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a b s t r a c t

In the framework of form characterization of aspherical surfaces, European National Metrology Institutes
(NMIs) have been developing ultra-high precision machines having the ability to measure aspherical
lenses with an uncertainty of few tens of nanometers. The fitting of the acquired aspherical datasets onto
their corresponding theoretical model should be achieved at the same level of precision. In this arti-
cle, three fitting algorithms are investigated: the Limited memory-Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS), the Levenberg–Marquardt (LM) and one variant of the Iterative Closest Point (ICP). They are
assessed based on their capacities to converge relatively fast to achieve a nanometric level of accuracy, to
manage a large volume of data and to be robust to the position of the data with respect to the model. Nev-
ertheless, the algorithms are first evaluated on simulated datasets and their performances are studied.
The comparison of these algorithms is extended on measured datasets of an aspherical lens. The results
validate the newly used method for the fitting of aspherical surfaces and reveal that it is well adapted,
faster and less complex than the LM or ICP methods.

1. Introduction

Due to their superior performance, aspherical and other
freeform optics have replaced spherical components in almost all
optical systems that exist today. This trend of extensive use of
complex optical elements is found in a wide range of applications,
such as, digital cameras, medical laser systems, ophthalmologic and
endoscopic systems, multi-media projectors, car head-up displays,
astronomical telescopes and optical microscopes. However, a key
issue of these optical elements is their surface quality, especially
form which is crucial for the optical performance and function-
ality. Therefore, it is a must to track form deviations all the way
from the design phase up to the operational phase and evaluate
form defects owing to manufacturing. With the advance of tech-
nology and ultra-precise manufacturing capabilities [1,2], design
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specifications have become more and more challenging, reaching
a nanometric scale of precision. While current techniques allow
for manufacturing arbitrary optical surfaces and provide correc-
tion at the nanometer scale, high precision measurement of optical
surfaces as well as data processing is still a challenge in industry.

In this regard, a three-year project has been launched by the
European Metrology Research Program (EMRP) and encompasses
a multitude of European National Metrology Institutes (NMIs),
industrial partners and academic partners [3]. It aims at develop-
ing methods for high-precision measurement of aspherical optics
and characterizing their surface form. A recent and exhaustive
research on the processing and manufacturing of aspherical and
freeform optics is found in [1]. The LNE’s high-precision pro-
filometer, the Zeiss F25, the �CMM, the NANOMEFOS and the
ISARA400 measuring machines achieve ultra-high-precision posi-
tioning and measurement on aspherical artifacts as described in
[4]. These machines respect the Abbe principle, apply the dissoci-
ated metrology structure principle and incorporate high-precision
mechanical guiding systems. Motions are performed under the con-
trol of sub-nanometric-resolution laser interferometers which are
traceable to the SI meter definition and positioned and aligned
such that they satisfy the Abbe principle. The thermal expansion of
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the selected materials is negligible firstly because the surrounding
temperature is generally controlled within a range of 20 ± 0.2 ◦C
and secondly because all the major parts of the machines are made
of Invar and Zerodur having a very low thermal expansion coef-
ficient. The performance of these machines depends on both the
performance of the scanning probe and the stability of the metrol-
ogy loop.

Once the measurements are performed and the data are
recorded, the aspherical form should be evaluated by fitting the
appropriate model to the measured data with a nanometric accu-
racy. Many fitting techniques exist in literature, but very few
discuss the fitting of aspheres. Chen et al. [5] propose an aspherical
lens characterization by means of a 2D profile fitting. The dataset
used is a profile measured using stylus profilometry and the refer-
ence model is the corresponding asphere profile. The fitting is done
using the Levenberg–Marquardt (LM) algorithm for its quick con-
vergence in regard to ultra-precise examination [6]. Similar works
have been published and also deal with aspherical profile identifi-
cation and conic sections fitting [7,8]. Sun et al. [9] perform fitting of
aspherical curves and surfaces on simulated data with vertical dis-
tance minimization using a Gauss-Newton algorithm. In fact, they
assume that the model and the data are both defined in the same
reference frame. Other works involve approximating aspheres with
NURBS surfaces in order to generate CAD models for manufacturing
purposes [10].

A different, yet classical, approach involves the Iterative Clos-
est Point (ICP) algorithm which is a registration algorithm that
finds a spatial transformation to align different point-sets [11]. It
is designed for discrete data, making it a reference algorithm with
negligible storage. It can be used for fitting applications when the
reference element is a point-set model or a mesh model. The algo-
rithm relies on a point matching operation between the dataset and
the reference model and tries to minimize the distance separating
the matched points. This operation is computationally expensive
with the classical ICP and that is why efficient variants of the algo-
rithm were developed [12]. ICP is very sensitive to initial alignment
between the dataset and the model, and tends to converge to a local
minimum because the optimization is of non-convex nature [13].

The Limited memory-Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS), introduced by Jorge Nocedal, is a quasi-Newton method
for solving unconstrained non-linear problems [14]. Recent works
involving this algorithm have published promising results. Zheng
et al. [15] show that, unlike classical methods, the L-BFGS algorithm
is robust and fast pertaining to the fitting of geometric B-Spline
curves to points sampled from freeform shapes.

Until this date, no particular work has given interest to the fit-
ting of large datasets, except in the case of registration methods
based on ICP which is an algorithm that uses discrete elements [16].
This paper provides a comparison of L-BFGS, LM and one particu-
lar variant of the ICP algorithm. The methods are all based on the
same sequential algorithmic structure. They iteratively compute,
in a nested loop, the footpoint of each data point and then mini-
mize the sum of the squared distances between the data and the
reference model. A footpoint is the projection of a data point onto
the reference model and can either be an orthogonal projection
or a vertical projection. The algorithms, and especially the newly
used L-BFGS, are evaluated in conformance with ISO 10360-Part
6 [17]. This standard describes the procedure for the evaluation
of software that performs a characterization of the residual errors
and form deviations of measured data for canonical features. The
algorithms should therefore be tested on simulated datasets (Dm)
to which systematic and random errors are added. Finally, the
algorithms are compared on measured datasets of an aspheri-
cal lens using the LNE’s high precision profilometer when it is
equipped with a tactile probe. The obtained results are reported and
discussed.

2. Preliminaries

The form evaluation of aspheres can be done by performing the
association of the aspherical model to the measured data. This pro-
cess, defined in ISO 17450-Part 1 [18], is the operation of fitting
an ideal feature (the model) to a non-ideal feature (the data points)
according to a criterion (such as Least-Squares). It is usually done by
optimizing for transformation parameters and model parameters,
but, in this paper, only transformation parameters are calculated
since the model parameters are known. Three fitting algorithms are
compared based on their capacities to converge quickly, to manage
a large volume of data and to be robust to the initial position of
the dataset with respect to the model. The process goes by itera-
tively optimizing for five transformation parameters, the rotation
about z being redundant here. Reference models such as a point-
set model or a mesh model can be used when the problem needs to
be expressed in discrete form. In these two cases, the very well-
known ICP algorithm is used and distances are calculated on a
point-to-point basis and on a point-to-triangle basis, respectively.
Otherwise, the reference model is a mathematical equation and dis-
tances are calculated on a point projection basis. The evoked fitting
algorithms follow the same structure and sequentially compute for
footpoints and transformation parameters (R: rotation matrix, T:
translation vector). After being evaluated on simulated datasets, the
algorithms are tested on measured surfaces with large volumes of
data. Aspherical surface fitting onto simulated small-sized datasets
can be achieved by applying a Gauss-Newton optimization with
vertical distance minimization [9]. However, the usage of vertical
distance is limited to cases where both entities to fit are defined in
the same reference frame. Nonetheless, orthogonal distance calcu-
lation guarantees the freedom to have the measured dataset and
the model in different coordinate systems [19].

2.1. The aspherical model

The mathematical formulation of aspherical surfaces is detailed
and standardized in ISO 10110-Part 12 [20]. In our case, the aspher-
ical form to be tested F(r, z ; c, k, a) is an axis-symmetric surface
defined in implicit form such as in Eq. (1)

F(r, z; c, k, a) = z − f (r) = 0, (1)

r =
√

x2 + y2 and z are the Cartesian coordinates with a change of
variables applied on x and y; c is the curvature at the apex, � is
the conic constant, a = (a2, a4, a6, a8, a10) is the vector of the 10th-
order aspherical deviation parameters. For a given r, the height in
z is independent of the angle � = tan−1(y/x), and f(r) can be written
as in Eq. (2):

f (r) = −

⎛
⎝ cr2

1 +
√

1 − (1 + �)c2r2
+

5∑
j=1

a2jr
2j

⎞
⎠ . (2)

For any (r, z) ∈ R2, F(r, z ; c, k, a) is twice differentiable. The
aspherical model considered here is not exactly expressed as in
ISO 10110-Part 12 [20] due to the presence of the a2 term. In this
ISO standard, a2 is mingled with the curvature parameter c. The
coordinate system is defined such that the origin coincides with
the apex of the asphere and the z-axis is always oriented upwards.
The parameters of the asphere are then defined accordingly. For the
considered model, the curvature at the apex is positive and equal to
c = 10−20 mm−1, the conic constant � = −1 (Fig. 1) and the asphere
parameters are ˛2 = 0.0223, ˛4 = 7.293 × 10−6, ˛6 = 4.52 × 10−9,
˛8 = −1.061 × 10−11, ˛10 = 9.887 × 10−15. The asphere has a sag
S = 3.217 mm of and a clear aperture CA = 11.74 mm. This lens was
manufactured by a Single Point Diamond Turning (SPDT) process



Fig. 1. The orthogonal/vertical distance vector from a data point Pi to its footpoint
po

i
/pv

i
on an asphere is contained in the rz-plane at an angle �i passing through the

axis of symmetry (all red points are coplanar). (a) a 3D view of the asphere and the
data point projection in the given rz-plane (red); (b) a planar view of the distance
projection where �do

i
and �dv

i
are the distance vectors and �to

i
and �tv

i
denote the tangent

vectors.

[21] and finished with a high precision polishing process and glass
coating.

2.2. Optimization algorithms

The Newton–Raphson method [22] is used in many optimization
problems that are not highly non-linear or complex. It is therefore
used here for the computation of footpoints which are required
for the orthogonal distance minimization problem. At every itera-
tion, the method which has a simple algorithmic structure aims
at finding an approximation of the roots of a real-valued func-
tion S : R3 → R. The goodness of the approximation depends on
the stop criterion and on the quality of the initial guess (relative
position of the data and the model should be close to the opti-
mal solution) [22,23]. If the initial guess is close enough and the
derivative of S exists everywhere, the algorithm guarantees con-
vergence to the roots of S. For the problem of aspheres which have
low curvatures, the vertical projection point pv

i
is taken as an initial

guess and is actually close to the orthogonal projection point po
i
.

Then, the Newton–Raphson method iterates until po
i

is accurately
approximated (stop criterion: xi+1 − xi ≤ ε1 = 10−16).

As for the minimization of the non-linear squared distances
problem, do

i
for orthogonal and dv

i
for vertical, it is dealt with

using other optimization algorithms such as L-BFGS, LM and ICP.
LM [6,24] is a well-known optimization algorithm that is based
on an interpolation between a Gauss-Newton approach and the
gradient descent (Eq. (3)). It has been evaluated and approved
by the National Institute of Standards and Technology (NIST) for

metrology applications that require fitting simple curves and sur-
faces in 3D [25]. This algorithm converges reasonably quickly and
accurately for a wide range of initial guesses that are close to the
optimal solution [6]

xj+1 = xj − (H(xj) + �j · diag[H(xj)])
−1 · ∇fob(xj), (3)

where xj is the solution vector at iteration j, Hj is the Hessian matrix
at iteration j, diag[H(xj)] is the diagonal elements of the Hessian
and ∇fob is the gradient of the objective function. � is the param-
eter that can be assimilated to the step coefficient of the gradient
descent. � changes at each iteration such as when it is large, the gra-
dient descent predominates the optimization process and when it
is small, Gauss-Newton predominates. Shakarji defines a procedure
for choosing an initial value for � and then updating it at each iter-
ation [25]. In an application to freeform surfaces, Jiang et al. [13]
propose another way of determining the value of � based on the
smallest singular value of the Hessian matrix.

In [13] a method to fit freeform surfaces to small numbers of
data in two steps is described. A coarse fitting is firstly performed
by using a structured region signature procedure and secondly, a
LM optimization is applied for fine fitting in which a Jacobian matrix
J needs to be calculated. The LM algorithm further necessitates the
computation of the Hessian matrix H = JTJ by linear approximation
and its inverse at each iteration. Although matrix inversion is taken
care of by some efficient pseudo-inverse techniques such as SVD or
QR decomposition, it is still the major issue of this kind of algo-
rithms. The complexity of matrix inversion is O(n3) with n being
the number of variables in the system. For a large n, the cost of
inverting H is considerable.

For a very large number of variables or unconstrained non-linear
problems, iterative quasi-Newton methods such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method can be more convenient
[26]. Like any minimization algorithm, BFGS preferably requires a
twice-differentiable objective function fobj whose gradient must be
zero at optimality. The method approximates the inverse Hessian
of the function by cumulating information from previous iterations,
therefore, a sequence of matrices is constructed throughout. This
sequence occupies a very large memory space which eventually
comes to saturation when all the matrices are stored [15,27]. Sub-
sequently, Nocedal describes an improved method called L-BFGS
which keeps updating the Hessian matrix using a limited amount
of storage [14]. At every iteration, the Hessian is approximated
using information from the last m iterations with each time, the
new approximation replacing the oldest one in the queue. L-BFGS
is an enhanced BFGS optimization algorithm for reducing mem-
ory usage when storage is critical and is suitable for applications
involving large volumes of data and variables. Furthermore, Zheng
et al. [15] propose a L-BFGS algorithm to perform B-Spline curve fit-
ting and show that, unlike traditional methods, L-BFGS can perform
optimization of control points and footpoints simultaneously. Addi-
tionally, neither formulating nor solving linear equations is needed,
making the algorithm very efficient and faster than other methods
such as the one in [28]. Zheng et al. [15] have also studied the com-
plexity of the algorithm and showed that it is linear in the number
of data.

The L-BFGS algorithm goes as in Eq. (4). Consider the problem in
which the objective function fobj has gradient g and Hessian H and
returns a scalar value, �(x) = R3 → R

fobj = min
x

(�(x)). (4)

2.2.1. Initialization
The initialization consists of 4 main settings: (1) make an initial

guess x0, (2) choose m for the number of iterations to be considered
for the inverse Hessian update (preferably m > 5), (3) set two real



numbers ˇ′ and ˇ such that 0 < ˇ′ < 1
2 and ˇ′ < ˇ < 1 and (4) choose

a symmetric, positive definite starting inverse Hessian matrix H−1
0 .

2.2.2. Iterations
Perform a line search routine to compute the quasi-Newton

direction. By being positive definite, the Hessian ensures that the
optimization direction dj is a descent direction (Eq. (5))

dj = −H−1
j−1�f (xj−1) = −H−1

j−1g(xj−1). (5)

Determine the step size ˛ (for example by backtracking line
search). ˛j should satisfy the Wolfe conditions (Eq. (6)) at each iter-
ation. ˇ′ and ˇ are parameters to control the accuracy of the line
search routine. ˇ′ defines a tolerance on the function fobj and ˇ a
tolerance on its gradient g

fobj(xj + ˛j · dj) ≤ fobj(xj) + ˇ′˛j · g(xj)
T · dj.

g(xj + ˛j · dj)
T dj ≥ ˇg(xj)

T · dj.
(6)

The Wolfe conditions along with exact line search routine require
a large number of function and gradient evaluations. Neverthe-
less, inexact search allows to determine a step length ˛ at minimal
cost while adequately reducing the fobj and making a reasonable
progress in minimization. Then the update rule for the solution x is
indicated in Eq. (7)

xj+1 = xj = ˛jdj. (7)

2.2.3. Update H−1
j

The inverse Hessian at step j + 1 is the inverse Hessian at step
j plus a certain variation �h which is expressed in function of the
change in the variables �xj, and the change in the gradient �gj (Eq.
(8)). Due to the iterative process, an inverse Hessian matrix at an
iteration m can be written in function of H−1

0 and the vectors �xj and
�gj of all iterations up to m only. The update becomes as follows:

H−1
m = H−1

0 + �h(�x0, �g0, H−1
0 ) + �h(�x1, �g1, H−1

1 ) + · · ·

+ �h(�xm−1, �gm−1, H−1
m−1) (8)

The complexity of the update for L-BFGS is of the order of O(nm)
as compared to its predecessor BFGS which complexity is O(n2).

3. Evaluation and comparison of fitting algorithms

The newly used L-BFGS as well as the LM fitting algorithms and
ICP, are evaluated in by referring to the standards defined in ISO
10360-Part 6 [17] and the works provided by Lin et al. [29]. Different
tests are done on simulated datasets which are derived from the
theoretical model equation of the asphere and modified by means
of the addition of Gaussian noise and form deviations.

The fitting process, illustrated in Fig. 2, is the process in which
the model parameters (c, � and a) are fixed and the only variables
to optimize are the transformation parameters often called motion
parameters. Since the aspherical model is axis-symmetric, the rota-
tion about z is a redundant degree of freedom, thus, only five motion
parameters out of six are required to determine the best fit of the
dataset with respect to the model: a rotation matrix R� about the
x-axis, a rotation matrix R� about the y-axis and three translations
tx, ty and tz in x-, y- and z- directions, respectively.

The objective function fobj to minimize is the sum of the squared
distances between the data points Pi(Xi, Yi, Zi) and their respective
footpoints pi(xi, yi, zi) on the model. Eq. (9) is an expression of this

functional in which T = (tx, ty, tz) denotes the translation vector and
ˇ and 	 are the rotation angles about x and y, respectively:

fobj = (ˇ, 	, T) = min
ˇ,	,tx,ty,tz

N∑
i=1

∥∥pi − (Rˇ,� .Pi + T)
∥∥2

, (9)

N being the number of points in the dataset and R�,� = R� R� the
combined rotation matrix about x and y.

L-BFGS, LM and ICP optimization algorithms are compared
based on whether they return the same residual errors (RMS and
PV) and corresponding motion parameters as the simulated ones.
Orthogonal distance-based fitting and vertical distance-based fit-
ting are also studied.

3.1. Implementation of the L-BFGS and LM algorithms

L-BFGS and LM algorithms are implemented in sequential com-
putation of footpoints and transformation parameters. Vertical
footpoints are the direct projection of each corresponding data
point. However, orthogonal footpoints need to be calculated in a
nested minimization loop within the main transformation parame-
ters minimization loop using the Newton–Raphson method (Fig. 1).
The asphere is an axis-symmetric surface that only depends on the
variable r =

√
x2 + y2. Finding the 3D orthogonal projection of a

data point can be seen as a 2D problem. In fact, the rz-plane that
contains the data point to which a projection point must be found, is
oriented by an angle �i, and definitely contains the projection point
as well as the axis of symmetry (Fig. 1). Usually, the projection of
a point Pi on a surface requires the optimization of two parame-
ters, here ri and �i. But, since the model of the asphere (Eq. (1))
is independent of the �-coordinate, �i is directly determined from
the corresponding data point provided that it is expressed in its
cylindrical coordinates.

Each Cartesian data point PCar
i (Xi, Yi, Zi) is written in cylindri-

cal coordinates PCyl
i

(Ri =
√

X2
i

+ Y2
i

, �i = tan−1(Yi/Xi), Zi). Then, as
shown in Fig. 1b, the footpoint pv

i
(vertical) or po

i
(orthogonal) is

computed in the selected rz-plane at �i = �i.
For the vertical distance projection problem, the r-coordinate of

the vertical footpoint pv
i

(Fig. 1) is taken to be that of the data point,
rv
i

= Ri. The z-coordinate zv
i

= f (rv
i
) is calculated following Eq. (2).

For the orthogonal distance projection problem, the r-
coordinate of the footpoint is initially taken to be that of
the data point, ro

i ini
= Ri. Then, the Newton–Raphson method

iteratively optimizes ro
i
, and zo

i
= f (ro

i
) is calculated following

Eq. (2). The asphere profile is of simple geometry, therefore,
the Newton–Raphson method converges to a global mini-
mum inevitably. Indeed, finding the orthogonal footpoint by
Newton–Raphson’s method requires setting the dot product Si =
�di · �ti to zero. �di is the distance vector from PCyl

i
to pi(ri, zi) in the

corresponding �i-oriented rz-plane (Fig. 1). �ti is the tangent vector
at pi and is expressed as in Eq. (10), by differentiating the implicit
function F (Eq. (1)) of the surface at pi. The initial distance vector
input to Eq. (11) is the vertical distance vector �dv

i
= (rv

i
− Ri, zv

i
− Zi)

�ti =

⎛
⎜⎜⎜⎝

∂F(r, z)
∂z

∣∣∣∣
r=ri,z=f (ri)

−∂F(r, z)
∂r

∣∣∣∣
r=ri,z=f (ri)

⎞
⎟⎟⎟⎠ (10)

The function Si is iteratively solved until the dot product
between �di and �ti falls below a certain predefined threshold
ε1 = 10−16.

Si = (ri − Ri)
∂F(ri, zi)

∂z
+ (zi − Zi)

∂F(ri, zi)
∂r

= 0,



Fig. 2. Sequential algorithm for the fitting problem. L2: least-squares norm; R�,�: combined rotation matrix and T : translation vector; fobj: change in the objective function
value; ||g||: norm of the gradient of fobj; ε1, ε2, ε3: the algorithms stop criteria.

with

zi = f (ri) = −

⎛
⎝ cr2

i

1 +
√

1 − (1 + k)c2r2
i

+
5∑

j=1

a2jr
2j
i

⎞
⎠ . (11)

The orthogonal footpoint calculated in cylindrical coordinates
is then transformed back to 3D Cartesian coordinates, i.e. po

i
= (ro

i
·

cos �i, ro
i

· sin �i, f (ro
i
)).

With the coordinates of each footpoint, vertical pv
i
(xv

i
, yv

i
, zv

i
) or

orthogonal po
i
(xo

i
, yo

i
, zo

i
), obtained from the inner loop, it becomes

possible to plug in the distances and solve for the transformation
parameters. The outer loop is executed repeatedly until conver-
gence conditions are met. The norm of the gradient is minimized
with L-BFGS with a stop criterion ε2 = 10−16. A stop criterion
ε3 = 10−15 is set to be the objective function’s tolerance for LM and
ICP since it can be assimilated to a distance tolerance in both cases
(Fig. 2b and c). ε3 measures the relative error desired in the sum of
squared distances.

3.2. Implementation of the variant of the ICP algorithm

The ICP is a registration algorithm which finds a spatial transfor-
mation to align two point-sets and follows the procedure illustrated

in Fig. 2c. It is the mostly used algorithm in point-set registra-
tion because it is designed for discrete data, making it a relatively
fast algorithm with very low storage. ICP is based on two main
operations, point identification and point matching which are usu-
ally computationally expensive. An iterative loop identifies pairs of
points and matches them across both entities. The matching phase
results in a transformation matrix that brings one point-set to the
other with residual error. If this error is larger than the thresh-
old value, point identification and matching restarts until the two
point-sets are closely aligned. In order to have fine precision on the
results, it is preferable that the size of both sets be equal.

The variant of ICP that is proposed here is designed to be used
in fitting applications where one of the point-sets is a theoretical
mesh model. All points are involved in the point-matching phase
so that accuracy is preserved. A mesh model offers the advan-
tage of obtaining a more accurate distance calculation than a point
model does. The mesh is a regular triangular mesh built from axis-
symmetric theoretical points simulated on the asphere’s surface
and reconstructed using a Delaunay triangulation technique [30].
To guarantee accurate residual errors, equivalent to those found by
L-BFGS and LM, the chord error Cerr between the mesh triangles
and the theoretical surface is taken to be very small: Cerr ≤ 2 nm.



Fig. 3. Simulated asphere model.

The value of Cerr is determined according to the precision sought
for aspherical lens characterization and is assured by increasing or
decreasing the sampling density.

With the proposed discrete approach, the objective function
to minimize is the sum of the squared distances dpm (Eq. (12)).
dpm is the shortest distance separating a data point p from its
footpoint situated on the closest triangle in the mesh, i.e. dpm =
min(dpv, dpe, dpt) and dpv, dpe and dpt are the point-to-vertex, point-
to-edge and point-to triangle distances respectively. The variables
disregard the angle about z, since the points are axis-symmetric

fobj(ˇ, 	, T)ICP = min
ˇ,	,tx,ty,tz

N∑
i=1

∥∥dpmi

∥∥2
. (12)

3.3. Applications to simulated datasets

The aspherical model is simulated based on Eq. (2) by gener-
ating symmetrically distributed points around the asphere’s axis
over a rectangular grid (Fig. 3). The model parameters c, k, a2,
a4, a6, a8, a10 are equal to the values given in Section 2.1. To

evaluate the robustness and correctness of the developed fitting
algorithms in conformance with ISO 10360: Part 6 [17], two simula-
tions are performed: one with added random errors to characterize
surface roughness and another with combined random and sys-
tematic errors to characterize both surface roughness and form
errors owing to the manufacturing processes. The simulations do
not take into account measurement errors (noise and probing ran-
dom errors) but these will not be disregarded. The specification of
form errors and surface roughness is that they act in the orthogonal
direction to the aspheres’ surface.

3.3.1. Random errors
The first test involves generating Gaussian noise with controlled

mean and standard deviation (� = 0, � = 8 nm). This value is coher-
ent with areal surface roughness that can manifest on real datasets
due to manufacturing defects such as tool wear, tool mark and other
asynchronous motion errors [31]. A Matlab function (“randn”) is
used to generate the noise (Fig. 4) which is added to the theoretical
data of Fig. 3 in the orthogonal direction at each data point.

The execution of this function returns actual standard devia-
tions that slightly differ from the imposed value. The aim of this
simulation is to study the robustness of the algorithms when con-
fronted to repeated random datasets of equal magnitude. L-BFGS,
LM and one variant of ICP are then used to fit the noisy data and
their robustness is qualified. The RMS of the residual errors and
their PV are both evaluated and compared to the simulated ones
since they transcribe the form specifications of aspheres [32]. The
machine used for the tests is an Intel core i7/×64 platform with
8 Gb of RAM and a 2.0 GHz processor.

The obtained residual PV values, reported in Table 1, are quasi
identical for all three algorithms and are sufficiently close to the
simulated PV values to about some hundredths of nanometers. The
RMS values are also coherent, and this remains unchanged for the
repeated test.

3.3.2. Combined random and systematic errors
The test involves superposing systematic errors onto the pre-

vious random errors. Systematic errors Fh are referred to as form
deviations and are generated using Fourier harmonics according
to Eq. (13) and ISO10360-Part 6 standard for simple shapes. Fig. 5
shows the combined systematic and random errors which can in
reality be due to the manufacturing process errors and especially
the synchronous (systematic) motion errors of the mechanical

Fig. 4. Simulated Gaussian noise (� = 0, � = 8.0 nm). (a) 3D plot and (b) 2D distribution at the middle section in the xz-plane.



Table 1
Fitting of 5 random error datasets with Gaussian noise of 0 mean and 8.0 standard deviation; 1,500,000 points are used.

Gen. err. (nm) L-BFGS (nm) LM (nm) ICP (nm)

RMS PV RMS PV �PV (%) RMS PV �PV (%) RMS PV �PV (%)

8.003 77.325 8.003 77.334 0.017 8.003 77.329 0.005 8.004 77.374 0.063
8.001 79.875 8.001 79.881 0.008 8.001 79.880 0.006 8.003 79.945 0.088
7.996 81.992 7.996 81.938 −0.066 7.996 81.942 −0.061 7.998 82.041 0.060
8.002 83.252 8.002 83.299 0.056 8.002 83.301 0.059 8.003 83.387 0.162
8.008 88.871 8.008 88.888 0.019 8.008 88.889 0.020 8.009 88.379 −0.554

Gen. err., generated errors.

Fig. 5. Combined errors: simulated form deviations with added random noise (� = 8.0 nm). (a) 3D plot; (b) profile view at the middle section in the xz-plane.

guiding systems [31,33]. The generated PV value of the Fourier
harmonics (≈609 nm) corresponds to a realistic form error on
aspherical lenses

Fh() =
n∑

k=1

Ak sin(2�kw0Z) + Bk cos(2�kw0Z), (13)

where k is the index of the harmonic cosine wave, w0 is the
fundamental frequency, Ak and Bk are the user-specified partial
amplitudes of the kth harmonic and Z is the z-coordinate to which
the form defects are applied.

The systematic errors are taken as axis-symmetric (Fig. 5)
because the major manufacturing process of aspheres is a turning
process that combines a rotation of the substrate and a functional
motion of the tool [34]. They occur in the orthogonal direction to
the surface and that is why an orthogonal distance fitting is applied.

All three fitting methods return the same RMS and PV value as
the simulated ones (Table 2). The RMS and PV values remain quasi-
unchanged whichever the number of points in the dataset is as long
as it is not too small (<1000 points). The points are selected from
the data file following the order of the recorded data and by picking
1 point every x points, where x is an integer number representing
a ratio by which the number of points will be reduced by.

Table 3 reports the estimated motion parameters for two dif-
ferent initial positions of the simulated datasets. The first imposed
initial position (IP1) is generated with an offset of 1 mm in all three
directions with respect to the model while keeping rotations at
zero and IP2 is generated with rotations by 30◦ about x- and y-
directions with respect to the model while keeping translations to
zero. The results of the motion parameters estimation show that
both L-BFGS and LM are accurate for both imposed initial align-
ments as they return accurately enough good estimates. ICP fails

Table 2
Fitting using least-squares orthogonal distance minimization for the combined systematic and random errors dataset. N is the number of points.

N Gen. err. (nm) L-BFGS (nm) LM (nm) ICP (nm)

RMS PV RMS PV RMS PV RMS PV

100

136.482 609.593

137.437 642.155 137.436 642.142 138.621 642.875
1000 136.490 616.270 136.490 616.204 137.246 616.894
10,000 136.480 609.031 136.456 609.022 137.250 609.623
100,000 136.455 609.321 136.455 609.347 137.231 609.945
1,000,000 136.455 609.403 136.455 609.403 137.232 609.810
5,000,000 136.455 609.372 136.455 609.390 137.232 609.786
10,000,000 136.455 609.364 136.455 609.375 137.232 609.771

Gen. err., generated errors.



Table 3
Fitting using orthogonal distance minimization for the simulated combined errors dataset with two theoretical initial alignments.

Gen. alignment L-BFGS LM ICP

IP1

ˇ 0◦ 0.00000094◦ 0.0000056◦ 0.0000046◦

	 0◦ 0.000033◦ 0.000097◦ 0.000029◦

tx 1 mm −1.0000124 mm −1.0000368 mm 0.0000346 mm
ty 1 mm −1.0000004 mm −0.9999979 mm 0.0000369 mm
tz 1 mm −0.9999852 mm −0.9999866 mm −0.541437 mm

IP2

ˇ 30◦ −30.000034◦ −30.000082◦

×
	 30◦ −30.000066◦ −30.000106◦

tx 0 mm −0.0000141 mm −0.0000277 mm
ty 0 mm 0.0000033 mm 0.0000226 mm
tz 0 mm 0.0000150 mm 0.0000150 mm

Gen. alignment, generated alignment.

Table 4
Comparison of vertical and orthogonal distance minimization for different dataset sizes and for combined simulated errors: reporting RMS values. N is the number of points.

N Gen. RMS err. (nm) Orthogonal (nm) Vertical (nm)

L-BFGS LM L-BFGS LM

1000

136.482

136.490 136.490 139.991 139.964
10,000 136.480 136.456 139.832 139.832
100,000 136.455 136.455 139.865 139.865
1,000,000 136.455 136.455 139.868 139.868
10,000,000 136.455 136.455 139.862 139.862

Gen. RMS err., generated RMS error.

to return estimations for the case of IP2 as the algorithm diverges
when the angle is more than 15◦.

3.3.3. Vertical versus orthogonal distance minimization
The evaluation of the effect of fitting data based on vertical and

orthogonal distance minimization is achieved here by using the
previously simulated datasets and the results are compared.

Table 4 shows a comparison between vertical and orthogonal
Least Squares distance minimizations using the L-BFGS algorithm
(LM giving the similar results) with the added combined errors.
Note that for the vertical distance case, the input datasets are per-
fectly aligned in x and y directions with respect to the model. The
results show that orthogonal distance minimization is more accu-
rate than vertical distance minimization and that this remains true
irrespective of the number of points in the input dataset. This is
clearly due to the fact that errors were added to the data in the
orthogonal direction. It is to note that vertical distance minimi-
zation fitting time is extremely fast (<3 s for 106 points).

Another simulation has been performed to reproduce optical
probing noise which can occur during a measurement process.
Such errors occur in the vertical direction since measurement is
done along this direction. For the current case, vertical distance
minimization is more appropriate. Nevertheless, the error made by
choosing to perform orthogonal distance minimization is less than
<1% for the PV and RMS values. Since this error is negligible as com-
pared to form and roughness errors which predominate, choosing
orthogonal distance minimization is not very detrimental.

3.3.4. Algorithmic complexity
The L-BFGS, LM and ICP algorithmic complexities are analyzed

based on two criteria, the units of memory used and the computa-
tional time expressed as Central Processing Unit time (CPU time).
Fig. 6 shows that the time complexities of L-BFGS and LM are lin-
ear in the number of points for the case of added random errors.
However, it can be observed based on the given implementations
of L-BFGS, LM and ICP, that ICP is slow as compared to L-BFGS and
LM and that LM is about twice slower than L-BFGS (tL-BFGS≈50%×tLM )
especially when the number of points exceeds 105 points.

Regarding memory storage, all algorithms use less than 1Gb in
general. L-BFGS stores the least memory space among all because
of its limited memory feature (less than 0.2 Gb). As the number of
variables grow, the Jacobian of the function to minimize in the case
of LM grows very large and its inversion costs more. ICP needs to
store a massive triangular mesh of the model. The time complexity
of the algorithms is compared for the case of combined errors too
(Fig. 7) and confirms that the time complexity of the L-BFGS and
LM algorithms is linear in the number of data points.

Some additional tests are performed on the simulated combined
errors dataset in order to analyze the sensitivity of the time com-
plexity and residual errors to the L-BFGS parameters, such as, the
limited number of iterations m and the coefficients ˇ′ and ˇ. One
parameter is changed at a time while the others remain fixed. The
evolution of the variables and the objective function over the itera-
tions are also discussed. This analysis is only performed on L-BFGS
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Fig. 6. Time performances in seconds of the algorithms versus the number of points
for a simulated dataset with added Gaussian noise of 0 mean and 8.0 standard
deviation.
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Fig. 7. Time performances in seconds of the algorithms versus the number of points
for a simulated dataset with added random and systematic errors.3.3.5 Sensitivity
of L-BFGS intrinsic parameters.
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Fig. 8. The influence of ˇ′ on the computational time performance of the algorithm
for the simulated combined errors dataset.

parameters because a similar analysis has been done for LM param-
eters [25].

The time performance of the L-BFGS algorithm for the dataset
with the added combined errors versus the parameter ˇ′ over its
entire range of possible values is shown in Fig. 8. The time complex-
ity of L-BFGS is not affected by the value of ˇ′ as only a fluctuation
of 2 s is observed. Fig. 9 shows the influence of this parameter on
the residual errors of the fit and reveals that they are independent
of ˇ′. In both cases, m and ˇ are fixed to default values of 11 and 0.9,
respectively. From these plots, it can be concluded that ˇ′ has no
major impact on either of the algorithm’s complexity or the residual
errors.
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Fig. 10. The influence of ˇ on the computational time performance of the algorithm
for the simulated combined errors dataset.

Figs. 10 and 11 illustrate the influence of the parameter ˇ on
the time complexity and residual errors while m and ˇ′ are fixed
to 11 and 0.0001, respectively. Here again, the residual errors are
unaffected by the choice of ˇ, nonetheless, convergence time is
clearly influenced and can vary by up to 58%.

Fig. 12 illustrates the effect of changing the number of iterations
m to be taken into account for the limited memory criterion. The
graph reveals that a value of m > 5 should be generally considered.
Below this value, computational time becomes significant and the
advantage of using a limited memory is depreciated. It is to note
that the value of m does not affect residual errors.

Based on the above, the intrinsic L-BFGS parameters have a very
low impact on residual errors. Nonetheless, computational time is
sensitive to all three parameters.

For one specific set of parameter values, the evolution of the
objective function value and the transformation parameters are
illustrated in order to show how they vary along the iterations
and provide an idea about convergence rate. Fig. 13 is a plot of
the evolution of the objective function’s value over the iterations
of the fitting algorithm. Starting from around the 4th iteration, the
objective function value stabilizes with a soft decrease whilst the
motion parameters still delicately adjust until a minimum is found
and convergence conditions are met around the 17th iteration.

The sum of squared distances evolution depicts the rate of con-
vergence of the L-BFGS algorithm and confirms that it is relatively
fast.

4. Application to a measured aspherical lens

After the validation of the algorithms on simulated datasets,
the aim is to tackle real measured data with the three proposed
algorithms in order to compare them and show the efficiency of
L-BFGS.
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Fig. 9. The influence of ˇ′ on the residuals for the simulated combined errors dataset. (a) RMS residuals; (b) PV residuals.
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Fig. 11. The influence of ˇ on the residuals for the simulated combined errors dataset. (a) RMS residuals; (b) PV residuals.
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Fig. 12. The influence of m on the time performance. (a) m > 1; (b) m > 3.

4.1. LNE’s high precision profilometer description and
measurement

LNE’s high precision profilometer is a measurement machine
(Fig. 14) capable of performing independent motions in all x, y
and z directions using three independent high-precision mechan-
ical guiding systems. While x and y motions are controlled by
sub-nanometer resolution laser interferometers, the z motion is
controlled by a differential laser interferometer that allows to
shorten the metrology loop and maintain a sub nanometric accu-
racy. The supporting structure is made of massive granite and
carries the guiding elements. The metrology frame is made of
Invar for minimal sensitivity to environmental influence [35,36].
The machine was configured to hold both optical and tactile
single scanning probes. On this measuring machine and other sys-
tems involving some optical measurement techniques, the new
paradigm leans toward the generation of large volumes of data of
more than 105 points.

The asphere is posed on the Zerodur table (Fig. 14) and is only
measured by a tactile single point scanning probe which has been
previously calibrated in situ.
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Fig. 13. The evolution of the objective function’s value over the iterations.

On this machine, it is not possible to exactly align the asphere’s
axis of symmetry with the z-axis of the measurement (Fig. 15),
however, an approximation of the apex position can be done by
estimating the cusp of the surface. For this matter, the surface is
scanned once in the x-direction and once in the y-direction and a
peak is computed. This peak represents an approximation of the
cusp around which a symmetrical measurement is performed in x-
and y-directions.

The measurement process is automatic and the data are
recorded and reported in Cartesian (X, Y, Z) coordinates. The sur-
face is firstly scanned over an area of 6 mm × 6 mm, giving a grid
of 1225 × 1225 points denoted as Scan1. A portion of that scan is
extracted to be non-centered and a fitting is performed again and
this scan is denoted as Scan2. Scan2 is about 3.5 mm × 3.5 mm in
area and is constituted of a grid of about 1385 × 343 points

4.2. Comparison of the fitting algorithms

On the LNE high precision profilometer, the alignment of
the measurement coordinate system with the model coordinate
system is manually achieved. Therefore, vertical distance minimi-
zation is not valid since it inhibits horizontal translations (tx and
ty), and by that, generates additional errors in the fitting process.
From another perspective, the vertical synchronous motion errors
of the mechanical high precision guiding elements of the profilo-
meter are compensated by the vertical laser interferometer. The
asynchronous motion errors are supposed negligible compared to
form errors which act in the orthogonal direction, hence, it is wiser
to apply orthogonal distance fitting in this case. The results of the
L-BFGS, LM based on Least-Squares orthogonal distance minimi-
zation are compared to ICP for the two experimental datasets, Scan1
and Scan2. Table 5 for Scan1 and Table 6 for Scan2 report the resid-
ual errors for different sizes of the datasets.

The residual errors are identical for all three algorithms. The
larger scan, Scan1, returns a RMS value of about 217.2 nm and the
smaller scan, Scan2, returns a RMS of about 44.1 nm. Fig. 16 illus-
trates the computational time in CPU seconds for the fitting of the



Fig. 14. Design (a) and photography (b) of the high precision profilometer.

Fig. 15. Illustration of the problem with the alignment of the measurement coordi-
nate system. Indices m, p and r stand for model, measured point-set and real surface,
respectively; AS stands for theoretical axis of symmetry.

measured points of Scan1 for different dataset sizes. It shows a
linear complexity for L-BFGS with respect to the number of points.

Fig. 17 plots the evolution of the sum of squared distances (fobj)
over the iterations of the L-BFGS and LM algorithms for the case of
Scan1. The algorithms are remarkably comparable with respect to
the objective function’s evolution. A rapid decay can be observed
along the first 3 iterations for L-BFGS and 7 iterations for LM. A more
or less stable solution starts at iterations 60 and 55 for L-BFGS and
LM, respectively. The error maps of the residual errors resulting
from the fitting of each of the datasets are plotted in Fig. 18 using
L-BFGS, and show that the residual errors distribution depend on
the measured zone. The plots are shown only for the clear apertures
of 1.75 mm and 3 mm, respectively.

5. Discussion

The L-BFGS, LM and the presented variant of ICP algorithms are
validated for the fitting of aspherical surfaces by means of tests per-
formed on simulated datasets. The simulations include systematic
and random errors represented by Gaussian noise and Fourier har-
monics. The fitting results return accurate estimates of the motion
parameters, except for ICP, as well as the same RMS and PV value
as the simulated ones whether in the case of added random errors
or combined random and systematic errors. The tests have shown
that, unlike ICP, both LM or L-BFGS are robust to initial position
of the point-set with respect to the model. The results remain
unchanged for a large span of dataset sizes ranging from about 1000
points up to 10,000,000. From this observation, it can be deduced
that different point sampling strategies do not have a remarkable
impact on the accuracy of the results. Since the proposed samp-
ling strategy is not a filtration but some sort of a technique to pick

Table 5
Fitting using orthogonal distance minimization for the first scan. N denotes the number of points.

L-BFGS LM ICP

RMS (nm) PV (�m) RMS (nm) PV (�m) RMS (nm) PV (�m)

N = 75,000 217.18 2.1725 217.18 2.1727 217.29 2.1982
N = 200,000 217.18 2.1725 217.18 2.1726 217.29 2.1992
N = 500,000 217.18 2.1728 217.18 2.1728 217.29 2.1979
N = 1,500,000 217.18 2.1726 217.18 2.1732 217.29 2.1983

Table 6
Fitting using orthogonal distance minimization for the second scan. N denotes the number of points.

L-BFGS LM ICP

RMS (nm) PV (�m) RMS (nm) PV (�m) RMS (nm) PV (�m)

N = 75,000 44.18 0.8186 44.18 0.8183 44.21 0.8173
N = 160,000 44.18 0.8187 44.18 0.8184 44.21 0.8171
N = 500,000 44.18 0.8186 44.18 0.8185 44.21 0.8175
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Fig. 16. Computational time of the algorithms versus dataset size.

points from all around the scanned surface, it is auspicious for the
processing of large volumes of data.

The Least-Squares vertical distance minimization and ortho-
gonal distance minimization are compared on the simulated
datasets and show that orthogonal distance minimization is more
accurate and appropriate than vertical distance minimization. In
any case, the only condition for the correct use of vertical distance
minimization is to have both the dataset and the model perfectly
aligned in x and y directions, which is impossible in practice unless
ultra-high precision measuring machines are used. In this case,
vertical distance minimization can be used to perform the fitting
extremely fast (<3 s for 106 points), however, to the expense of
losing in residual errors accuracy (up to 1%). The algorithmic com-
plexities of L-BFGS and LM are further assessed and show that
L-BFGS is almost 3–4 times faster than LM when the number of
points becomes considerable (>106 points). Moreover, ICP is much
slower than any of L-BFGS or LM. The analysis of the L-BFGS algo-
rithm parameters shows that their value does not considerably
affect residual errors. However, a very small value of m (<6), ampli-
fies computational time.

Then, the comparison of the three algorithms on real datasets
with respect to residual errors is performed. For a given number
of points, the residual values returned by L-BFGS, LM and ICP are
very similar. This remains true for a large span of dataset sizes
and provided that a relatively good initial alignment is taken into

Fig. 18. 3D residual errors map characterizing form defects. (a) Scan1, (b) Scan2.

consideration. All three optimization algorithms present very low
memory storage and their time complexities are linear in the num-
ber of points. L-BFGS and LM enable the processing of very large
amounts of data of more than 100,000 points within few seconds.
For instance, for Scan1 containing 1,500,000 points, the running
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time of both L-BFGS and LM is in the range between 30 s and 100 s.
Memory was only of a few tens of Megabytes. Since the complex-
ity of both algorithms is linear in the number of points, and the
memory storage is negligible, a simple extrapolation suggests that
about 10,000,000 points can be eventually processed within 6 to
7 minutes on real datasets.

6. Conclusion

This paper deals with the fitting of aspherical surfaces in the
aim of characterizing their form errors. The L-BFGS method is pro-
posed and compared to the classically used LM and ICP algorithms
on both simulated and measured data. Two cases are proposed
for the simulations: a simulation with random errors and another
with combined random and systematic errors. The three algorithms
return similar results regarding the simulated PV and RMS values.
ICP fails to converge accurately for relatively far initial alignments
of the data with respect to the model. The impact of the number of
points is investigated and does not influence the obtained results.
Nonetheless, L-BFGS shows linear time complexity with respect to
the number of points and runs faster than LM and largely faster
than ICP.

As for the comparison on measured data, two datasets are mea-
sured with the LNE’s high precision profilometer using a tactile
probe. 500,000 and 1,500,000 points are recorded respectively and
the above algorithms are applied for the fitting of the data. Again,
the RMS and PV values are independent of the size of the dataset
and are similar across all algorithms.

As a future work, authors would like to investigate the per-
formance of the L-BFGS algorithm for the fitting of quadric
and freeform surfaces. Then, another aspect to be explored
would be the fitting using the MinMax criterion. Finally, it was
shown that vertical distance minimization is sometimes more
suitable than orthogonal distance minimization, hence, a more
clever way of considering this issue shall be studied in later
publications.
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