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Abstract—Cardiovascular diseases (CVD) are known to be the
most widespread causes to death. Therefore, detecting earlier
signs of cardiac anomalies is of prominent importance to ease the
treatment of any cardiac complication or take appropriate actions.
Electrocardiogram (ECG) is used by doctors as an important
diagnosis tool and in most cases, it’s recorded and analyzed at
hospital after the appearance of first symptoms or recorded by
patients using a device named holter ECG and analyzed afterward
by doctors. In fact, there is a lack of systems able to capture ECG
and analyze it remotely before the onset of severe symptoms. With
the development of wearable sensor devices having wireless trans-
mission capabilities, there is a need to develop real time systems
able to accurately analyze ECG and detect cardiac abnormalities.
In this paper, we propose a new CVD detection system using
Wireless Body Area Networks (WBAN) technology. This system
processes the captured ECG using filtering and Undecimated
Wavelet Transform (UWT) techniques to remove noises and
extract nine main ECG diagnosis parameters, then the system uses
a Bayesian Network Classifier model to classify ECG based on its
parameters into four different classes: Normal, Premature Atrial
Contraction (PAC), Premature Ventricular Contraction (PVC) and
Myocardial Infarction (MI). The experimental results on ECGs
from real patients databases show that the average detection rate
(TPR) is 96.1% for an average false alarm rate (FPR) of 1.3%.

Index Terms—WBAN, ECG, CVD, Bayesian Network Classifier.

I. INTRODUCTION

Cardiovascular diseases (CVD) provoke serious anomalies

that involves the heart or the blood vessels. According to the

World Health Organization [1], these diseases are the leading

causes of death worldwide. In 2008, an estimated 17.3 million

people died from CVD and almost 23.3 million people will die

annually from CVD by 2030. Prevention and early detection are

key factors in reducing the number of victims and the associated

healthcare costs.

Recent technological advances in wireless networks, sensors

conception and miniaturization can revolutionize the way how

healthcare services are deployed and delivered. In fact, several

manufacturers propose today sensors with wireless transmission

capabilities able to collect various physiological parameters in

real time such as Heart Rate, Temperature, Blood Pressure,

Oxygen Saturation etc. These sensors are non-invasive and

allow remote in-home, outdoor or ambulatory monitoring. Also,

they can be deployed in a Wireless Body Area Network

(WBAN) where several sensors are attached to the human body

and transmit collected data to a gateway device (Smartphone,

Tablet, PDA, etc.) which processes and transmits gathered

information in real time to remote healthcare databases so

professionals can access and analyze these data and make

appropriate medical decisions. An example of a WBAN ar-

chitecture for ECG monitoring is shown in figure 1.
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Fig. 1. A WBAN Architecture For ECG Monitoring

WBAN systems is a new promising technology and various

applications can be considered but it’s still very challenging and

several issues are open. One of the major one is the automatic

and early detection of medical anomalies symptoms in a WBAN

environment, especially in the case of CVD, this issue is of

utmost importance for patients and health professionals and is

highly supported by governments and research.

One of the most frequent CVD is arrhythmia which is a

trouble of the cardiac rhythm that can take many forms, the

most common are Premature Ventricular Contractions (PVC)

and Premature Atrial Contractions (PAC). These two anomalies

are due to the premature discharge of an electrical impulse in

the atrium of the heart in the case of PAC [2] and the ventricles

of the heart in the case of PVC [3]. This results in an extra

heartbeat that occurs earlier than the next regular beat should

have occurred. Another serious heart anomaly is Myocardial

Infarction (MI) commonly known as heart attack. MI is an

acute ischemic heart disease that happens when the arteries that

supply blood to heart muscle become hardened and narrowed

and can’t provide correctly the blood and oxygen to the heart

muscle which can suffer from permanent damages. Many other

CVD exist and are detailed in [4].

Symptoms of CVD can be observed and confirmed by

various medical examinations made by doctors, the principal

one is the Electrocardiogram (ECG). The ECG represents the

contraction and relaxation of cardiac muscle resulting from the



depolarization and re-polarization of myocardial cells. These

electrical changes are recorded via electrodes placed on the

limbs and chest wall and are transcribed on a graph paper.

The most widely used ECG recording technique is the 12-

lead ECG. This technique uses 10 recording sites from which

are recorded 12 signals called leads among which 6 Precordial

Leads (V1, V2, V3, V4, V5, V6), 3 Limb leads (I, II, III) and

3 augmented Limb leads (aVR, aVL, aVF). Each lead views

the heart from a different angle and is composed of 5 waves

that refer to a depolarization or re-polarization of some region

in the heart, these waves, are symbolized P , Q, R, S, and T

and are separated by intervals and segments. Figure 2 illustrates

a typical one-cycle ECG waveform with the 5 waves and the

main intervals and segments.
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Fig. 2. A typical one-cycle ECG (Heartbeat)

ECG should be acquired and correctly interpreted as soon

as possible. In practice, traditional techniques record ECG for

a relatively short time (minutes in hospitals to 24h or 48h

hours with a Holter ECG) and some episodic symptoms my not

occur during the monitoring. Furthermore, ECG is generally

recorded after first symptoms so heart damages may already

have occurred. Therefore, It is needed to have a sufficiently

prolonged ECG recording systems with real time monitoring

and analysis capabilities.

The aim of this paper is to introduce an efficient WBAN

ECG monitoring system with the ability to distinguish between

normal ECGs from three cardiac anomalies discussed above:

PAC, PVC and MI. The rest of this paper is organized as

follows: Section II surveys related work. Section III presents

the proposed approach and Section IV discusses experimental

results. Finally, Section V concludes this paper.

II. RELATED WORK

During the last decade, a lot of out-hospital wireless ECG

monitoring systems have been proposed by researchers and

industries. From our study, we found that the majority of

which capture, process and send ECG data to specialists in

order to remotely follow their patients, but they generally

don’t detect cardiac anomalies within the collected data or

achieves a basic ECG analysis like heart rate variability. This

is the main limitation of these systems like CodeBlue [5],

LiveNet [6], MyHeart [7], MEDISN [8] or industrial products

like AliveCor [9], PhysioMem [10] or LifeMonitor [11].

More recently, some works start to address the problem of

ECG anomalies detection in a wireless or mobile environment,

such as in [12], a system named HeartSaver is proposed, this

system analyzes ECG in real time and includes automated

detection of three cardiac pathologies (Atrial fibrillation, My-

ocardial infarction, and Atrio-ventricular block) but this system

was tested using Matlab simulated pathological ECG instead

of real ECG data that is affected by various environment

parameters and much more complex to analyze. In [13], a heart

attack detection application using Smartphone is proposed, this

system is based on placing index fingers on mobile camera,

the application will calculate the heart rate based on detection

of peaks of blood but this technique is limited and simplistic

because detection of heart attacks is complex and needs ana-

lyzing specific features in ECG. In [14], the RECAD system

is designed, it is a real-time wireless monitoring ECG system

for Arrhythmia detection. The system in [15] is a wearable

Smartphone based platform for real-time heart beat anomaly

detection as normal, PVC, right bundle branch block beat

(RBBB), paced beat (PACE), and PFUS beats. Some industry

devices for arrhythmia detection are available on the market

like CardioNet [16], Smartheart [17] and BodyGuardian [18].

In this study, we also review works that propose algorithms

and models for ECG analysis and anomalies detection. In

most cases, classification algorithms are used to classify ECG

into normal or abnormal : In [19], Jovic et al. proposed a

classification method based on analysis of a combination of

Heart Rate Variability and approximate entropy features in

order to classify ECG in four classes (normal heart rhythm,

arrhythmia, supra-ventricular arrhythmia, and congestive heart

failure). ECG records from online databases were analyzed by

seven clustering and classification algorithms. Results show

that the top 3 accurate classification methods are Random

Forest (RF) with 99.6%, Bayesian Networks with 99.4% and

Support Vector Machines (SVM) with 98.4%. In [20], Jadhav

et al. proposed an arrhythmia disease diagnosis method using

Artificial Neural Network (ANN) classifier of 12-lead ECG

recordings data. Their model classifies ECG as normal or

abnormal, they used UCI Arrhythmia data set to train and

test three different Multilayer perceptron ANN models. They

obtained an accuracy and sensitivity of 86.67% and 93.75%

respectively with the two first models and a specificity of 93.1%

for the third model. In [21] a methodology is proposed for the

automatic detection of normal and Coronary Artery Disease

conditions bu testing different combinations of data reduction

techniques (PCA, LDA, ICA) and four different classifiers

(SVM, GMM, PNN, KNN). Their results showed that the

combination of ICA with GMM resulted in highest accuracy

of 96.8% compared to other combinations.

These models achieve a good accuracy but they are generally



not suitable for a WBAN environment due to their high

computational complexity. In this contribution, a methodology

has been developed to combine the WBAN technology with

statistical classification technique to design a new ECG moni-

toring system with cardiac anomaly detection capabilities that:

– Monitors real time ECG in a WBAN environment.

– Predicts 3 cardiac anomalies : PVC, PAC and MI.

– Uses numerically efficient algorithms.

III. PROPOSED APPROACH

We consider a real deployment scenario where wireless

sensors send ECG measurements to a Smartphone in real time.

The proposed system is composed of of 5 layers :

– A SensorLayer composed of ECG sensors able to capture,

sample and transmit ECG wirelessly. Unlike the 12-lead ECG

used at hospitals, these sensors are designed for ambulatory

applications and generally captures a subset of 2 or 3 leads.

– A CommunicationLayer where the digitized ECG is re-

ceived wirelessly from sensors via bluetooth and alerts are

sent to healthcare professionals along with the captured ECG

and the position of the patient. These tasks are achieved by

a Smartphone playing the role of a gateway.

– An ApplicationLayer designed as a mobile application run-

ning on a Smartphone that pre-processes the ECG, extracts

ECG features (P , Q, R, S, T ) and analyzes the extracted

features using a Bayesian Network model, in order to predict

the presence of PAC, PVC or MI anomaly. The model is built

based on a training set of real ECG data and applied on each

new ECG features extracted to classify it and decide whether

to raise an alarm or not. This model is updated with the new

data whenever a new ECG is received.

– A DataLayer containing databases used to save the patient

data (general information, medical background, ECG cap-

tured, features extracted, alerts raised, etc.).

– A UserLayer for patients and remote healthcare profession-

als who will receive alerts and patients data in real time and

take appropriate decisions about the patient condition.

In this paper, the proposed approach focuses only on the

application layer of our system. This layer is described in

Figure 3 and achieve 3 main steps detailed bellow.
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Fig. 3. Design steps of the application layer

The pre-processing stage aims to remove different types of

noise present in the digitized ECG received from sensors. These

noises overlap with the cardiac components in the frequency

domain, specifically in the range [0.01-150]Hz. The most

important are:

– The power line interference around 50Hz or 60Hz.

– The baseline wandering with a frequency bellow 0.5Hz.

– Electrodes motion artifacts ranging from 1Hz to 10Hz.

– Electromyographic (EMG) noise from 25Hz to 100Hz.

Power line noise comes from electronic circuits of ECG sen-

sors, it is a narrow-band signal centered at a frequency of

50Hz or 60Hz with a bandwidth of less than 1Hz, it has a

form of a sinusoid with a significant amplitude compared to

the magnitude of the digitized signal. Generally this noise is

filtered by ECG signal acquisition hardware.

The baseline wandering usually comes from patient move-

ments and respiration at frequencies between 0.15Hz and 0.5Hz

and causes changes in iso-electric line position of the measured

ECG. It can be suppressed without loss in the original signal.

It is possible to remove it by a high-pass digital filter or by the

use of a standard Wavelet Transform (WT). We choose to use

a 0.5Hz FIR (Finite Impulse Response) high-pass digital filter.

Other noises are more difficult to remove because they may

be a complex stochastic processes within a wideband and

traditional digital filters can’t remove them. Instead, Discrete

Wavelet Transform (DWT) technique is widely used or more

recently Undecimated Wavelet Transform (UWT) which has a

better balance between smoothness and accuracy than the DWT

and ensures no loss of signal sharpest features. More details on

its use for ECG denoising can be found in [22]. In our system,

we use UWT for both pre-processing and features extraction

stage where this technique will be further detailed.

Once the signal cleaned and denoised, the system extracts

the main ECG features. In this step, we first detect all QRS

complex peaks and then detect other waves P and T . As previ-

ously mentioned, the features extraction algorithm uses UWT,

a variant of Wavelet Transform (WT) which is one of the most

popular methods for time frequency transformations. It can

provide the frequencies of a signal and the time associated to

those frequencies, making it very convenient for its application

in numerous fields. WT should allow only changes in time

extension but not shape. This is performed by choosing suitable

basis functions ψ. Generally, the WT can be expressed with the

following equation:

[Wψf ] (a, b) =
1

√

|a|

∫

∞

−∞

ψ

(

x− b

a

)

f(x)dx (1)

The wavelet coefficients cjk are then given by:

cjk = [Wψf ]
(

2−j , k2−j
)

(2)

a = 2−j is called the binary or dyadic dilation and b = k2−j is

called the binary or dyadic position. The basis function ψ can

be regarded as an impulse response of a system with which the

function x(t) has been filtered.

Two implementations of WT are commonly known : Discrete

Wavelet Transform (DWT) and Continuous Wavelet Transform

(CWT). Detailed information about WT and its applications

can be found in [23].



The UWT is an improved design of DWT, it is implemented

in our system based on the method proposed in [24]. The

method first decomposes the ECG signal by 8 level Daubechies

wavelets and then reconstructs the signal from approximation

coefficients and detail coefficients of all frequency bands. After,

peaks detection step is performed to detect QRS complex, P

and T peaks by properly setting a threshold that specifies the

value which the algorithm uses to reject peaks of a particular

amplitude, and a windows width that specifies the current

number of samples of the signal for the detection of onsets

and offsets. The steps performed by each QRS, P and T peak

detector algorithm are described bellow :

– Perform UWT with the Daubechies wavelet on input ECG.

– Detect the zero crossing points in the detail coefficients.

– Set the zero crossing points at the largest scale as the coarse

estimation of the real peaks.

– Searches the fine scale for the corresponding nearest zero

crossing point for each detected point.

– Repeats step 4 until it reaches the finest scale, which is the

first level.

Once all peaks detected, the onsets and offsets are calculated

by selecting an optimum window width and using the peaks as

references inside the windows in order to scan the waves on

both the sides of the peaks to get the zero crossing points for

obtaining onsets and offsets. If the signal is not crossing zero

line, then the minimum values in that window are considered as

onsets and offsets. At the end of these two steps, the 6 features

bellow are extracted from each one-cycle ECG (heart-beat):

– Ponset: Onset of the P wave of ECG.

– Poffset: Offset of the P wave of ECG.

– QRSonset: Onset of the QRS complex of ECG.

– QRSoffset: Offset of the QRS complex of ECG.

– Tonset: Onset of the T wave of ECG.

– Toffset: Offset of the T wave of ECG.

From these features, amplitudes and durations of each ECG

wave, segment and interval (see Figure 2) can be calculated

easily. We choose to calculate the 9 most relevant parameters

used by cardiologists [4] :

– Pamp : Amplitude of the P wave of ECG.

– Pdur : Duration of the P wave of ECG.

– QRSamp : Amplitude of the QRS complex of ECG.

– QRSdur : Duration of the QRS complex of ECG.

– Tamp: Amplitude of the T wave of ECG.

– Tdur: Duration of the T wave of ECG.

– PRdur: Duration of the PR Interval

– STamp: Amplitude of ST Segment.

– QTdur: Duration of the QT Interval.

These 9 parameters are used as the random variables of our

Bayesian Network (BN) Classifier discussed bellow.

A Bayesian network is a statistical model that represents

a set of random variables and their conditional dependencies

via a Directed Acyclic Graph (DAG), this is why it can be

defined as a probabilistic directed acyclic graphical model.

In a medical context, a Bayesian Network could represent

the probabilistic relationships between diseases and symptoms.

Given symptoms, the network can be used to compute the

probabilities of the presence of various diseases. In a Bayesian

Network, the nodes of the graphs represent random variables

(they may be observable quantities, latent variables, unknown

parameters or hypotheses) and the edges represent conditional

dependencies. Nodes which are not connected represent vari-

ables which are conditionally independent of each other. Each

node is associated with a probability function that takes as input

a particular set of values for the node’s parent variables and

gives the probability of the variable represented by the node.

Bayesian Networks that model sequences of variables are called

Dynamic Bayesian Networks.

Let G = (H,E) a Directed Acyclic Graph (or DAG) where

H are the nodes and E the edges and let X = (Xh)h∈H a set

of variables indexed by H .

X is a Bayesian Network if its joint probability density

function can be written as a product of the individual density

functions, conditional on their parent variables:

p(x) =
∏

h∈H

p
(

xh |xpa(h)
)

(3)

where pa(h) is the set of parents of h.

For any set of random variables, the probability of any mem-

ber of a joint distribution can be calculated from conditional

probabilities using the chain rule as follows:

P(X1 = x1, . . . , Xn = xn) =
n
∏

h=1

P (Xh = xh | Xh+1 = xh+1, . . . , Xn = xn) (4)

In our model, the 9 parameters extracted represents the nodes

of the Bayesian Network. Details about application of Bayesian

network approach can be found in [25].

Algorithm 1 summarizes all steps achieved by the application

layer of our system.

IV. EXPERIMENTAL RESULTS

In order to evaluate our proposed approach we used 3

medical databases from the Physionet [26]. The European ST-T

Database (EDB) used for subjects with Myocardial Infarction,

the St. Petersburg Institute of Cardiological Technics 12-lead

Arrhythmia Database (INCARTDB) for subjects with PVC and

PAC and the MIT-BIH Arrhythmia Database (MITDB) for

normal subjects.

Figure 4 shows various ECG signals including normal ECG

from MITDB, MI ECG from EDB which is characterized by

an elevation of the ST Segment as shown on the figure, PVC

and PAC ECG from INCARTDB.

Figure 5 shows the previous signals processed by the 0.5Hz

FIR high pass digital filter and UWT. We can see that the

resulting ECG signals contain little baseline wandering but

keeps the main characteristics of the original ECG signals, we

can see also that the wideband noises are suppressed while

almost all the information of the ECG signal are maintained.
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Algorithm 1 ECG Pre-Processing and Classification Algorithm

Derive the classification model by applying the Bayesian

Network (BN) Model on an initial stored training set TS

;

Set the windows size w; i = 0;

while Captured ECG k do

Denoise ECG k with 0.5Hz High-Pass filter and UWT;

Extract P,QRS, T Peaks, Onsets and Offsets;

Calculate the 9 ECG parameters;

if i = w then

Apply the derived BN Model on each set of 9 parame-

ters extracted for each ECG of the windows w;

if (Number(Class 6= Normal) > Min) then

Raise an alarm;

end if

Update the Training Set TS with the new captured data;

i = 0;

else

i = i+ 1;

end if

end while

Figure 6 shows the extracted features Ponset, Poffet,

Rpeak, QRSonset, QRSoffet, Tonset and Toffet for two

previous ECGs (normal and MI). As described in Section III,

these values were obtained by applying UWT to first extract

QRS complex peaks and then deduct P and T peaks and their

corresponding onsets and offsets.

Figure 7 shows the calculated amplitude parameters Pamp,

QRSamp, Tamp, STamp for the previous normal, MI, PVC

and PAC ECGs during 15 minutes, representing about 1000

ECG cycles or heart beats. As we can see in the figure,

the amplitudes are stable enough for normal ECG but vary

significantly from one anomaly to another. For example, ECG

with MI has STamp parameter greater than 0.5mV while it is

negative or around 0mV for PVC and PAC.

Figure 8 shows the calculated duration parameters Pdur,

QRSdur, Tdur, PRdur, QTdur for the previous ECGs

during the same period (1000 ECG cycles). We can also see

differences between normal and abnormal ECG, especially for

QTdur and Tdur which are almost greater than 0.45s and

0.3s for ECG with MI while are generally less than 0.4s and

0.25s in other cases.

To evaluate the performance of our BN prediction model,

we first pre-processed and extracted parameters of all records

of the 3 databases EDB, MITDB and INCARTDB. Then, we

selected a data set of 4451 ECG consisting of 896 ECG with

MI, 1207 ECG with PVC, 1238 ECG with PAC and 1110

normal ECG. Each ECG is characterized by the 9 parameters

mentioned above. 5% of the data set was used as a training set

(TS) and the remaining 95% as a test set. We are interested for

each class to measure the accuracy parameters bellow :

True Positive Rate (Sensibility) =
TP

TP + FN
(5)



False Positive Rate (False Alarm Rate) =
FP

FP + TN
(6)

True Negative Rate (Specificity) =
TN

FP + TN
(7)

Positive Predictive Value (Precision) =
TP

TP + FP
(8)

Where TP , FP , TN , FN are respectively, the number of

true positives, false positives, true negatives and false negatives.

The table I synthesizes the results obtained for each class.

TABLE I
ACCURACY PARAMETERS PER CLASS

Class TPR FPR TNR PPV

MI 89.8% 2% 98% 92%

PVC 99.7% 0.3% 99.7% 99.2%

PAC 93.9% 2.8% 97.2% 92.8%

Normal 99.5% 2% 98% 99.4%

Average 96.1% 1.3% 98.7% 96.1%

If we increase the size of the TS to 30%, we obtain an

average TPR of 98.7% with 0.5% FPR. For a TS of 50%, we

obtain an average TPR of 99.3% with 0.3% FPR. We deduct

that the size of the TS is important for the performance of the

classification, this is why we update the TS of our system with

the new ECG data captured.

Finally, we use the Receiver Operating Characteristic (ROC)

curve to represent the fraction of True Positive Rate (TPR) vs.

False Positive Rate (FPR) with different threshold. Figure 9

shows the ROC curve of each class. The results obtained show

that the average rates of TPR and FAR for all the 4 classes

are TPR=96.1% and FAR=1.3% respectively.

V. CONCLUSION

In this paper, we present a new WBAN system for ECG mon-

itoring and prediction of cardiac anomalies. We designed our

system in five layers and detailed in this paper the application

layer that performs three main tasks : pre-process captured ECG

signal using a digital high-pass filter and Undecimated Wavelet

Transform (UWT) to remove various noises, extract 9 main

ECG features and classify ECGs using a Bayesian Network

Classifier as normal or abnormal among MI, PVC or PAC

anomaly. We applied our proposed approach using 3 medical

databases of real ECG data and experimental results show that

our system achieves an average True Positive Rate of 96.1%

with an average False Alarm Rate of 1.3%. We are currently

working on an end-to-end prototype using market sensors to

validate our experimental results in a user environment.
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