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Classification of endomicroscopic images of the
lung based on random subwindows and extra-trees

Chesner Désir, Caroline Petitjean, Laurent Heutte, Mathieu Salaün, Luc Thiberville

Abstract—Recently, the in-vivo imaging of pulmonary alveoli
was made possible thanks to confocal microscopy. For these
images, we wish to aid the clinician by developing a computer-
aided diagnosis system, able to discriminate between healthy and
pathological subjects. The lack of expertise currently available on
these images has first led us to choose a generic approach, based
on pixel-value description of randomly extracted subwindows
and decision tree ensemble for classification (extra-trees). In
order to deal with the great complexity of our images, we
adapt this method by introducing a texture-based description
of the subwindows, based on Local Binary Patterns (LBP). We
show through our experimental protocol that this adaptation
is a promising way to classify FCFM images. In addition, we
introduce a rejection mechanism on the classifier output to
prevent non detection errors.

Index Terms—Medical imaging, confocal fluorescence mi-
croscopy, image classification, extra-trees, reject rule.

I. INTRODUCTION

Whereas the conduction airways can be explored during
bronchoscopy, the alveolar region is currently investigated
only in vitro, using invasive techniques such as open lung
biopsies. A new endoscopic technique, called Fibered Con-
focal Fluorescence Microscopy1 (FCFM), has recently been
developed that enables the real-time visualisation of the alveoli
in vivo [1]. The technique is based on the principle of fluores-
cence confocal microscopy, where the microscope objective
is replaced by a fiberoptic miniprobe, made of thousands of
fiber cores. The miniprobe can be introduced into the 2 mm
working channel of a flexible bronchoscope to produce in vivo
endomicroscopic imaging of the human respiratory tract. This
promising technique, whose applications for lung exploration
are currently under investigation, could replace lung biopsy in
the future and might prove to be helpful in a large variety of
diseases, including interstitial lung diseases [2].

The system produces 420x420 pixel images (Fig. 1 and 2),
with a circular 600 µm diameter field of view, an approximate
spatial resolution of 1µm per pixel and a depth of focus of
the probe of 0-50 µm. In smokers, FCFM images are quite
different notably because of the presence of macrophages
(cells which digest cellular debris inside the alveoli), which
are made visible because of tobacco-tar induced fluorescence
(they appear as white spots 2). When images are acquired on
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(a)

(b)

Fig. 1. FCFM images of non-smoking (a) healthy and (b) pathological
subjects, showing the alveolar structure. Note how the meshing is tangled
and altered for pathological cases (b).

healthy subjects, the alveolar structure appears as a network of
(almost) continuous lines, but it can be altered by distal lung
pathologies. As shown in Fig. 1 and 2, FCFM images exhibit
some complexity; there is a large intraclass and relatively small
interclass variability in the images. The possible confusion
originates mostly from the elastin fiber framework which is
not always clearly visible and from the noise present in the
images.

Interpreting the lung FCFM images represents several levels
of difficulties for the clinician, the first being to be able to
differentiate normal images from real pathological images. In
order to solve this problem, we have recorded in-vivo FCFM
images from non-smoking and smoking healthy volunteers,
that are considered by definition as “normal”. We also recorded
images from patients suffering from several diagnosed diffuse
interstitial - or parenchymal - lung diseases, obtained from a
lung segment that appeared abnormal on the chest CT Scan.
Alveolar images from this latter group have been selected
by the clinicians for being visually different from the normal
images and considered abnormal. Because normality criteria
based on the confocal image by itself are currently not known,
we chose an objective definition for normality as “any alveolar
confocal image taken from an healthy subject”. Our aim is to
provide the clinician with a computer aided-diagnosis (CAD)
tool, so as to help him to analyze these new images. For
instance, such a strategy may help to the automated recognition
of the area to biopsy during endoscopy.

We describe in this paper such a CAD tool, able to classify
FCFM images as healthy or pathological. A state-of-the-art
efficient classification technique called extra-trees [3], which
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Fig. 2. FCFM images of smoking (a) healthy and (b) pathological subjects,
showing the alveolar structure. White spots are macrophages, visible here
due to tobacco-tar induced fluorescence. Note how the meshing is tangled
and altered for pathological cases (b).

has proved its efficiency on various image classification tasks
[4], is implemented. This classification method is combined
with a feature extraction technique based on the random
extraction of subwindows from the image . The extraction of
subwindows artificially increases the training sample size and
allows to take into account more local characteristics. In order
to capture the complex nature of FCFM images, we introduce
high-level descriptors to describe the subwindows. The aim is
to benefit from the association of the informative nature of
texture description and the high precision and computational
efficiency of the extra-trees.

A brief visual analysis of FCFM images reveals that in
pathological cases, the disorganization of the alveolar mesh-
ing is characterized by the numerous irregularities and the
tangle of the fibered structures, in all possible directions.
The distributions of local texture patterns in healthy and
pathological images are thus expected to be different and
could be adequately described by rotation and scale invariant
texture descriptors, such as the Local Binary Patterns (LBP)
operator. Their ability to characterize the spatial configuration
of local image texture and to recognize certain local binary
texture patterns will help to apprehend the complex, textured
nature of FCFM images. This new approach to characterize
the images, that combines texture-based description with the
random extraction of subwindows, is the first part of our
contribution. It is shown to have encouraging results on FCFM
images. The second point of our contribution concerns the
introduction of a rejection mechanism on the classifier output
that allows to improve the practical use of the system. We
indeed show how such a mechanism can help reducing the
non detection rate of the system, thus increasing its reliability.

The remainder of the paper is organized as follows: we
review in Section II related works in the field of image
classification and introduce our approach. The main steps of
the FCFM image classification system are described in Section
III. We present in Section IV the experimental protocol and
the results. Finally we conclude in Section V by drawing some
future works on this challenging task of classification.

II. RELATED WORKS IN IMAGE CLASSIFICATION

A classification system usually includes a feature extraction
step and a classification step.

A. Feature extraction

The aim of the feature extraction step is to feed the classifier
with relevant features that must be chosen to maximize inter-
class variance and minimize intraclass variance. The choice
of a suitable feature space is often problem-dependent and
features are therefore usually adapted to the image content.
For instance, blood cell images can be described by frequency
analysis, using Fourier-Mellin transform [5]; protein sub-
cellular images can be described using Haralick statistical pa-
rameters on cooccurrence matrices, Zernike moment features
and features derived from morphological image processing
[6]. An alternative approach in feature extraction consists in
using unspecific features such as raw pixel values or generic
texture descriptors, such as the LBP operator [7] for example,
which is particularly suitable for image description and has
been widely used for different image classification tasks [8]. In
order to locally characterize the image, subwindows can also
be extracted and described with a feature vector. The sampling
of subwindows may be either deterministic or random, this
latter solution having proved its efficiency for image charac-
terization in various image classification tasks, when a lot of
subwindows are sampled [9]. Random selection also allows to
bypass costly steps such as keypoint detection or exhaustive
window sliding on all pixels. Such a sampling method is very
efficient computationally and remains generic since it does not
require to design a dedicated keypoint detection for a specific
application.

B. Classification

In the past decades, extensive work has been done in
the machine learning and pattern recognition communities to
design efficient classifiers. Recently, ensemble methods such
as bagging [10] or boosting [11] have been of main interest
especially in medical imaging [12]. Among these methods,
ensembles of decision trees, such as random forests [13],
have proved their efficiency over single classifiers on various
classification tasks [14].

Random Forests (RF) are a family of classifier ensemble
methods that use randomization to produce a diverse pool
of individual classifiers. It can be defined as a generic prin-
ciple of classifier combination that uses L tree-structured
base classifiers {h(x,Θi), i = 1, ...L} where h is a tree-based
classifier, Θi a family of i.i.d random vectors, and x an input
feature vector. The particularity of this kind of ensemble is
that each decision tree is built from a random vector of
parameters. RF have been shown to be particularly competitive
with SVM and boosting, one of the most efficient learning
principles [13], [11]. Other randomization mechanisms may be
exploited in RF: bagging (bootstrap-aggregating) for training
each individual tree in the ensemble on a different replica of
the training set (a bootstrap), obtained by subsampling the
training set at random with replacement; and random feature
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selection, that selects a random subspace at each node of the
tree. The Extremely Randomized Decision Trees, or extra-trees
[3], are based on another randomization process. At each node
of an extra-tree, splitting rules are randomly drawn and the rule
that performs best according to a score computation is then
chosen to be associated to that node. This allows to drastically
reduce the complexity of the induction process, increase the
speed of training, and weaken the correlation between the
induced decision trees. The whole available learning set is
provided to each individual decision tree, i.e. there is no
bagging.

C. Proposed approach

We have chosen the extra-trees due to their interesting
statistical and computational properties. Considering the bias-
variance tradeoff, extra-trees are expected to better reduce the
variance than classical randomized methods such as the Forest-
RI approach [13] as the randomization process is stronger and
to minimize the bias as it uses the whole available learning set
for the induction of each tree, contrary to classical approaches
such as bagging [13]. The computational load of the algorithm
is also reduced due to the simplicity of the node splitting
procedure as it does not search for a local optimal cut-point.

The extra-trees approach, in combination with an original
feature extraction technique, has proved its efficiency on
various image classification tasks and compares well with
state of the art classification systems [4]. In these works, the
authors propose to extract a huge number of subwindows from
the images of the learning set at random locations and with
random sizes, and to label each of them with the class label
of the original image. This new learning set, i.e. the set of
subwindows, is used to train the extra-trees. The classification
of a test image follows the same principle: subwindows are
extracted from the image and a majority vote on the decisions
assigned to the subwindows is used to decide for the class
of the image. We propose to use this generic framework to
classify FCFM images with fast extra-trees. The approach in
[4] used raw pixel description of the subwindows. In our study,
we first test this low-level based description for FCFM images
but we suggest that a higher level descriptor, namely LBP,
can be efficiently used to describe subwindows without loss
of genericity. Additionally, we show that the classification of
FCFM images can be made more reliable by taking benefit
from the posterior probability assigned to an image. Indeed,
by introducing a threshold on posterior probabilities, we give
our system the ability to detect (i.e. reject) images that are
likely to be false negative and thus to classify FCFM images
with no error.

III. OUR CLASSIFICATION APPROACH

Our classification system is composed of three main steps
(Fig. 3):

1) random extraction of Nw subwindows of different sizes
and locations from the image;

2) characterization of each subwindow by means of a
feature vector that is classified using extra-trees;

3) combination of probabilities output by extra-trees on
each extracted subwindow through a majority vote to
either assign a class to the input image, or to reject it.

A. Feature extraction in FCFM images

In the original work presented in [4], the authors have pro-
posed a low-level description of the subwindows, claiming that
it makes their approach more generic. Indeed, the subwindows
extracted from the images are chosen at random locations with
random sizes; then they are resized with bilinear interpolation
to the empirical resolution 16x16 pixels, in order to obtain
a fixed size feature vector. Downsampling to 16x16 implies
a loss of details, which is thought to be compensated for
with a large number (Nw = 100) of subwindows extracted
in the image. This genericity has been of particular interest
for our application since no a priori knowledge was available
on FCFM images. However, we suggest to go further in the
description of the subwindows by investigating the use of a
classical texture descriptor, namely the LBP operator, in order
to feed the system with more relevant features. The LBP [7]
consists of computing the distribution of binary patterns. These
patterns are obtained by thresholding the neighbouring pixels
compared to the central pixel, for each pixel of the subwindow,
and coding them with powers of 2. The circular neighbourhood
can be characterized with a number P of pixels and a radius
R. Each pixel c is assigned the following number:

b(c) =
P−1
∑

p=0

s(gp − gc).2
p

where gc is the gray value of the center pixel, gp defines the
gray value of neighbor p and s(x) is the thresholding function
defined as:

s(x) =

{

1 if x ≥ 0
0 otherwise.

The final characterization is the distribution of b values over
the whole subwindow. Combining the responses of LBP oper-
ators computed with different values for P and R can also be
of interest. This multiresolution approach has been chosen for
our study, using standard values (P = 8, R = 1) and (P = 16,
R = 2). Since the LBP operator yields P + 2 values [7],
each subwindow is characterized by a 28-dimensional feature
vector.
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Fig. 4. Subwindows extracted from an FCFM image and their associated
distributions of LBP patterns.
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Fig. 3. Our classification approach based on random subwindows extraction and extra-trees. Nw is the number of extracted subwindows from image I , F
the forest of L extra-trees and ωH the Healthy class.

B. Classification based on extra-trees

In the classification step we use an ensemble of Extremely
Randomized Trees [3] induced on the generated learning set of
subwindows. Each tree is induced by performing at each node
the following steps: (i) randomly pick K different features
from the whole feature vector, (ii) compute one random split
per feature and (iii) select the one that maximizes a score
measure based on a normalized version of the Shannon infor-
mation gain [15]. K acts as a parameter that enables to control
the degree of randomization for inducting the tree: choosing
a high value for K offers the opportunity to filter irrelevant
variables and thus makes the tree classification process more
reliable while introducing more correlation between trees in
the forest; on the contrary, a low value for K will provide more
randomized trees and thus decrease the correlation within the
forest. Yet the classification process will take benefit from the
ensemble of trees.

Performance of extra-trees also depend on the adjustement
of two parameters, L, the number of trees in the ensemble,
and nmin, the minimum sample size for splitting a node.
nmin controls the strength of averaging output noise; L, the
number of trees in the ensemble, determines the strength of
the variance reduction of the forest. As usual, these parameters
can be adapted to the problem specificities either manually or
in an automatic way (e.g. by cross-validation).

However, it has been shown in [3] that the default values of
the two main parameters, i.e. K and nmin, are near-optimal
for a broad range of typical classification problems. The choice
of these default values is discussed in section IV-B.

C. Combination of output probabilities and proposed rejection

mechanism

The probabilities output by extra-trees on each extracted
subwindow are combined through a majority vote to assign,
to the input image to classify, a class, “healthy” (denoted ωH )
or “pathological” (denoted ωP ): let xi be the feature vector
describing a subwindow, lHi the number of trees assigning
the class ωH to xi; the probability of the subwindow to be
assigned the “healthy” class is:

p(ωH |xi) =
lHi
L

where L is the number of trees in the forest. The posterior
probability of ωH assigned to the image I is then obtained by
averaging over all Nw subwindows:

p(ωH |I) = 1

Nw

Nw
∑

i=1

p(ωH |xi)

where Nw is the number of subwindows extracted from the
image. The same reasoning applies to the computation of
probability of the pathological class.

The fraction of trees that voted for a particular class can
be used to handle the reliability of the extra-trees decision.
Indeed, reliability of automatic pattern recognition systems
is a critical issue in many practical applications. A rejection
threshold is commonly used to reach a trade-off between error
and reject probabilities. From the practical point of view, it
offers the possibility of refusing to assign the examined pattern
to any class, possibly prompting for a further investigation
by another system or by a human supervisor [16]. In our
medical context, providing our FCFM image classification
system with a reject option would enable to filter the doubtful
(low confidence) images that could further be handled either
by the clinician who will make his/her own diagnosis or
by an additional, more accurate and usually more costly,
classification system. The combination of probabilities output
by the extra-trees offers a means to introduce a rejection
mechanism.

Indeed, the probabilities of each class (healthy or pathologi-
cal) enable to measure the level of confidence associated to the
classification. For instance, a test image that has been classified
by the extra-trees with a probability of 0.9 means that a great
number of subwindows have been assigned a high probability
of being labeled healthy or pathological: such a high level of
agreement between subwindows, knowing their random and
independent process of extraction, suggests that the class has
been assigned to the image with a high level of confidence. On
the contrary, a probability near 0.5 should be considered as a
low level of confidence decision and suggests that the decision
associated to the image should be rejected in order to avoid a
non detection or false alarm error. Consequently, thresholding
the probability assigned to an image should enable to minimize
the non detection error rate of the system.
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Note that the proposed rejection mechanism could also be
controlled another way. For example, instead of determin-
ing the posterior probability of the image by averaging the
probabilities assigned to the extracted subwindows, one could
filter first subwindows whose predictions are ”uncertain”, i.e.
remove from the final vote subwindows whose probability is
under a given threshold, in order to keep only strong decisions,
which boils down to voting on highly confident subwindows
[17].

IV. EXPERIMENTS

A. Image databases and subwindow extraction

In-vivo FCFM images from non-smoking and smoking
healthy volunteers, that are considered by definition as “nor-
mal”, have been recorded. We also recorded images from
patients suffering from several diagnosed diffuse intersitial -
or parenchymal - lung diseases, obtained from a lung segment
that appeared abnormal on the chest CT Scan. Due to the
great difference between images acquired on smoker and
non-smoker subjects, our experiments have been conducted
separately on those two groups. The non-smoker (NS) image
database and the smoker (S) image database are composed
of respectively 133 and 93 images, assigned to two different
classes: “healthy” (31 for NS and 60 for S) and “pathological”
(102 for NS and 33 for S). In order to assess the generalization
error of the system, a 10-fold cross validation process is used.
The principle is to partition the complete image dataset into
10 complementary subsets. The training is performed on 9
subsets and testing is done on the remaining subset to assess
classification performance. To reduce variability, 10 rounds of
cross-validation are performed using the 10 different partitions,
and the classification results are averaged over the rounds.
In order to deal with the imbalanced datasets, an identical
number of subwindows (namely 80000, i.e. 40000 per class)
is extracted from the images present in the 9 folds, during the
learning phase [4]. The 80000 subwindow extraction process
is thus renewed for each different training partition. During
the test phase, Nw = 100 subwindows are randomly extracted
from each test image of the remaining set.

B. Extra-trees parameterization

As mentioned previously, performance of extra-trees depend
on the adjustement of three parameters, namely K , nmin and
L. The tree depth is implicitly fixed by nmin, which is the
minimum number of samples required for splitting a node:
the smaller the value of nmin, the deeper the tree. In our
experiments, we have chosen nmin = 2 (as for normal tree
classifier) [3]. Regarding parameter L (number of trees in
the forest), it is well-known that for randomized ensembles
the classification error is a monotically decreasing function
of L: the higher the value of L, the better the accuracy.
Nevertheless, choosing an appropriate value for L is not so
critical: given the computational efficiency of the tree growing
algorithm, a high value for L may be chosen. In this study,
an ensemble of 30 trees has been found to be large enough
and that convergence is reached well before L = 30 (typically
between 15 and 20 trees could be enough). Parameter K , the

TABLE I
CLASSIFICATION RATES (MEAN ± STDEV) FOR NON-SMOKER AND

SMOKER GROUPS

Non-smoker Smoker
Random subw. + raw

80.0± 9.2% 73.3± 13.3%
pixel + ET [4]
Random subw. + LBP

92.3± 8.8% 96.6± 5.4%
+ ET (our method)

number of variables randomly selected at each node during the
tree growing, determines the strength of the variable selection
process and is usually set to

√
M where M is the dimension

of the feature vector [13]. This default setting is the best
compromise for a wide range of classification problems [18],
[19], [3]. Let us recall that M = 256 for the raw pixel feature
space since each subwindow has been resized to 16x16 pixels
whereas M = 28 for the LBP operator. Note that the resizing
operation of the subwindow is performed only for the raw
pixel space.

C. Experimental results

Raw pixel vs. LBP characterization: Results obtained on
the FCFM image database for the previously defined feature
spaces (raw pixel values and LBP) are compared. Mean
classification rates and standard deviations obtained over the
10 folds are provided in Table I. For the FCFM image
database, we can observe in Table I that the classification
rates obtained with raw pixel values are rather low, underlining
the difficulty for the classifier to cope with such a low level
description of FCFM images. Though it has been shown that
this classification approach is efficient [4], describing the sub-
windows with raw pixel values does not seem to be adequate
for our application. The image content requires a higher level
of description as confirmed by the higher classification rates
obtained with LBP descriptors. LBP descriptors perform better
on smoker images than on non-smoker images, whereas raw
pixels perform worse, as can be noticed also on ROC curves 2

(Fig. 5). This phenomenon could be related to the presence of
several additional corners in smoker images, because of the
macrophages: they are clearly visible on healthy images and
somehow hidden when the alveolar structure is disorganized
because of a pathology.

Random-sized subwindows vs. constrained and small-sized

subwindows: One advantage of extracting random subwin-
dows is that no additional hyperparameter value (such as
subwindow size) has to be set. The other advantage is that
random subwindows are able to catch both large and small
patterns in the image and that their combination brings ad-
ditional information to discriminate between classes. To gain
more insight on this issue, we have investigated the effect of
constraining vs. not constraining the size of subwindows. Yet
it is well-known that small local patches can give good results
for texture classification tasks [22]. We have thus compared
the extraction of constrained and small-sized subwindows vs.

2A single ROC curve can be computed with a 10-fold protocol by merging
all test folds into one large single test set, and sorting the instances by their
assigned score [20]. A ROC curve can then be plotted using a generation
algorithm such as [21].



6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

  
T

ru
e 

p
o

si
ti

v
e 

(S
en

si
b

il
it

y
)

  False positive (1 Ŧ Specificity)

  NonŦsmoker group
  Smoker group

Fig. 5. ROC curves with random subwindows + LBP + ET

TABLE II
COMPARISON IN CLASSIFICATION RATES (MEAN ± STDEV) BETWEEN

SMALL SUBWINDOWS AND RANDOM SUBWINDOWS EXTRACTION.

Non-smoker Smoker
4x4 subwindows 76.1±12.4% 90.0±9.7%
8x8 subwindows 78.4±13.4% 92.2±9.1%
16x16 subwindows 82.3±10.2% 94.4±5.8%
Random subwindows 92.3± 8.8% 96.6 ± 5.4%

unconstrained, random-sized subwindows, using the same pro-
tocol as described in Section IV-A, with an LBP description of
each subwindow. Table II shows that the extraction of random
subwindows provides the best results, compared to small-size
subwindows. This can be explained by the fact that the fibered
structure of FCFM images is randomly tangled and differs
from textured images, that exhibit periodical patterns. The
periodicity property is important to explain why small patches
contain sufficient information for successful discrimination
[22]. Unconstrained random-sized subwindows thus seem to
be the best solution for FCFM images.

Reduction of non detection with a rejection mechanism:

For assessing the ability of our method to minimize the non
detection rate, we show in Fig. 6 the distribution of the
confidence values associated to the decision of the forest, i.e.
when the class with highest posterior probability is retained
(no rejection rule is applied). These distributions are drawn for
the two groups, smoker and non smoker, on the test images
over the 10 folds.

As shown in Fig. 6, the posterior probabilities assigned by
the classifier to the correctly classified (either pathological or
healthy) test images vary from 0.51 up to 0.98 for the non
smoker group and from 0.53 up to 0.99 for the smoker group
(red circles). More interestingly, without rejection rule, the
posterior probabilities assigned by the classifier to the incor-
rectly classified test images (either pathological or healthy)
range from 0.53 up to 0.89 for the non smoker group and
from 0.52 up to 0.61 for the smoker group (blue crosses).
This means that if a reject threshold on posterior probabilities
(e.g. 0.89 for the non smoker group, 0.61 for the smoker
group) is properly adjusted, accepting only decisions above
this threshold will make the decision process more reliable, as
errors will be eliminated. False alarm and non detection rates
will then be equal to zero. The rejection threshold will thus be
useful to filter doubtful images that could further be handled
either by the clinician who will therefore focus only on these

images, or by an additional but more costly classification
system. This additional handling of doubtful images would
allow to make a decision on, in particular, rejected pathological
images that would not have been detected otherwise. An
alternative to an automatic rejection process of low confidence
images could also consist in providing the clinician with the
system decision, i.e. the probability associated to the healthy
or pathological class, along with the rejection threshold, so as
to warn him of a possible error risk.

From Table III, one can see that the application of such
a rejection rule with our approach (RS+ET) on the non
smoker group turns into rejecting 36.1% of the test images
(i.e. 48/133) leading to a correct classification rate of 63.9%
(i.e. 85/133) with no error. Of course, this null error rate
can only be achieved at the expense of rejecting some test
images that would have been correctly classified otherwise
(i.e. 38/48) but this is the price worth paying for eliminating
non detection errors. Similarly, for the smoker group, applying
such a rejection rule on the posterior probabilities enables to
classify with no error 94.6% of the test images (i.e. 88/93)
while rejecting 5.4% (i.e. 5/93). A null detection rate for the
smoker group can thus be achieved at the expense of rejecting
2 correctly classified test images. All in all, introducing a
rejection mechanism enables to correctly classify 76.6% of
the test images of the two groups with no error (neither false
alarms nor non detections) whereas accepting, without reject,
all decisions of the automatic system would lead to a 5.9%
error rate.

Random subwindows vs. global image descriptor: In order
to assess the interest of introducing a random subwindow
description of the image, we compared our random subwin-
dow based approach (RS+ET) to the image-based approach
(I+ET) that relies on an LBP-based description of the image,
without random subwindow extraction. Results with the I+ET
approach have been obtained using a leave-one-out protocol
and are reported in Table III. As classification rates of RS+ET
and I+ET are close, it is not possible to conclude on the
superiority of the RS+ET approach. Nonetheless, the RS-
based approach is more efficient for rejection: less images
have to be rejected to reach a null error rate, compared to
the I+ET approach. This advantage of the RS-based approach
might originate from the redundancy (by extracting numerous
overlapping subwindows) and diversity (by means of random
locations and sizes) induced by the subwindow extraction
process. These properties lead to better estimated posterior
probabilities, that enable to better control the rejection of
doubtful images.

It is worth noticing that the generalization of the rejection
threshold on other datasets of FCFM images holds of course
if and only if enough training data are used to estimate an
accurate threshold and if the data, on which the rejection
threshold will be applied in practical use, share the same
statistical properties as the training data. At present, we do
not have at our disposal enough data to make the evaluation
of the rejection threshold more robust but we have shown that
our method offers a means to go one step further in making
the system more reliable by minimizing non detection errors.
Gathering more labeled images is one of our future works.
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Fig. 6. Distribution of the probabilities associated to correctly and incorrectly
classified images. “label” denotes the ground truth associated to each image.

TABLE III
MEAN CLASSIFICATION RATES OF THE RANDOM SUBWINDOW BASED

APPROACH (RS+ET) VS. THE IMAGE-BASED APPROACH (I+ET)

Correct Error Reject

NS
RS+ET

without reject 92.3% 7.7% 0%
with reject 63.9% 0% 36.1%

I+ET
without reject 92.1% 7.9% 0%

with reject 0% 0% 100%

S
RS+ET

without reject 96.6% 3.4% 0%
with reject 94.6% 0% 5.4%

I+ET
without reject 95.7% 4.3% 0%

with reject 88.8% 0% 11.2%

V. CONCLUSION

In this paper, we have presented a classification system,
based on the analysis of FCFM images representing the alveo-
lar structure in vivo. This system allows to distinguish healthy
cases from pathological ones for computer-aided diagnosis.
The proposed classification approach is based on a local
characterization of the images and an extra-tree classification
system. One major advantage of the approach is that no critical
parameter has to be tuned as default settings for extra-trees
and unconstrained sizes for extracted subwindows are used,
thus maximising the genericity and autonomy of the method.
The methodological contribution relies on (i) the extraction of
higher level descriptors on random subwindows to describe
FCFM images and (ii) a rejection mechanism based on the
thresholding of the probabilities output by the classifier, in
order to equate non detection to zero. We showed that raw-
pixel values description does not allow to account for the
complexity of the images, and that the introduction of a more
relevant texture descriptor, namely the LBP, allowed to achieve
higher classification rates. A study on the level of confidence
associated to the decision of the forest has also been conducted
that showed that our system is rather accurate for classifying
FCFM images and highly reliable as it is possible to handle
a reject rule based on probability thresholding to reach a null
non-detection rate.

Future works include the validation of these results on larger
databases of FCFM images, in order to make the rejection
process more robust for practical computer-aided diagnosis.

The development of a multi-class classification system able to
discriminate different kinds of pathologies (fibrosis, sclerosis,
sarcoidosis, abestosis) would also be of interest for the clini-
cian. In terms of applications, we plan to evaluate our method
on bigger and different databases of images.
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