

viewing the same resource group at a different distance. A resource group viewed 295 

close up is heterogeneous-looking, like the dispersed groups in the result section, and 296 

a resource group viewed at a distance looks like the compacted groups. ‘Spatial 297 

conformation’ can, therefore, be considered synonymous with the spatial scale at 298 



which a resource group is viewed by the consumer organism. It is within this context 299 

that recent empirical results consistent with model output are presented. Ioannou et al. 300 

(2009) analysed the behaviour of stickleback fish predating Daphnia waterfleas and 301 

found that at a distance there is selection on the fish to select fleas in spatially dense 302 

regions of the swarm while closer up there is selection to select fleas from less dense 303 

areas. These results are consistent with simulations, where selection of resources in 304 

dense regions of the group predominates when training is on ‘compacted’ (distant) 305 

groups and selection of low density type resources predominates when training is on 306 

‘dispersed’ (close) resources (fig. 4). Another approach colleagues and I have 307 

previously used to test neural network models of behaviour (Ruxton et al. 2007) is the 308 

use of interactive computer games with humans. To test the present model it would be 309 

necessary to assume that the use of an evolutionary training algorithm as in the 310 

present study is irrelevant and the same result could be produced by an ontogenetic 311 

algorithm (discussed above). A game could be developed that is entirely analogous to 312 

procedures within the present modelling study. It could comprise a presentation phase 313 

with different resource group configurations and distributions of group size, in which 314 

users train to increase their efficiency of resources capture, and a testing phase in 315 

which preference for resources with different density type is quantified. There is also 316 

potential to modify the protocols of Ioannou et al. (2009) with sticklebacks and 317 

waterfleas in order to test the predictions of the model. 318 

The model presented here is relatively simple (compared to many other 319 

simulations of biological complex systems) and I have tried to investigate some 320 

parameters space both in the main results and in Electronic Supplementary 321 

Information. Nevertheless, due to time and computing limitations, some aspects of the 322 

model are not investigated. These include the influence of artificial neuron 323 



characteristics and network architecture. It is possible that varying these could affect 324 

the results significantly, however, the results presented represent the first and only 325 

values/characteristics chosen for these invariant model parameters at the beginning of 326 

simulations. This fact coupled with the robustness of results and the demonstration of 327 

biologically interesting phenomena across a wide area of the parameter space 328 

investigated, leads me to be optimistic that results of biological interest would remain 329 

across a significant proportion of this additional parameter space.       330 

 This study is part of a wider research program investigating the nature of the 331 

evolution of self-organised systems, of which self-organised animal groups have 332 

become a model system. Couzin et al. (2002) developed a now widely used model of 333 

self-organising fish shoals that, given the number and specificity of shoal behaviours 334 

it can reproduce, undoubtedly captures essential elements of these systems. Wood and 335 

Ackland (2007) subject this model to evolution by introducing predators that 336 

approached and removed individuals prey essentially at random. They demonstrated 337 

both the evolution of aggregation and some group-level evasion behaviours. The next 338 

stage in this research program is to subject the self-organised prey group to predation 339 

that is discriminating with regard to prey individuals chosen. A fully validated version 340 

of the model presented in this article is a possible candidate for introduction of 341 

predator discrimination. The present study indicates that, just like the group-level 342 

behaviours of self-organised shoals, patterns of natural selection imposed on resource 343 

aggregation may arise as an emergent property of interactions between interacting 344 

agents (neurons) in a complex system.        345 

 346 

Acknowledgments. This work was supported by United Kingdom Natural 347 

Environment Resource Council Grant NE/D011035/1. 348 



 349 

References 350 

Ballerini, M., N. Calbibbo, R. Candeleir, A. Cavagna, E. Cisbani, I. Giardina, V. 351 

Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. 352 

2008. Interaction ruling animal collective behavior depends on topological 353 

rather than metric distance: Evidence from a field study. Proceedings Of The 354 

National Academy Of Sciences Of The United States Of America 105:1232-355 

1237. 356 

Bonabeau, E., L. Dagorn, and P. Freon. 1999. Scaling in animal group-size 357 

distributions. Proceedings Of The National Academy Of Sciences Of The 358 

United States Of America 96:4472-4477. 359 

Branch, E. D. 1929 (New edition 1997) The Hunting of the Buffalo. University of 360 

Nebraska Press, Lincoln and London. 361 

Couzin, I. D., J. Krause, R. James, G. D. Ruxton, and N. R. Franks. 2002. Collective 362 

memory and spatial sorting in animal groups. Journal Of Theoretical Biology 363 

218:1-11. 364 

Cresswell, W. 1994. Flocking Is An Effective Anti-Predation Strategy In Redshanks, 365 

Tringa-Tetanus. Animal Behaviour 47:433-442. 366 

Enquist, M., and S. Ghrilanda. 2005. Neural networks and animal behavior. Princeton 367 

University Press, Princeton, NJ. 368 

Fryxell, J. M., A. Mosser, A. R. E. Sinclair, and C. Packer. 2007. Group formation 369 

stabilizes predator-prey dynamics. Nature 449:1041-U1044. 370 

Ghirlanda, S., and M. Enquist. 2003. A century of generalization. Animal Behaviour 371 

66:15-36. 372 



Hamilton, W. D. 1971. Geometry For Selfish Herd. Journal Of Theoretical Biology 373 

31:295-&. 374 

Ioannou, C. C., L. J. Morrell, G. D. Ruxton, and J. Krause. 2009. The Effect of Prey 375 

Density on Predators: Conspicuousness and Attack Success Are Sensitive to 376 

Spatial Scale. American Naturalist 173:499-506. 377 

Krause, J., and G. D. Ruxton. 2002. Living in Groups. Oxford University Press, 378 

Oxford. 379 

Lindstrom, A. 1989. Finch Flock Size And Risk Of Hawk Predation At A Migratory 380 

Stopover Site. Auk 106:225-232. 381 

McClelland, J. L., and T. T. Rogers. 2003. The parallel distributed processing 382 

approach to semantic cognition. Nature Reviews Neuroscience 4:310-322. 383 

Milinski, M. 1977. Experiments On Selection By Predators Against Spatial Oddity Of 384 

Their Prey. Zeitschrift Fur Tierpsychologie-Journal Of Comparative Ethology 385 

43:311-325. 386 

Morrell, L. J., and R. James. 2008. Mechanisms for aggregation in animals: rule 387 

success depends on ecological variables. Behavioral Ecology 19:193-201. 388 

Pepin, D., and J. F. Gerard. 2008. Group dynamics and local population density 389 

dependence of group size in the Pyrenean chamois, Rupicapra pyrenaica. 390 

Animal Behaviour 75:361-369. 391 

Ruxton, G. D., A. L. Jackson, and C. R. Tosh. 2007. Confusion of predators does not 392 

rely on specialist coordinated behavior. Behavioral Ecology 18:590-596. 393 

Stankowich, T. 2003. Marginal predation methodologies and the importance of 394 

predator preferences. Animal Behaviour 66:589-599. 395 

Tosh, C. R., J. Krause, and G. D. Ruxton. 2009. Theoretical predictions strongly 396 

support decision accuracy as a major driver of ecological specialization. 397 



Proceedings Of The National Academy Of Sciences Of The United States Of 398 

America 106:5698-5702. 399 

Tosh, C. R., and G. D. Ruxton. 2007. The need for stochastic replication of ecological 400 

neural networks. Philosophical Transactions Of The Royal Society B-401 

Biological Sciences 362:455-460. 402 

Wood, A. J., and G. J. Ackland. 2007. Evolving the selfish herd: emergence of 403 

distinct aggregating strategies in an individual-based model. Proceedings Of 404 

The Royal Society B-Biological Sciences 274:1637-1642. 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 



Figure 1. An example of positive DDS for one combination of three model parameter 422 

(see plot header). By looking down the dashed lines it can be seen that when low and 423 

intermediate resource density types are equally abundant in the behavioural testing 424 

groups (leftmost line) the networks have a preference for the intermediate density 425 

types. When intermediate and high density types are equally abundant (rightmost line) 426 

the networks have a preference for the high density resource types. Data was excluded 427 

from graphs in figs. 1, 2, and 3 when fewer than 60 of the 100 training replicates 428 

showed an expected number of strikes on the resource type under consideration of 429 

less than 20 (results are not sensitive to this criterion, see Electronic Supplementary 430 

Information).     431 

 432 

Figure 2. An example of negative DDS when one of the three model parameters in 433 

fig. 1 (group size distribution during training) is changed (see plot header). By 434 

looking down the dashed lines it can be seen that when low and intermediate resource 435 

density types are equally abundant in the behavioural testing groups (leftmost line) the 436 

networks have a preference for the low density types. When intermediate and high 437 

density types are equally abundant (rightmost line) the networks have a preference for 438 

the intermediate density resource types. Data was excluded from graphs in figs. 1, 2, 439 

and 3 when fewer than 60 of the 100 training replicates showed an expected number 440 

of strikes on the resource type under consideration of less than 20 (results are not 441 

sensitive to this criterion, see Electronic Supplementary Information).     442 

 443 

Figure 3. A parameter combination leading to weak DDS relative to other parameter 444 

combinations. Network preference for the different density types (part B) does not 445 

change much (relative to other parameter combinations, Figs. 1, 2, S1, and S2) 446 



regardless of the incidence of density types in the behavioural testing groups (part A). 447 

Data was excluded from graphs in figs. 1, 2, and 3 when fewer than 60 of the 100 448 

training replicates showed an expected number of strikes on the resource type under 449 

consideration of less than 20 (results are not sensitive to this criterion, see Electronic 450 

Supplementary Information).     451 

 452 

Figure 4. A summary of the forms of DDS expressed for all parameter combinations 453 

considered. Effects illustrated in figs. 1, 2, and 3 are elements 1,1, 1,2, and 1,4 of the 454 

figure. A full, detailed description of the results summarised here can be found in the 455 

Electronic Supplementary Information.  456 

 457 

 458 

 459 

460 



4. Figure



4. Figure



4. Figure



4.
 F

ig
ur

e



I analyse the behaviour of artificial neural networks in the context of predator – prey 461 
interactions.   462 
Networks subject to undirected training impose numerous forms of DDS on artificial 463 
prey groups. 464 
The study provides an empirically testable framework.  465 
It could allow prediction of the forms of natural selection imposed by predators on 466 
prey groups. 467 
 468 




