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Abstract

A disaggregation algorithm is applied to 40 km resolution SMOS (Soil Mois-

ture and Ocean Salinity) surface soil moisture using 1 km resolution MODIS

(MODerature resolution Imaging Spectroradiometer), 90 m resolution ASTER

(Advanced Spaceborne Thermal Emission and Reflection radiometer), and 60

m resolution Landsat-7 data. DISPATCH (DISaggregation based on Physi-

cal And Theoretical scale CHange) distributes high-resolution soil moisture

around the low-resolution observed mean value using the instantaneous spa-

tial link between optical-derived soil evaporative efficiency (ratio of actual

to potential evaporation) and near-surface soil moisture. The objective is

three-fold: (i) evaluating DISPATCH at a range of spatial resolutions using

readily available multi-sensor thermal data, (ii) deriving a robust calibration

procedure solely based on remotely sensed data, and (iii) testing the linear

or nonlinear behaviour of soil evaporative efficiency. Disaggregated soil mois-

ture is compared with the 0-5 cm in situ measurements collected each month

from April to October 2011 in a 20 km square spanning an irrigated and dry
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land area in Catalunya, Spain. The target downscaling resolution is set to 3

km using MODIS data and to 100 m using ASTER and Landsat data. When

comparing 40 km SMOS, 3 km disaggregated and 100 m disaggregated data

with the in situ measurements aggregated at corresponding resolution, results

indicate that DISPATCH improves the spatio-temporal correlation with in

situ measurements at both 3 km and 100 m resolutions. A yearly calibration

of DISPATCH is more efficient than a daily calibration. Assuming a linear

soil evaporative efficiency model is adequate at kilometric resolution. At 100

m resolution, the very high spatial variability in the irrigated area makes

the linear approximation poorer. By accounting for non-linearity effects, the

slope of the linear regression between disaggregated and in situ measurements

is increased from 0.2 to 0.5. Such a multi-sensor remote sensing approach has

potential for operational multi-resolution monitoring of surface soil moisture

and is likely to help parameterize soil evaporation at integrated spatial scales.

Keywords: disaggregation, downscaling, SMOS, MODIS, ASTER,

Landsat, evaporation, calibration, irrigation

1. Introduction1

The current climatic trend and variability bring a questioning look to2

the natural supply of water resources. The point is that monitoring water3

resources requires observation strategies at a range of spatial scales: the4

atmospheric (global circulation model grid) scale, the hydrologic (catchment)5

scale, the administrative (irrigation area) scale and the local (field) scale.6

The only feasible way to provide multi-scale data sets over extended areas is7

through multi-sensor/multi-resolution remote sensing.8
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Among the variables accessible from remote sensing, soil moisture is cru-9

cial in hydrology as it controls evaporation, infiltration and runoff processes10

at the soil surface. However, the operational retrieval of soil moisture is11

currently made from passive microwave sensors at a resolution of several12

tens of km only. In particular, the surface soil moisture retrieved from13

C-band AMSR-E (Advanced Microwave Scanning Radiometer-EOS, Njoku14

et al. (2003)) data and L-band SMOS (Soil Moisture and Ocean Salinity,15

Kerr et al. (2012)) data has a spatial resolution of about 60 km and 40 km,16

respectively. The forthcoming SMAP (Soil Moisture Active and Passive, En-17

tekhabi et al. (2010)) mission, scheduled for launch in 2014, will provide soil18

moisture data at 10 km resolution.19

Optical sensors offer a wide range of spatial resolutions from several tens20

of meters for Landsat and ASTER (Advanced Spaceborne Thermal Emission21

and Reflection radiometer) to 1 km for MODIS (MODerate resolution Imag-22

ing Spectroradiometer). Although optical data have potential to monitor soil23

moisture, their sensitivity to other environmental factors (especially meteo-24

rological conditions and vegetation cover) makes the soil moisture retrieval25

impractical. Nevertheless, the synergy between low-resolution microwave26

and high-resolution optical data (Zhan et al., 2002) is likely to help achieve27

a multi-resolution soil moisture retrieval approach.28

Microwave/optical data merging methods for estimating high-resolution29

soil moisture are generally based on the triangle (Carlson et al., 1994) or30

trapezoid (Moran et al., 1994) approach. Both similarly relate the varia-31

tions in land surface temperature to the variations in soil water content and32

vegetation cover (Carlson, 2007; Petropoulos et al., 2009). In the trapezoid33
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approach however, the fraction of water-stressed vegetation is added as a34

third variable to explain a possible increase of vegetation temperature above35

the temperature of fully vegetated well-watered pixels.36

By gathering triangle- and trapezoid-based method groups, two types of37

microwave/optical data merging approaches can be distinguished according38

to their purely-empirical (polynomial-fitting, Chauhan et al. (2003)) or semi-39

physical (evaporation-based, Merlin et al. (2008)) nature. The polynomial-40

fitting approach consists in i) expressing high-resolution soil moisture as a41

polynomial function of optical-derived variables (land surface temperature,42

vegetation index, surface albedo) available at high resolution, ii) applying43

the polynomial expression at low resolution to determine fitting parameters44

and iii) applying the polynom at high resolution using low-resolution fitted45

parameters. Note that the polynomial-fitting approach is rather a synergis-46

tic approach combining microwave and optical data than a disaggregation47

method because the conservation law is in general not satisfied at low resolu-48

tion: due to the nonlinear nature of the polynomial function, the average of49

the estimated high-resolution soil moisture is not equal to the low-resolution50

observation. The evaporation-based approach uses the same optical-derived51

variables as the polynomial-fitting approach. However, it makes an attempt52

to physically represent the spatial link between optical-derived evaporation53

efficiency (ratio of actual to potential evaporation) and surface soil mois-54

ture. Note that other ancillary (soil and meteorological) data may be used55

in addition to optical data to help represent the spatio-temporal relation-56

ship between optical-derived evaporation efficiency and surface soil moisture57

(Merlin et al., 2008).58
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Piles et al. (2011) recently developed a new polynomial-fitting method by59

merging SMOS and MODIS data to provide surface soil moisture data at 1060

km and 1 km resolution. The approach was based on Chauhan et al. (2003)61

except that high-resolution optical-derived surface albedo was replaced by62

low-resolution microwave brightness temperature in their polynomial func-63

tion. The method in Piles et al. (2011) was applied to the AACES (Australian64

Airborne Cal/Val Experiments for SMOS, Peischl et al. (2012)) area during65

the SMOS commissioning phase. The polynomial coefficients were first de-66

termined at low resolution by applying the polynom to SMOS-scale bright-67

ness temperature, the MODIS land surface temperature aggregated at SMOS68

resolution and the MODIS-derived fraction vegetation cover aggregated at69

SMOS resolution. This step required to correct SMOS soil moisture prod-70

uct using in situ soil moisture measurements, in order to remove any bias in71

SMOS data. The polynomial expression was then applied at high-resolution72

to SMOS brightness temperature and optical data. This step required to73

over-sample 40 km resolution SMOS brightness temperature at 1 km reso-74

lution. Piles et al. (2011) indicated that i) introducing the low-resolution75

SMOS brightness temperature into the polynomial function reduced the bias76

between downscaled and in situ soil moisture and ii) the spatio-temporal77

correlation between SMOS and in situ measurements was slightly degraded78

when applying the polynomial-fitting method.79

Kim and Hogue (2012) recently developed a new evaporation-based disag-80

gregation (named UCLA) method of microwave soil moisture product. The81

approach was based on the formulation of evaporative fraction derived by82

Jiang and Islam (2003), and a linear scaling relationship between evapora-83

5



tive fraction and surface soil moisture. The originality of the UCLA method84

relied in the representation of vegetation water stress at low resolution to de-85

rive a high-resolution soil wetness index (trapezoid approach), whilst previous86

evaporation-based methods assumed an unstressed vegetation cover (trian-87

gle approach). The algorithm was applied to AMSR-E level-3 soil moisture88

product (Njoku et al., 2003) using 1 km resolution MODIS data over the ∼7589

km by 50 km SMEX04 area (Jackson et al., 2008), and the 1 km resolution90

disaggregated data were evaluated at the 36 SMEX sampling sites. In their91

paper, the authors compared the UCLA method to a range of polynomial-92

fitting algorithms (Chauhan et al., 2003; Hemakumara et al., 2004; Hossain93

and Easson, Jul. 2008) and to the evaporation-based method in Merlin et al.94

(2008). Results indicated that i) both evaporation-based methods (Kim and95

Hogue, 2012; Merlin et al., 2008) significantly improved the limited spa-96

tial variability of AMSR-E product and ii) the polynomial-fitting algorithms97

showed poorer performance over the SMEX04 area.98

Merlin et al. (2012b) recently improved the evaporation-based method de-99

veloped in Merlin et al. (2008). DISPATCH (DISaggregation based on Physi-100

cal And Theoretical scale CHange) estimated high-resolution soil evaporative101

efficiency using high-resolution land surface temperature and NDVI data and102

the low-resolution temperature endmembers derived from high-resolution op-103

tical data. The link between optical data and surface soil moisture was then104

ensured by a nonlinear soil evaporative efficiency model, which was calibrated105

using available remote sensing data only. The four main improvements made106

in Merlin et al. (2012b) consisted in integrating a representation of: vegeta-107

tion water stress at high resolution using the methodology in Moran et al.108
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(1994), the low-resolution sensor weighting function, the oversampling of109

low-resolution microwave data, and the uncertainty in output disaggregated110

data. DISPATCH was applied to version-4 SMOS level-2 soil moisture over111

the AACES area using 1 km resolution optical MODIS data, and the 1 km112

resolution disaggregated data were evaluated on a daily basis against 1 km113

resolution aggregated in situ measurements during the one-month summer114

and winter AACES. Results indicated a mean spatial correlation coefficient115

between 1 km resolution disaggregated SMOS and in situ data of about 0116

during the winter AACES and 0.7-0.8 during the summer AACES.117

The development of optical-based disaggregation approaches of microwave-118

derived soil moisture is still at its beginnings and more evaluation studies are119

needed. In particular, the ground data sets used to validate disaggregation120

methods (Chauhan et al., 2003; Piles et al., 2011; Kim and Hogue, 2012;121

Merlin et al., 2012b) have been limited to a one-month period although the122

performance of optical-based methodologies mostly relies on the atmospheric123

evaporative demand, which greatly varies across seasons. Also, most recent124

optical-based approaches have been tested using MODIS data although hy-125

drologic and agricultural applications may require soil moisture data at a spa-126

tial resolution finer than 1 km. Last, few studies (Merlin et al., 2010c; Piles127

et al., 2011; Merlin et al., 2012b) have applied disaggregation approaches to128

SMOS soil moisture products whereas downscaling strategies may contribute129

to the SMOS calibration/validation by reducing the large mismatch in spa-130

tial extent between 40 km resolution SMOS observations and localized in situ131

measurements.132

In this context, this paper seeks to (i) evaluate DISPATCH at a range133
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of spatial resolutions using readily available multi-sensor thermal data, (ii)134

derive a robust calibration procedure solely based on remotely sensed data,135

and (iii) test the linear or nonlinear behaviour of soil evaporative efficiency.136

DISPATCH is applied to last released version-5 SMOS level-2 soil moisture137

product over an irrigated and dry land area in Catalunya, Spain. The ob-138

jective is to provide 1 km resolution surface soil moisture over a 60 km by139

60 km area from 40 km resolution SMOS and 1 km resolution MODIS data140

and to provide 100 m resolution surface soil moisture over a 20 km by 20141

km area from MODIS-disaggregated SMOS and 100 m resolution re-sampled142

ASTER and Landsat-7 data. Disaggregated soil moisture data are evaluated143

at 3 km resolution using in situ 0-5 cm measurements made once a month144

from April to October 2011, and at 100 m resolution using the ground data145

collected in August, September and October. In this study, ASTER data are146

considered as reference high-resolution data to evaluate the performance of147

DISPATCH when applied to high-quality land surface temperature data and148

to more operational Landsat thermal data.149

The paper is organized as follows. Data sets are first described (section150

2). Next, four different modes of DISPATCH are presented: the LINEAR151

and NONLINEAR modes (for linear or nonlinear soil evaporative efficiency152

model) and the DAILY and YEARLY modes (for daily or yearly calibration153

procedure) (section 3). Then, the linearity of soil evaporative efficiency model154

and its calibration procedure are tested at 3 km and 100 m resolution (section155

4). Finally, an insight is given about the parameterization of soil evaporative156

efficiency from microwave/thermal combined remote sensing data (section157

5). Last, the conclusions and perspectives are presented (section 6).158
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2. Data159

The 60 km by 60 km study area is located east of Lleida in Catalunya,160

Spain. Lleida has arid continental Mediterranean climate typical of the Ebro161

Valley, with a mean yearly air temperature of 16◦C, precipitation of 400 mm,162

and number of days with rain of 60. Field experiments were undertaken163

over a focus 20 km square area, centered on the broader 60 km study area.164

The 20 km square area was chosen so that it includes irrigated crops, it is165

relatively flat and far enough (more than 100 km) from the Pyrenees and166

the Mediterranean sea to limit topographic and coastal artifacts in SMOS167

data. It spans part of the 700 km2 Urgell irrigation area and the surrounding168

dryland area, which both represent about half of the 20 km square. Irrigated169

crops include wheat, maize, alfalfa and fruit (apple and pear) trees while170

dryland crops are mainly barley, olive trees, vineyards and almond trees. An171

overview of the study area is presented in Figure 1.172

2.1. In situ173

The 0-5 cm soil moisture was measured using the gravimetric technique174

during seven one- (or two-) day campaigns in 2011: on DoY (Day of Year)175

97-98, DoY 146-147, DoY 164-165, DoY 196, DoY 228-229, DoY 244, and176

DoY 277. Each field campaign was undertaken on the same sampling grid177

(see Figures 1c and 1d), which represented 120 soil moisture measurement178

(sampling) points within the 20 km square. The total sampling extent cov-179

ered four 3 km by 3 km areas, with two located in the irrigated area and the180

other two in the dryland area. Each 3 km square was sampled by ten sam-181

pling points approximately spaced by 1 km, and three separate soil moisture182
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measurements were made at each sampling point. Soil texture was derived183

from particle size analysis at each of the 120 sampling points with a mean184

clay and sand fraction of 0.24 and 0.37, respectively. The approach in Sax-185

ton et al. (1986) was used to convert gravimetric measurements to volumetric186

values with a mean soil density estimated as 1.37 g cm−3. Table 1 reports187

the spatial and temporal variations of 0-5 cm soil moisture obtained during188

the 2011 campaign in the dryland and irrigated area separately.189

2.2. Remote sensing190

The version-5.01 SMOS level-2 soil moisture product released on March191

16, 2012 is used. Details on the processing algorithms can be found in the192

Algorithm Theoretical Baseline Document (ATBD, version 3.4, Kerr et al.193

(2011)), and on the L2SM products structure in the SMOS Level 2 and Aux-194

iliary Data Products Specifications (SO-TN-IDR-GS-0006, Issue 6.0 2011-05-195

18). SMOS level-2 soil moisture data are extracted over a 100 km by 100 km196

area centered on the 20 km square area. Following the SMOS re-sampling197

strategy described in Merlin et al. (2010c), re-sampled SMOS data overlap198

four times over the 60 km by 60 km study area.199

MODIS products MOD11A1, MYD11A1 and MOD13A2 were downloaded200

through the NASA Warehouse Inventory Search Tool, projected in UTM 31201

North with a sampling interval of 1000 m using the MODIS reprojection tool202

and extracted over a 100 km by 100 km area centered on the study area, con-203

sistent with large scale SMOS data. Figure 2 presents the 1 km resolution204

images over the study area of Terra NDVI on DoY 225, Terra land surface205

temperature on DoY 228 (10:30 am) and Aqua land surface temperature on206

DoY 228 (1:30 pm). Some of the observed variabilities in MODIS tempera-207
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ture data can be attributed to vegetation cover and topographic effects.208

ASTER overpassed the study area on DoY 228, DoY 244 and DoY 276 at209

10:30 am local solar time. ASTER official AST 2B3 and AST 2B5 products210

were downloaded from ASTER Ground Data Segment Information Manage-211

ment System web site. ASTER 15 m resolution red (band 2) and near-212

infrared (band 3) bands, and ASTER 90 m resolution radiometric tempera-213

ture are extracted over the 20 km square and re-sampled at 100 m resolution.214

NDVI is computed at 100 m resolution as the difference between near-infrared215

and red re-sampled bands divided by their sum. Since no cloud mask is ap-216

plied to AST 2B3 and AST 2B5 products, the partially cloudy scene acquired217

on DoY 244 is discarded. The ASTER scenes acquired on DoY 228 and DoY218

276 are cloud free. Although ASTER currently provides the best quality land219

surface temperature data from space, it does not acquire data continuously220

and data collection is scheduled upon request. Herein, ASTER data are thus221

considered as reference high-resolution data to evaluate the performance of222

DISPATCH when applied to (i) high-quality land surface temperature data223

and (ii) more operational Landsat data.224

Landsat-7 overpassed the study area on the same dates as ASTER at225

around 10:30 am local solar time. Landsat level-1 radiances products were226

downloaded free of charge from USGS Earth Explorer website. They are227

available at 30 m resolution in all spectral bands. Note that the native res-228

olution of thermal infrared bands (61 for low gain and 62 for high gain)229

is 60 m. In this study, Landsat level-1 visible and near-infrared bands are230

corrected for atmospheric effects with the algorithm in Hagolle et al. (2010),231

whereas thermal infrared level-1 radiances are processed without atmospheric232
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correction. The rationale for neglecting atmospheric effects in thermal data233

is based on Merlin et al. (2012b), who used the MODIS radiance-derived234

brightness temperature at sensor level instead of MODIS level-2 land surface235

temperature as input to DISPATCH. Their results indicated that correcting236

land surface temperature data for atmospheric effects is not a necessary step237

as long as the disaggregation is based on temperature differences within a238

40 km size area (SMOS pixel). Herein, Landsat radiance-derived land sur-239

face temperature T is hence estimated from band 62 (high gain) by simply240

computing the inverse Planck function:241

T =
K2

ln(K1

Rλ
+ 1)

(1)

with K1 = 666.09 W m−2 sr−1 µm−1 and K2 = 1282.71 K for band 62, and242

Rλ the spectral radiance in W m−2 sr−1 µm−1 converted from digital number243

(DN):244

Rλ = Rmin + (Rmax − Rmin) ×
DN − 1

255 − 1
(2)

with Rmin = 3.20 W m−2 sr−1 µm−1 and Rmax = 12.65 W m−2 sr−1 µm−1
245

for band 62. Landsat-7 30 m resolution red (band 3), 30 m resolution near-246

infrared (band 4), and the 30 m resolution land surface temperature derived247

from Equation (1) are extracted over the 20 km square area and re-sampled248

at 100 m resolution. NDVI is computed at 100 m resolution as the difference249

between near-infrared and red re-sampled bands divided by their sum. The250

spatial extent of Landsat-7 data within the 20 km square area is delimited by251

the field of view, the contour of clouds detected by the algorithm in Hagolle252

et al. (2010) on the image acquired on DoY 244 and the data gaps (stripes)253
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due to Scan Line Corrector (SLC) anomaly. Since the SLC anomaly produces254

larger data gaps at the edge of the field of view, the processed Landsat-255

7 scenes are truncated at 30 km from the 183 km swath center. Figure 3256

presents the 100 m resolution images over the 20 km square area of Landsat-257

derived NDVI and land surface temperature on DoY 228. Stripes are visible258

in the temperature image, but not in the NDVI image because the algorithm259

in Hagolle et al. (2010) interpolates shortwave data within the 60 km wide260

truncated Landsat-7 field of view. Note that the minimum and maximum261

land surface temperatures are significantly different for Landsat and ASTER262

data. The difference in temperature range is due mainly to atmospheric263

absorption (not taken into account in the derivation of Landsat temperature)264

and partly to the slight difference in overpass time (ASTER overpassed the265

study area several minutes after Landsat-7). The data coverage fraction266

within the 20 km square area is 82%, 57%, 94% on DoY 228, 244, 276,267

respectively.268

3. DISPATCH269

DISPATCH is an improved version of the algorithms in Merlin et al.270

(2008), Merlin et al. (2009), Merlin et al. (2010a) and Merlin et al. (2012b).271

A detailed description of DISPATCH is provided in Merlin et al. (2012b) so272

only the pertinent details are given here.273

3.1. Linearity of soil evaporative efficiency model274

One major objective of this paper is to test the linear or nonlinear be-275

haviour of the soil evaporative efficiency model used the downscaling rela-276

tionship:277
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SM = SM +

(

∂SMmod

∂SEE

)

SEE=SEE

× (SEE − SEE) (3)

with SM being the surface soil moisture disaggregated at high resolution,278

SM the low-resolution soil moisture (for clarity, the variables at coarse scale279

are written in bold), SEE the optical-derived soil evaporative efficiency (ratio280

of actual to potential evaporation), SEE its average within a low-resolution281

pixel and ∂SMmod/∂SEE the partial derivative of soil moisture with re-282

spect to soil evaporative efficiency. In LINEAR mode the partial derivative283

in Equation (3) is computed using the simple and linear soil evaporative284

efficiency model in Budyko (1956) and Manabe (1969):285

SEEmod = SM/SMp (4)

with SMp being a soil parameter (in soil moisture unit). By inverting Equa-286

tion (4), one obtains:287

SMmod = SEE × SMp (5)

Note that nonlinear soil evaporative efficiency models (Noilhan and Planton,288

1989; Lee and Pielke, 1992; Komatsu, 2003) were used in the previous versions289

of DISPATCH (Merlin et al., 2008, 2010a, 2012b). The rationale for choosing290

a linear one is two-fold: (i) the model in Equation (4) may be more robust291

than a nonlinear model with an erroneous behaviour and (ii) it may help292

describe the real behaviour of soil evaporative efficiency via the calibration of293

SMp. To investigate nonlinearity effects, a NONLINEAR mode is proposed294

with the following soil evaporative efficiency model:295
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SEEmod,nl = (SM/SMsat)
P (6)

with P an empirical parameter and SMsat the soil moisture at saturation.296

The above expression is chosen for its simplicity (it is controlled by 1 em-297

pirical parameter only), and its ability to approximately fit the exponential298

model in Komatsu (2003), which was successfully implemented in previous299

versions of DISPATCH (Merlin et al., 2008, 2010a). In addition, the model300

in Equation (6) equals the linear model in Equation (4) for P = 1 and301

SMsat = SMp. In Equation (6), the soil moisture at saturation is estimated302

as in Cosby et al. (1984):303

SMsat = 0.489 − 0.126fsand (7)

with fsand (-) being the sand fraction (set to 0.37). By inverting Equation304

(6), one obtains:305

SMmod,nl = SEE1/P
× SMsat (8)

In NONLINEAR mode, the disaggregated soil moisture SM corr is written as:306

SM corr = SM − ∆SMnl (9)

with SM being the soil moisture disaggregated using the linear model in307

Equation (4) and ∆SMnl a correction term:308

∆SMnl = SMmod − SMmod,nl (10)
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By replacing linear and nonlinear models by their expression in Equation (4)309

and (6) respectively, one obtains:310

∆SMnl = SEE × SMp − SEE1/P
× SMsat (11)

with SMp and P being considered as fitting parameters self-estimated by311

DISPATCH from multi-sensor remote sensing observations.312

In LINEAR mode, the soil moisture parameter SMp used in Equation313

(4) is estimated as SM/SEE. In NONLINEAR mode, the exponent param-314

eter P used in Equation (6) is estimated as ln(SEE)/ ln(SM/SMsat). By315

injecting calibrated SMp and P in Equation (11), one finally obtains:316

∆SMnl =
SEE

SEE
× SM − SEE

ln(SM/SMsat)
ln(SEE) × SMsat (12)

Figure 4 illustrates differences between the linear and the nonlinear soil317

evaporative efficiency model for given values of SMp, SMsat, SM and SEE.318

For each fine-scale value of SEE within the low resolution pixel, the difference319

between inverse soil evaporative efficiency models provide an estimate of320

nonlinearity effects (∆SMnl in Figure 4) on disaggregated soil moisture. Note321

that the nonlinear behaviour of soil evaporative efficiency is a fundamental322

limitation of the relationship between soil moisture and its disaggregating323

parameters in the higher range of soil moisture values.324

3.2. Calibration procedure325

Another major objective of this paper is to derive a robust calibration326

procedure of DISPATCH solely based on remotely sensed data.327
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In LINEAR mode, two different calibration strategies are tested on a328

daily and yearly time scale. In DAILY mode, a value of SMp is obtained329

for each SMOS pixel and daily input data set whereas in YEARLY mode, a330

single value of SMp is obtained for each SMOS pixel. The yearly calibration331

requires to run the daily calibration over the entire time series and average332

the daily SMp for each SMOS pixel.333

In NONLINEAR mode, P is computed daily from low-resolution SM and334

SEE, and SMp is set to the value estimated in YEARLY mode.335

3.3. New version of DISPATCH336

From the version described in Merlin et al. (2012b), the current version337

of DISPATCH differs in two main aspects: temperature endmembers are338

computed differently, and a correction for topographic effects is included.339

3.3.1. Temperature endmembers340

In the new version of DISPATCH, the minimum land surface temperature341

is selected among the pixels with the best land surface temperature quality342

index. For MODIS data, best quality is indicated by an index equal to343

0. Selecting only the best quality temperature data is an efficient way to344

remove atmospheric effects on the MODIS pixels partly contaminated by345

clouds/aerosols but still retained by the MODIS algorithm for the retrieval346

of land surface temperature.347

In Merlin et al. (2012b), the estimation of maximum vegetation temper-348

ature was constrained using additional information provided by the MODIS-349

derived surface albedo (Merlin et al., 2010b). Herein, a simpler approach350

based on fractional vegetation cover only is adopted for two reasons: (i) sur-351
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face albedo is not an operational product from ASTER or Landsat data and352

(ii) the approach in Merlin et al. (2010b, 2012b) was developed for brown353

agricultural soils with relatively low albedo values and may not be valid in354

other more heterogeneous soil conditions.355

3.3.2. Topographic effects356

To take into account the decrease of air temperature with altitude, a357

simple correction is applied to land surface temperature data:358

Tcorr = T + γ(H − H) (13)

with Tcorr being the topography-corrected land surface temperature, T the359

land surface temperature derived from MODIS, ASTER or Landsat, γ (◦C360

m−1) the mean lapse rate i.e. the negative of the rate of temperature change361

with altitude change, H the altitude of the high-resolution optical pixel and362

H the mean altitude within the low resolution pixel. Lapse rate is set to363

0.006 ◦C m−1. Although topographic effects are expected to be low over364

the Urgell irrigation area, the correction in Equation (13) possibly makes365

disaggregation more robust in the hilly surrounding area.366

4. Application367

The linearity of soil evaporative efficiency model and its calibration proce-368

dure using SMOS/thermal data are tested by running DISPATCH in DAILY369

and YEARLY modes, and in LINEAR and NONLINEAR modes. The daily370

availability of MODIS data allows testing the DAILY and YEARLY modes at371

3 km resolution. The high spatial resolution of ASTER/Landsat data allows372
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testing the LINEAR and NONLINEAR modes over the full soil moisture373

range. In the latter case, the low-resolution data correspond to the aggre-374

gated value within the 20 km square area of the 1 km resolution MODIS-375

disaggregated SMOS soil moisture obtained in YEARLY mode. In each case,376

DISPATCH results are compared with the in situ measurements aggregated377

at corresponding resolution. Note that a one-day gap between SMOS over-378

pass and ground sampling dates is allowed in the comparison because field379

campaigns were made in one or two successive days.380

4.1. Evaluation strategies381

DISPATCH results are evaluated by two comparison strategies: the spatio-382

temporal comparison over the entire time series (strategy 1), and the spatial383

comparison at the daily time scale (strategy 2) between the remotely sensed384

soil moisture products and the in situ measurements aggregated at corre-385

sponding resolution.386

According to strategy 1, the null-hypothesis is the temporal comparison387

between SMOS soil moisture and the in situ measurements aggregated at the388

SMOS resolution. The performance of DISPATCH is hence assessed by com-389

paring over the entire time series the disaggregated soil moisture with the in390

situ measurements aggregated at corresponding resolution: 3 km for MODIS-391

disaggregated SMOS data and 100 m for both ASTER-disaggregated and392

Landsat-disaggregated SMOS data. Such a comparison between the uncer-393

tainty in SMOS data at 40 km resolution and the uncertainty in DISPATCH394

data at 3 km and 100 m resolution provides a useful overall assessment of395

the different soil moisture products.396

According to strategy 2, the null-hypothesis is the UNIFORM mode of397
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DISPATCH defined by setting the second term of Equation (3) to zero, i.e.398

setting disaggregated soil moisture to SMOS soil moisture. The performance399

of DISPATCH is hence assessed by comparing at the daily time scale the400

disaggregated soil moisture with the in situ measurements aggregated at cor-401

responding resolution: 3 km for MODIS-disaggregated SMOS data and 100402

m for both ASTER-disaggregated and Landsat-disaggregated SMOS data.403

Such a comparison is useful to specifically evaluate the soil moisture spa-404

tial representation provided by DISPATCH at the sub-SMOS-pixel scale, by405

freeing from the spatio-temporal trends provided by SMOS data at 40 km406

resolution.407

Table 2 presents the results of strategy 1 for the different application res-408

olutions and modes of DISPATCH. At 40 km resolution, the temporal corre-409

lation between SMOS and aggregated in situ measurements is 0.59. At 3 km410

resolution, the spatio-temporal correlation between MODIS-disaggregated411

SMOS and aggregated in situ measurements is 0.67 (YEARLY mode). At 100412

m resolution, the spatio-temporal correlation between ASTER-disaggregated413

SMOS and localized in situ measurements and between Landsat-disaggregated414

SMOS and localized in situ measurements is 0.73 and 0.86, respectively (LIN-415

EAR mode). Moreover, the mean difference and the root mean square differ-416

ence between SMOS or disaggregated SMOS and the in situ measurements417

aggregated at corresponding resolution is systematically lower at 3 km and418

100 m resolution than at 40 km resolution. DISPATCH thus improves the419

comparison between SMOS and in situ measurements. This is explained420

by i) the non-representativeness at the 40 km scale of the in situ measure-421

ments made in the very heterogeneous study area and ii) a relatively robust422
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representation of the soil moisture variability at the sub-SMOS-pixel scale.423

Although strategy 1 is useful to characterize the overall spatio-temporal424

performance of each soil moisture product, it has several disadvantages for425

evaluating the soil moisture spatial representation at the sub-SMOS-pixel426

scale. First, strategy 1 mixes the spatio-temporal trend provided by SMOS427

data with the spatial trend provided by DISPATCH. Hence, separating the428

gain in spatial representation associated with disaggregation is nontrivial.429

Second, in the case where the error in disaggregation products is larger than430

the error in SMOS data, strategy 1 does not allow the disaggregation per-431

formance to be evaluated: disaggregation could either improve of degrade432

the soil moisture spatial representation at the sub-SMOS-pixel scale. Third,433

the statistics presented in Table 2 are not (strictly speaking) comparable.434

For instance, the number of data points is 15 with SMOS data and 94 with435

DISPATCH-Landsat data, and the range of soil moisture values is 0.02-0.18436

m3/m3 at 40 km resolution and 0.02-0.48 m3/m3 at 100 m resolution.437

Strategy 2 is better adapted to evaluate the soil moisture representation438

at the sub-SMOS-pixel scale. It allows i) comparing DISPATCH results with439

the null-hypothesis in the same conditions (same number of data points, and440

same in situ soil moisture range), ii) undertaking this comparison at the sub-441

SMOS-pixel scale so that the spatial trend provided by DISPATCH can be442

easily separated from the spatial trend provided by SMOS data at 40 km443

resolution and iii) undertaking this comparison at the daily time scale so444

that the spatial trend provided by DISPATCH can be easily separated from445

the temporal trend provided by SMOS data.446

For the above reasons, hereafter the evaluation study of DISPATCH is447
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based on strategy 2 (Agam et al., 2007; Gao et al., 2012; Kim and Hogue,448

2012; Merlin et al., 2010b, 2012b,a).449

4.2. Testing the calibration procedure at 3 km resolution450

Figures 5a, b and c plot the 3 km resolution SMOS soil moisture disaggre-451

gated in UNIFORM, DAILY and YEARLY mode as a function of aggregated452

in situ measurements. When comparing Figures 5a and 5b, one observes that453

DISPATCH provides meaningful sub-pixel information. Especially, the slope454

of the linear regression between disaggregated and in situ soil moisture is455

systematically greater than zero and close to 1 in average (see Table 3).456

However, data are significantly scattered around the 1:1 line. When compar-457

ing Figures 5b and 5c, one observes that the YEARLY mode is more stable458

than the DAILY mode. In particular, the scatter is much reduced and the459

slope of the linear regression between disaggregated and in situ soil moisture460

better stabilized at a value close to 1. Moreover, the standard deviation (rep-461

resented by errorbars in Figure 5) of the downscaled soil moisture values with462

an estimated uncertainty greater than 0.04 m3/m3 is reduced by about 50%463

in the YEARLY mode. Hence, up to 50% of the uncertainty in downscaled464

soil moisture may be associated to the uncertainty in daily retrieved SMp.465

This interesting result indicates that i) retrieving SMp from readily available466

SMOS and MODIS data is a satisfying option, ii) setting SMp to a constant467

value improves disaggregation results, and iii) the linear approximation is468

well adapted at kilometric resolution.469

To assess the impact of fractional vegetation cover on DISPATCH results470

in DAILY and YEARLY modes, Figure 5d, e and f plot the disaggregation471

results obtained by selecting the 1 km resolution MODIS pixels with a frac-472
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tional vegetatation cover lower than 0.5. Statistical results are presented473

in Table 4. By selecting the MODIS pixels with fv < 0.5, the correlation474

coefficient between disaggregated and in situ soil moisture is increased from475

0.6 to 0.7 and the slope of the linear regression is closer to 1. As expected,476

the less vegetated the surface, the more accurate soil temperature retrieval477

and disaggregated soil moisture. Generally speaking, optical-based disaggre-478

gation methodologies of surface soil moisture should be implemented over479

low-vegetated surfaces only, or by assuming that the surface soil moisture480

below vegetation cover is representative of mean conditions.481

Note that some values of disaggregated soil moisture are negative in Fig-482

ures 5c and 5f. Negative values are possible in the disaggregation output483

because i) DISPATCH distributes fine-scale values relatively to the mean484

and ii) no constraint is applied to limit the range of disaggregated values.485

The main advantage of keeping unphysical negative soil moisture values in486

output is bringing to light inconsistent SMp values and/or a possible bias487

in SMOS data. In this study, the presence of negative values down to −0.04488

m3/m3 is consistent with a mean difference between disaggregated and in situ489

soil moisture estimated as −0.06 m3/m3. This result is also consistent with490

recent and ongoing calibration/validation studies around the world, which491

tend to indicate a general underestimation of SMOS data with respect to492

0-5 cm soil moisture measurements (Al Bitar et al., 2012; dall’Amico et al.,493

2012; Gherboudj et al., 2012; Sánchez et al., 2012). It is pointed out that no494

Radio Frequency Interference (RFI) filtering was applied to SMOS data, in495

order to maximize the spatio-temporal window of the comparison between496

disaggregated SMOS and in situ data.497
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Figure 6 presents the images of SMOS soil moisture and the SMOS data498

disaggregated at 1 km resolution in YEARLY mode for SMOS overpass on499

DoY 229, (a rainfall occurred on DoY 243) DoY 244, DoY 245 and DoY500

277. Figure 6 also presents the images at 1 km resolution of the standard501

deviation of the disaggregation output ensemble.502

4.3. Testing the linear approximation at 100 m resolution503

Figures 7a, b and c plot the 100 m resolution SMOS soil moisture disaggre-504

gated in UNIFORM, LINEAR and NONLINEAR mode using ASTER data505

as a function of in situ measurements for ground data on DoY 228-229 and506

DoY 277. When comparing Figures 7a and 7b, one observes that DISPATCH507

is able to provide some sub-pixel information, but the slope of the linear re-508

gression between disaggregated and in situ data is low in LINEAR mode.509

When comparing Figures 7b and 7c, one observes that the NONLINEAR510

mode significantly improves the slope and thus the spatial representation of511

100 m resolution soil moisture. The statistical results reported in Table 5 in-512

dicate that the correlation coefficient between disaggregated and in situ data513

is approximately the same for LINEAR and NONLINEAR modes, while the514

slope of the linear regression is increased from about 0.2 to 0.5 when taking515

into account nonlinearity effects.516

Figures 7d, e and f plot the 100 m resolution SMOS soil moisture disag-517

gregated in UNIFORM, LINEAR and NONLINEAR mode using Landsat-7518

data as a function of in situ measurements for ground data on DoY 228-229,519

DoY 244 and DoY 277. Table 6 reports statistical results in terms of correla-520

tion coefficient, slope of the linear regression, mean difference and root mean521

square difference between disaggregated and in situ data. The disaggregation522
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results using Landsat-7 data are compared with those obtained using ASTER523

data. DISPATCH performances are remarkably consistent with both sensors.524

Slightly better results are obtained with Landsat-7 than with ASTER data,525

indicating that the simple derivation of land surface temperature using raw526

Landsat-7 thermal radiances in Equation (1) and its underlying assumptions527

(surface emissivity set to 1 and neglected atmospheric corrections) are ap-528

propriate for the application of DISPATCH.529

Figure 8 presents the images of the SMOS data disaggregated at 100530

m resolution in NONLINEAR mode using Landsat-7 (DoY 228, DoY 244531

and DoY 276) and ASTER (DoY 228 and DoY 276) data and for SMOS532

overpasses on DoY 229, DoY 244, and DoY 277.533

5. Parameterizing evaporation efficiency at integrated spatial scales534

The disaggregation algorithm presented in this paper relies on the spa-535

tial link between optical-derived soil evaporative efficiency and near-surface536

soil moisture. If DISPATCH is able to provide reliable surface soil moisture537

estimates at a range of spatial resolutions, then reciprocically, one may hy-538

pothesize that the soil evaporative efficiency models used in Equation (4)539

and Equation (6) are reliable representations at their application scale. It540

is important to note however that DISPATCH also relies on the model used541

to estimate soil evaporative efficiency from optical data, which currently de-542

pends on soil temperature endmembers Ts,min and Ts,max. In this paper,543

the methodology for estimating temperature endmembers is solely based on544

the high-resolution optical data within the low-resolution pixel, meaning that545

the accuracy in Ts,min and Ts,max mostly relies on the representativeness of546
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the surface conditions met within the low-resolution pixel. For instance, the547

maximum and minimum soil temperatures are expected to be biased in the548

case of a uniformly wet and dry SMOS pixel, respectively. An interesting549

point is that the representativeness of the surface conditions met within a550

SMOS pixel would depend on the spatial resolution of optical data. In par-551

ticular, the temperature range of land surface temperature is different for552

MODIS and ASTER data (not shown) although they are associated with553

the same surface conditions. Irrigated areas including both dry mature and554

early stage wet crops (and possibly water reservoirs) do provide the het-555

erogeneous conditions to estimate temperature endmembers accurately, as556

long as the spatial resolution of the optical sensors is finer than the typical557

field size. Consequently, the application of DISPATCH with 1 km resolution558

MODIS data on one side and with 100 m resolution Landsat or ASTER data559

on the other may require different soil evaporative efficiency representations560

due to the lack of transferability across resolutions of the methodology used561

for estimating temperature end-members.562

The meaningfulness of the linear soil evaporative efficiency model in Equa-563

tion (4) is investigated by plotting in Figure 9a the MODIS-derived soil evap-564

orative efficiency aggregated at 40 km resolution as a function of SMOS soil565

moisture for the entire time series from April to October 2011. While the566

slope of the linear regression between aggregated MODIS-derived soil evapo-567

rative efficiency and SMOS soil moisture is positive, no significant correlation568

is observed. The non-uniqueness of the relationship between soil evaporative569

efficiency and surface soil moisture in changing atmospheric conditions has570

been reported in a number of studies (Chanzy and Bruckler, 1993; Merlin571
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et al., 2011). However, the SMOS-scale soil evaporative efficiency seems to572

be quasi constantly equal to 0.5, which is not consistent with the great soil573

moisture range covered by SMOS data. To further investigate the particular574

behaviour of aggregated MODIS-derived soil evaporative efficiency, the daily575

retrieved SMp parameter is plotted in Figure 9b as a function of SMOS soil576

moisture. A strong correlation is visible with a slope of the linear regression577

between SMp and SMOS soil moisture of about 2. Both results (SEE ∼ 0.5578

and SMp/SM ∼ 2) tend to indicate that there is a significant compensa-579

tion effect between SEE and SMp variations. It is thus highly probable580

that the daily variations in retrieved SMp be partly due to the variations581

in SEE associated with biased estimates of temperature endmembers Ts,min582

and Ts,max.583

The above discussion hypothesizes that a robust spatio-temporal estima-584

tion of temperature end-members Ts,min and Ts,max would help parameter-585

izing soil evaporative efficiency at a range of spatial scales. Future studies586

may use a soil energy balance model to simulate the minimum and maximum587

soil temperatures with a better accuracy than using the methodology solely588

based on remote sensing optical data. This would require meteorological data589

composed of air temperature, solar radiation, wind speed and relative humid-590

ity at a 40 km resolution or finer. Note that in this case, DISPATCH would591

no longer operate with relative values since the algorithm would combine592

remotely sensed temperature with the temperature endmembers estimated593

from other ancillary data. Consequently, remotely sensed temperature data594

should be fully compatible with those simulated by the energy balance model.595

In particular, the simple approach used in the paper to estimate land surface596
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temperature from raw Landsat thermal radiances would no longer be valid597

when using an energy balance model.598

6. Conclusion599

In this study, DISPATCH is applied to 40 km resolution SMOS soil mois-600

ture data over an irrigated and dry land area in Catalunya, Spain. The601

objective is to provide 1 km resolution surface soil moisture over a 60 km602

60 km area from SMOS and 1 km resolution MODIS data and to provide603

100 m resolution surface soil moisture over a 20 km by 20 km area from604

MODIS-disaggregated SMOS and 100 m resolution Landsat and ASTER605

data. Disaggregated soil moisture data are evaluated at 3 km resolution us-606

ing in situ 0-5 cm measurements made once a month from April to October607

2011, and at 100 m resolution using the ground data collected in August,608

September and October.609

To investigate the overall spatio-temporal performance of DISPATCH610

soil moisture products, a first comparison is conducted over the entire time611

series. At 40 km resolution, the temporal correlation between SMOS and612

aggregated in situ measurements is 0.59. At 3 km resolution, the spatio-613

temporal correlation between MODIS-disaggregated SMOS and aggregated614

in situ measurements is 0.67. At 100 m resolution, the spatio-temporal cor-615

relation between ASTER-disaggregated SMOS and localized in situ mea-616

surements and between Landsat-disaggregated SMOS and localized in situ617

measurements is 0.73 and 0.86, respectively. Moreover, the mean difference618

and the root mean square difference between SMOS or disaggregated SMOS619

and the in situ measurements aggregated at corresponding resolution is sys-620
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tematically lower at 3 km and 100 m resolution than at 40 km resolution.621

DISPATCH thus improves the comparison between SMOS and in situ mea-622

surements. This is explained by i) the non-representativeness at the 40 km623

scale of the in situ measurements made in the very heterogeneous study area624

and ii) a relatively robust representation of soil moisture variability at the625

sub-SMOS-pixel scale.626

To specifically investigate the soil moisture spatial representation at the627

sub-SMOS-pixel scale, a second comparison is conducted at the daily time628

scale. At 3 km resolution, results indicate that (i) the mean daily corre-629

lation coefficient and the mean daily slope of the linear regression between630

disaggregated and in situ data is 0.7 and 0.8 respectively, (ii) a yearly cal-631

ibration of the soil evaporative efficiency model makes the algorithm more632

robust with a greater stability of the slope around 1, and (iii) assuming a633

linear soil evaporative efficiency model is adequate at kilometric resolution.634

At 100 m resolution, results indicate with both Landsat and ASTER data a635

mean daily correlation coefficient between disaggregated SMOS and in situ636

data of about 0.7 but a low slope of the mean daily linear regression esti-637

mated as 0.2. When adding a correction for non-linearity effects between soil638

evaporative efficiency and surface soil moisture, the mean daily correlation639

coefficient between disaggregated SMOS and in situ data is kept relatively640

constant while the slope of the mean daily linear regression is improved from641

0.2 to about 0.5.642

If DISPATCH is able to provide reliable surface soil moisture estimates at643

a range of spatial resolutions, then reciprocally, one may hypothesize that the644

soil evaporative efficiency model used in the algorithm is a reliable represen-645
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tation at the application scale. However, compensation effects are identified646

between optical-derived soil evaporative efficiency and the retrieved soil evap-647

orative efficiency parameter. These compensation effects are attributed to648

the methodology for estimating temperature endmembers solely based on re-649

mote sensing data. DISPATCH could be a useful tool to help parameterize650

soil evaporative efficiency at a range of spatial scales, but to do so, indepen-651

dent meteorological data should be used to better constrain the temperature652

endmembers in both space and time.653

This study demonstrates the potential of DISPATCH for operational654

multi-scale monitoring of surface soil moisture using readily available SMOS,655

MODIS and Landsat/ASTER data. Due to the recent failure of Landsat-5,656

the provision of high-resolution thermal data currently relies on on-request657

ASTER and SLC-off Landsat-7 data. The Landsat Data Continuity Mis-658

sion (LDCM), with increased coverage capabilities, is scheduled for launch659

in 2013. In the medium term, the continuity of L-band derived soil moisture660

data will be ensured by the SMAP mission, scheduled for launch in 2014.661
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Table 1: Mean and standard deviation (std) of 0-5 cm deep in situ soil moisture measure-

ments. Results are presented for each field campaign, and over the dryland and irrigated

area separately.

Dryland area Irrigated area

Mean (std) Mean (std)

Month m3/m3 m3/m3

Apr 0.012 (0.002) 0.017 (0.003)

May 0.075 (0.025) 0.10 (0.078)

Jun 0.12 (0.051) 0.19 (0.073)

Jul 0.081 (0.029) 0.15 (0.085)

Aug 0.021 (0.006) 0.16 (0.072)

Sep - (-) 0.23 (0.047)

Oct 0.032 (0.017) 0.066 (0.027)
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Table 2: Correlation coefficient (R), slope of the linear regression, mean difference (bias) and root mean square difference

(RMSD) between SMOS or DISPATCH SM and the in situ measurements aggregated at corresponding resolution: 40 km for

SMOS SM, 3 km for MODIS-disaggregated SMOS SM, and 100 m resolution for ASTER- and Landsat-disaggregated SMOS

SM. The number of data points and the minimum and maximum values of aggregated in situ measurements are also reported.

Spatial Thermal DISPATCH R Slope Bias RMSD Number of In situ SM

Data resolution data mode (-) (-) (m3/m3) (m3/m3) data points range (m3/m3)

SMOS 40 km none none 0.59 0.25 −0.099 0.12 15 0.02-0.18

DISPATCH 3 km MODIS DAILY 0.58 0.46 −0.077 0.11 54 0.02-0.32

DISPATCH 3 km MODIS YEARLY 0.67 0.40 −0.084 0.11 54 0.02-0.32

DISPATCH 100 m ASTER LINEAR 0.73 0.18 −0.049 0.090 79 0.02-0.48

DISPATCH 100 m Landsat LINEAR 0.86 0.32 −0.068 0.11 94 0.02-0.48

DISPATCH 100 m ASTER NONLINEAR 0.69 0.50 −0.031 0.073 79 0.02-0.48

DISPATCH 100 m Landsat NONLINEAR 0.83 0.48 −0.052 0.090 94 0.02-0.48
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Table 3: Mean (and standard deviation of) daily correlation coefficient (R), slope of the

linear regression, mean difference (bias) and root mean square difference (RMSD) be-

tween disaggregated SMOS SM and in situ measurements aggregated at 3 km resolution.

Comparison results are presented for all the 1 km MODIS pixels.

R Slope Bias RMSD

Mode (-) (-) (m3/m3) (m3/m3)

UNIFORM 0.34 (0.55) 0.01 (0.02) −0.11 (0.038) 0.12 (0.039)

DAILY 0.61 (0.33) 0.73 (0.96) −0.071 (0.059) 0.093 (0.046)

YEARLY 0.61 (0.32) 0.58 (0.45) −0.079 (0.055) 0.092 (0.047)
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Table 4: Mean (and standard deviation of) daily correlation coefficient (R), slope of the

linear regression, mean difference (bias) and root mean square difference (RMSD) between

disaggregated SMOS SM and in situ measurements aggregated at 3 km resolution. Com-

parison results are presented for the 1 km MODIS pixels with a fractional vegetation cover

lower than 0.5.

R Slope Bias RMSD

Mode (-) (-) (m3/m3) (m3/m3)

UNIFORM −0.07 (0.60) 0.01 (0.03) −0.081 (0.057) 0.093 (0.051)

DAILY 0.70 (0.32) 0.86 (0.70) −0.057 (0.052) 0.078 (0.036)

YEARLY 0.71 (0.32) 0.78 (0.31) −0.067 (0.050) 0.079 (0.038)
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Table 5: Daily correlation coefficient (R), slope of the linear regression, mean difference

(bias) and root mean square difference (RMSD) between the SMOS SM disaggregated

at 100 m resolution using ASTER data and localized in situ measurements. Comparison

results are presented for each SMOS overpass date separately: DoY 229, DoY 244, DoY

277.

R Slope Bias RMSD

Mode (-) (-) (m3/m3) (m3/m3)

UNIFORM 0.00, -, 0.00 0.00, -, 0.00 −0.071, -, −0.029 0.14, -, 0.047

LINEAR 0.80, -, 0.42 0.18, -, 0.20 −0.070, -, −0.029 0.12, -, 0.045

NONLINEAR 0.77, -, 0.37 0.51, -, 0.48 −0.045, -, −0.017 0.089, -,0.053
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Table 6: Daily correlation coefficient (R), slope of the linear regression, mean difference

(bias) and root mean square difference (RMSD) between the SMOS SM disaggregated at

100 m resolution using Landsat-7 data and localized in situ measurements. Comparison

results are presented for each SMOS overpass date separately: DoY 229, DoY 244, DoY

277.

R Slope Bias RMSD

Mode (-) (-) (m3/m3) (m3/m3)

UNIFORM 0.00, 0.00, 0.00 0.00, 0.00, 0.00 −0.069, −0.18, −0.029 0.14, 0.19, 0.047

LINEAR 0.81, 0.40, 0.60 0.16, 0.073, 0.28 −0.068, −0.17, −0.028 0.12, 0.17, 0.041

NONLINEAR 0.80, 0.40, 0.55 0.43, 0.26, 0.65 −0.054, −0.14, −0.017 0.095, 0.15, 0.043
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Figure 1: Overview of the study area and the ground sampling strategy.
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Figure 2: Images at 1 km resolution of elevation, Terra MODIS NDVI on Doy 225, Terra

MODIS land surface temperature on DoY 228 (10:30 am) and Aqua MODIS land surface

temperature on DoY 228 (1:30 pm).
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Figure 3: Images at 100 m resolution over the 20 km square area of ASTER- and Landsat-

derived NDVI, and land surface temperature on DoY 228.
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Figure 4: Soil evaporative efficiency modelled by the linear and nonlinear model versus sur-

face soil moisture. The difference between inverse models is used to correct disaggregation

output for nonlinearity effects.
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Figure 5: The SMOS soil moisture disaggregated in the UNIFORM (a and d), DAILY

(b and e) and YEARLY (c and f) mode is plotted as a function of in situ measurements

aggregated at 3 km resolution for all the MODIS pixels (top), and for the MODIS pixels

with fv < 0.5 (bottom). Errorbars represent the standard deviation of disaggregation

output ensemble for each 3 km by 3 km ground sampling area, and the segments are the

linear fit of daily data.
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Figure 6: Images of SMOS soil moisture, the SMOS data disaggregated at 1 km resolution

in YEARLY mode, and the estimated uncertainty in disaggregated data for SMOS overpass

on DoY 229, DoY 244, DoY 245 and DoY 277.
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Figure 7: The SMOS soil moisture disaggregated at 100 m resolution in the UNIFORM

(a and d), LINEAR (b and e) and NONLINEAR (c and f) mode is plotted as a function

of localized situ measurements for ASTER data (top), and Landsat-7 data (bottom). The

segments represent the linear fit of daily data.

50



Figure 8: Images of the SMOS data disaggregated at 100 m resolution in NONLINEAR

mode using ASTER (left) and Landsat-7 (right) data.
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Figure 9: The MODIS-derived SEE aggregated at 40 km resolution (top), and the daily

SMp parameter retrieved over the study area (bottom) is plotted as a function of SMOS

soil moisture for the entire time series spanning from April to October 2011.
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