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Supervised classification of Very High Resolution
optical images using wavelet-based textural features

Olivier Regniers, Lionel Bombrun, Virginie Lafon, and Christian Germain

Abstract—In this paper, we explore the potentialities of using
wavelet-based multivariate models for the classification of Very
High Resolution optical images. A strategy is proposed to apply
these models in a supervised classification framework. This strat-
egy includes a Content-Based Image Retrieval analysis applied on
a texture database prior to the classification in order to identify
which multivariate model performs the best in the context of
application. Once identified, the best models are further applied
in a supervised classification procedure by extracting texture fea-
tures from a learning database as well as from regions obtained
by a pre-segmentation of the image to classify. The classification
is then operated according to the decision rules of the chosen
classifier. The use of the proposed strategy is illustrated in two
real case applications using Pléiades panchromatic images: the
detection of vineyards and the detection of cultivated oyster fields.
In both cases, at least one of the tested multivariate models
displays higher classification accuracies than Gray Level Co-
occurrence Matrix descriptors. Its high adaptability and the low
number of parameters to be set are other advantages of the
proposed approach.

Index Terms—Texture, wavelet, multivariate models, very high
resolution, optical image, classification.

I. INTRODUCTION

W ITH the launch of more than ten Very High Resolution
(VHR) optical satellites in the past 15 years (Quick-

Bird, GeoEYE, WorldView, Pléiades, ...), satellite image data
of metric and submetric resolution became increasingly avail-
able. The level of details provided in such data enables to
distinguish geometric structures only observable through their
spectral properties at coarser resolutions. These geometric
structures can be associated with a regular spatial organisation
specific to particular types of land covers. In agricultural
landscapes, this is the case of cereal crops, orchards and
vineyards which typically display a periodic row structure
visible in VHR image data. Because of forest management
practices, young tree stands in cultivated forests may also
feature specific spatial patterns. Similarly in urban areas, the
juxtaposition of buildings can generate a specific framework.
These specific spatial patterns can hence be exploited to detect
such land covers and improve the classification of VHR optical
image data.

Many studies adressed this challenge by considering pat-
terns observed in the landscape as textures. The main objective
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of texture-based analysis is to explore the local spatial depen-
dencies observed between neighboring pixels in the image.
This analysis generally leads to the extraction of a small-
sized set of features that can be further used in a classifier.
Various approaches were proposed in the literature to represent
textures for the classifcation of VHR image data. Among these
approaches, the Gray Level Co-occurrence Matrix (GLCM)
initially proposed in [1] is still very popular within the remote
sensing community. In many publications, texture descriptors
derived from GLCMs were successfully used for various re-
mote sensing applications, e.g. the classification of urban areas
[2], [3], the mapping of forest species [4], [5], the estimation
of forest structure variables in mono-specific forests [6], [7],
[8] and the classification of agricultural land covers [9], [10].
Rather than directly characterizing the texture in the image
domain as it is the case with GLCM, other authors suggested
to proceed with the texture analysis in a transformed domain of
the original data by applying filter banks. For example, texture
features extracted by applying scale and orientation selective
Gabor filters were proposed in [11] to map hedgerows in rural
landscapes. An unsupervised segmentation algorithm based on
Gabor filters was also introduced in [12] for the detection of
vineyards. In the same way as Gabor filters, wavelet filters
also offer a multi-scale and multi-orientation framework for
the texture analysis. Features such as energy and entropy [13]
or GLCM descriptors [14] can be extracted from each wavelet
subband to characterize the texture in this transformed domain.
In another common approach, probabilistic models are used
in the image domain to describe local spatial dependencies
and further characterize the textural information. Markov
Random Fields, known for their use in the regularization
of labeled image, can be modeled with these probabilistic
distributions for the classification of VHR remote sensing data
[15], [16]. Finally, rather than relying on pre-defined texture
features, the increasingly popular deep-learning algorithms
efficiently detect patterns in images through unsupervised or
semi-supervised feature learning in a deep neural network
architecture with many applications in remote sensing data
[17], [18].

In the past few years, texture features derived from the
wavelet domain gained in popularity. The wavelet domain
indeed simplifies the way textures can be apprehended as
it offers a multi-scale and multi-orientation framework in
which each wavelet subband contains a different part of the
frequency content of the original image. Low frequencies are
discarded and only high frequencies are investigated during the
texture analysis. Recently, new approaches emerged to analyze
textures by relying on the combined use of probabilistic
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models and wavelet transform. Probabilistic models used in
the wavelet domain can be more simple than in the image
domain as unimodal distributions are often associated with
wavelet coefficients. This technique consists in modeling the
distribution of wavelet coefficients with a probability density
function (PDF) whose parameters are estimated according to
the maximum likelihood principle [19]. These parameters are
determined for each high frequency subband of the wavelet
decomposition and can be further used as a textural signature.
Univariate models such as the Generalized Gaussian Distribu-
tion [20] or the Generalized Gamma Distribution [21] were
for example proposed to represent the marginal distribution
of wavelet coefficients. However, univariate models do not
fully describe the statistical behavior of the wavelet coef-
ficients as they do not include informations relative to the
spatial dependencies between these coefficients. To achieve
this, multivariate models were later introduced to represent the
joint distribution of the wavelet coefficients. In this case, all
the wavelet coefficients contained in a defined neighborhood
within the subband are considered as a local observation of
the spatial dependency. All these observations are clustered in
a random vector whose distribution can be further modeled
using multivariate PDF. The multivariate Gaussian model,
the Multivariate Generalized Gaussian Distribution (MGGD)
[22], models based on Spherically Invariant Random Vectors
(SIRV) [23] or copula-based models [24] are among the most
frequently studied models in this context. The classification
performances of these multivariate models were mostly inves-
tigated in a content-based image retrieval framework applied
on natural texture databases such as VisTex [25] or Brodatz
[26] and showed greater retrieval performances than univariate
models. Despite the growing interest of the image processing
and computer vision communities for this approach, the use
of wavelet-based multivariate modeling has not yet been
extensively explored for the processing of VHR optical remote
sensing data. In a recent work, we demonstrated that wavelet-
based multivariate models, in particular SIRV-based models,
showed promising performances for the classification of forest
stand age in mono-specific cultivated forests [27].

The potential of the use of multivariate models in the
wavelet domain is already known in the image processing
and computer vision communities [28]. The main contribution
of this paper is to demonstrate that such texture analysis
approaches are also suitable for the supervised classification
of textured soil occupations in VHR optical remote sensing
data. Moreover, we propose a complete strategy to apply such
models in the context of the classification of VHR optical
satellite data. This strategy consists in two steps. First, a
content based image retrieval system is used to identify the
best probabilistic models to be considered in the context of
application. Once identified, the best models are used in a
region-wise supervised classification procedure applied on a
pre-partitioned image. From a more practical point of view, the
main objective of this paper is also to highlight the universality
of the proposed strategy which can easily be adapted to various
thematic applications with a limited parameters to be set.
To this aim, texture-based classification results are presented
and discussed for two application examples: the detection of

vineyards and the detection of cultivated oyster fields.
The paper is organized as follows. In section II, a more

thorough insight on the wavelet transform and the probabilistic
modeling of wavelet subbands is given. The proposed strategy
for the application of wavelet-based texture features is detailed
in section III. This third section is divided in two parts. In
the first part, the content-based image retrieval framework is
presented with a focus on similarity measurements between
multivariate models. The proposed supervised classification
procedure is described in the second part. In the following
section, texture-based classification results are discussed and
compared with a reference approach using GLCM descriptors.
Conclusions and perspectives are finally presented in the last
section.

II. WAVELET-BASED MULTIVARIATE MODELING

Wavelet transforms provide a multi-resolution analysis
framework in which the image is decomposed in a series of
subband each containing an orientation and scale specific part
of the frequency content of the image. This multi-resolution
scheme of analysis is convenient for texture analysis as the
pattern constituting the texture can be composed of elements
of variable sizes. The most standard wavelet decomposition
used for image filtering is the Discrete Wavelet Transform
(DWT) initially proposed by Mallat [20]. This decomposition
consists in applying combinations of oriented one-dimensional
high-pass (H) and low-pass (L) filters to the image resulting in
four subbands (three orientation specific high-pass filtered sub-
bands (HH, HL, LH) and one low-pass filtered subband (LL))
subsampled by a factor 2 (dyadic wavelet) at each scale of the
decomposition. A subsequent scale is obtained applying the
same combinations of filters to the LL subband. The DWT has
the advantage of producing independent orthogonal subbands
without redundancy of information. Nevertheless, the DWT is
limited in two points: the directional selectivity (only three
main orientations can be considered) and the shift variance
[29]. Other configurations of the wavelet decomposition which
overcome these issues were later proposed. In wavelet packets
[30], the decomposition is applied at each scale on all the
subbands of the previous scales including the high-pass filtered
subbands, allowing a finer analysis of the high frequencies
in the image. The stationary wavelet transform [31] produces
undecimated subbands preventing issues related to shift in-
variance. Steerable pyramids [32] enables a shift invariant and
multi-orientation decomposition with more than three main
orientations. Whichever the chosen wavelet decomposition, the
joint distribution of wavelet coefficients in each subband can
be further modeled as illustrated in Fig. 1. The aim of this
paper is not to compare these various configurations of wavelet
decomposition and we mainly focus on the comparison of
performances of different multivariate models applied on DWT
subbands.

To conduct the modeling of the spatial dependencies within
a subband, the wavelet coefficients contained in the neigh-
borhood of the current spatial position are clustered in a
random vector k. Several multivariate models were proposed
to represent the distribution of the random vector k. We
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Fig. 1: Modeling of discrete wavelet subbands where ki are
the random vectors of observation, η are the parameters of the
model P , Nsc and Nor are respectively the number of scales
and orientations of the decomposition.

first focus on the well-known multivariate Gaussian model
and further introduce two generalizations of this model: the
SIRV-based models and the copula-based models. For each of
these models, the technique used to estimate the distribution
parameters is detailed in the following paragraphs. These
estimated parameters η are further used as a textural signature
in the classification procedure.

A. Multivariate Gaussian Model

If we assume the gaussianity of the dependency to be
modeled, the observed vector k is a real Gaussian vector
of zero mean and covariance matrix [M]. A zero mean can
be considered here as only the high frequency subbands
are modeled. This stochastic Gaussian distribution is then
characterized by an estimation of the covariance matrix [M]
using the Sample Covariance Matrix estimator (SCM):

[M̂]SCM =
1

N

N∑
i=1

kik
′
i (1)

where N is the number of observations and k′i is the trans-
posed vector of ki. Hence, the textural signature obtained from
this model contains an estimation of the covariance matrix for
each subband of the decomposition. However, it is well known
that Gaussian models are not flexible enough to capture the
”heavy-tail” behaviour generally observed in the distribution
of wavelet coefficients [20]. Other multivariate models offering
more adjustement flexibility were therefore proposed as gen-
eralizations of the Gaussian case. The SIRV-based and copula-
based models are among such generalizations.

B. SIRV-based Models

In SIRV-based multivariate models, the generalization of the
Gaussian case is obtained as follows. The observed vector k

is decomposed as k =
√
τz where z is a Gaussian vector

of zero mean and covariance matrix [M] and τ a positive
random scalar variable called the multiplier, τ and z being
assumed independent. The multiplier τ enables to modulate
the distribution of the Gaussian vector z to better fit the heavy-
tail behaviour of the distribution of wavelet coefficients. The
PDF of the random variable τ is not specified in the definition
of SIRV models and various univariate models derived from
the Pearson system of distributions were proposed to represent
the multiplier [23]. In this paper, we will focus mainly
on two particular configurations of the SIRV models. First,
when considering a deterministic multiplier τ , a Gaussian-like
distribution is produced (SIRVgauss). Here, the multiplier τ
varies from one sample ki to another and can be represented
by a Dirac [33]. Second, for an Inverse Gamma distributed
multiplier τ , the SIRV vector k follows a G0 distribution
(SIRVg0) [34].

The SIRV representation is not unique and a normaliza-
tion condition is necessary. Classicaly, the normalization is
imposed on the trace of the covariance matrix, set here to p the
dimension of the target vector k. An approximated maximum
likelihood estimator of the normalized covariance matrix is
the solution of the following recursive equation known as the
”Fixed Point” estimator (FP) [35]:

[M̂]FP = f([M̂]FP ) =
p

N

N∑
i=1

kik
′
i

k′i[M̂]−1FPki

with Tr([M̂]FP ) = p

(2)

The existence and the uniqueness of the Fixed Point estimator
as well as the convergence of the recursive algorithm whatever
the initialization was established in [36]. When used in SIRV
configurations, the FP estimator has been proven to be more
robust than the SCM estimator used for the multivariate
Gaussian model [33]. For a given covariance matrix [M],
the maximum likelihood estimator of the multiplier τi is then
defined by:

τ̂i =
k′i[M]−1ki

p
(3)

In both SIRVgauss and SIRVg0 cases, the obtained textural
signature contains the FP estimator of the covariance ma-
trix, completed in the case of the SIRVg0 model with the
parameters of the univariate Inverse Gamma PDF chosen to
represent τ (one shape and one scale parameter).

C. Copula-based Models

Another generalization of the Gaussian case is given by
the family of copula-based models. Here, the margins of the
observed p-dimensional vectors k = [k1, . . . , kp] are first mod-
eled independently by a chosen univariate PDF. A transforma-
tion is then applied on the modeled marginals by computing
a cumulative distribution function CDF F1, . . . , Fp resulting
in a set of transformed variables (F1(k1), . . . , Fp(kp)). Then,
a copula C is used to represent the relationship between
these transformed variables. The definition of the copula does
not specify the distribution associated with the CDF or the
marginals and various configurations of copulas are possible
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[24], [37], [38]. The advantage of copulas in comparison to
SIRV models is that they enable to define a joint distribution
with arbitrary marginals.

The definition of the copulas is derived from the Sklar’s
theorem [39] which states that given a p-dimensional random
vector k = [k1, . . . , kp] with a CDF F and continuous
marginals F1, . . . , Fp, there exists a unique copula C such that:

F (k1, . . . , kp) = C(F1(k1), . . . , Fp(kp)) (4)

Given that the CDF F and the copula C are continuous, the
joint density f(k) can be expressed as follows:

f(k1, . . . , kp) = c(F1(k1), . . . , Fp(kp))

p∏
r=1

fr(kr) (5)

where c is the copula density and fr, r = 1, . . . , p are the
marginal PDFs. Among the configurations of copulas, we
will focus on the use of a multivariate Gamma distribution
with a Gaussian copula (GGC) as proposed in [37]. In this
configuration, the copula density c is modeled by a Gaussian
distribution and the marginals f are modeled with univariate
Gamma distribution. Similarly to SIRV models, the multivari-
ate Gaussian part of the copula model is modulated by the
univariate distribution applied to the marginals in order to
better capture the non-Gaussianity of the distribution of the
wavelet coefficients.

In the case of Gaussian copulas, the maximum likelihood
estimation of the parameters can be done in two steps. The first
consists in the estimation of the parameters η̂ = (η̂1, . . . , η̂p)
of each marginal f1, . . . , fp independently:

η̂r = argmax
ηr

log

p∏
r=1

fr(kr,i, ηr) (6)

The estimation of the covariance matrix [M] is then obtained
in a second step after transforming the observed vectors ki
into Gaussian vectors kGi . The maximum likelihood estimator
of the matrix [M] is then defined as:

[M̂] =
1

N

N∑
i=1

kGi k
G′

i (7)

Hence, the extracted textural signature obtained with Gaussian
copula models is also composed of an estimation of a covari-
ance matrix and the parameters of the univariate distribution
chosen to represent the marginals (one shape and one scale
parameter in the case of the Gamma distribution). Further
details on the estimation of these parameters can be found
in [37], [38].

The four multivariate models described above (SCM,
SIRVg0, SIRVgauss, GGC) were tested in two different con-
texts of VHR data classification. Before presenting these
results in section IV, the strategy proposed to include these
wavelet-based multivariate models in a supervised classifica-
tion procedure is explained in the next section.

III. METHODOLOGY

Prior to the supervised classification, a first analysis using a
Content-Based Image Retrieval framework [40] is conducted

Fig. 2: Architecture of the Content-Based Image Retrieval
framework (adapted from [19]).

on a pre-existing texture database in order to identify which are
the multivariate models capable to most efficiently distinguish
the considered texture classes. The concept of distance or
similarity measurement between multivariate models is inher-
ent to the CBIR framework and is defined here below. Once
identified, the best models are further used in a supervised
classification procedure described in the second part of this
section.

A. Content-Based Image Retrieval

The Content-Based Image Retrieval framework (CBIR) is a
universal technique aiming at the retrieval of images from a
database depending on color, shape or texture features describ-
ing the visual content of these images. In this study, we focus
on the use of textural features derived from wavelet-based
multivariate models. This general framework is frequently
used in the literature to compare the ability of probabilistic
models to represent the textural content of image patches
belonging to the VisTex or Brodatz databases [25], [26]. In
order to apply such framework to a real practical case of image
classification, a database of image patches is first created by
extracting texture-wise homogeneous regions representative of
the different classes of interest from the VHR optical data. Two
major tasks are considered in the CBIR: the feature extraction
and the similarity measurement (Fig. 2).

During the feature extraction step, the textural signature of
all the patches of the database are computed according to the
chosen texture analysis approach. In the case of the GLCM
for example, a signature consists of a vector of descriptors
derived from the co-occurrence matrix computed on one patch,
whereas in the case of multivariate models, the signature
contains the estimated paramaters of the modeled distribution
obtained from each of the wavelet subband as described in
the previous section. Once the signatures are computed, one
patch is extracted from the database and considered as a query
image. A similarity measurement is then calculated between
the signature of the query image and all the signatures of the
rest of the database, allowing to retrieve the top closest images.
A textural analysis method is considered more efficient than
another if amongst the top closest images, there is a higher
proportion of patches belonging to the same class as the query
image. This operation is repeated by considering successively
each patch of the database as a query image. In the case of
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models derived from wavelet subbands, it is worth noting that,
by assuming the hypothesis of decorrelation between wavelet
subbands, the similarity measured between two images I1 and
I2 is equal to the sum of similarities measured between the
models derived from pairs of subbands W1 and W2 at the same
scale sc and the same orientation or of the decomposition:

D(I1‖I2) =
Nsc∑
sc=1

Nor∑
or=1

D(W1sc,or‖W2sc,or) (8)

where Nsc and Nor are respectively the number of scales and
the number of orientations of the decomposition.

When using for example textural features derived from a
GLCM, the notion of similarity between two images comes
down to the measure of a distance between two vectors in the
parameter space. A Euclidean or a Mahalanobis distance can
be used in such case. For applications based on probabilistic
models, Euclidean or Mahalanobis distances are not appropri-
ate as they do not take advantage of the probabilistic nature of
the parameters. The use of the Kullback-Leibler Divergence
(KLD) has been widely advocated in this context [19]. The
KLD between two models P (k; η1) and P (k; η2) is indeed
defined according to the chosen PDF as follows:

KLD = D(P (k; η1)‖Pk; η2)) =∫
P (k; η1) log

P (k; η1)

P (k; η2)
dk

(9)

where η refers to the model parameters. Unfortunately, a
closed form of the KLD is not currently available for all
multivariate models. The use of the Rao Geodesic Distance
(GD) was proposed as an alternative to the KLD (e.g. [22],
[41]). This distance relies on the Fisher information matrix
and is defined as the length of the shortest path connecting
two points in the space of the parameters of the distribution.
The use of the GD is also preferred since unlike the KLD, it
satisfies the triangular inequality. Besides, it was shown that
the GD could lead to higher classification performances than
the KLD [22], [42]. However, in the case of the GGC model,
only a closed form of the KLD is currently available and is
used to measure similarities for this model. The approach used
to estimate similarities are described here below for the four
considered multivariate models.

1) Similarity between Gaussian models: For Gaussian dis-
tributions, models are only characterized by their covariance
matrix estimated in this study either with the SCM estimator
for the multivariate Gaussian model (SCM) or by the FP
estimator for the Gaussian SIRV model (SIRVgauss). The GD
between two Gaussian models defined by the matrices [M]1
and [M]2 of dimension p× p is expressed as follows:

GD([M]1‖[M]2) =

√√√√ p∑
i=1

(lnλi)2 (10)

where λi are the eigenvalues of [M]−11 [M]2.
2) Similarity between SIRVg0 models: Similarity measure-

ments between two SIRVg0 models depends not only on the
covariance matrix but also on the other parameters of the
distribution. Various strategies were suggested to approximate

the GD in this context. Here, we applied the strategy proposed
by [41] in which elements of the Fisher information matrix
are expressed only as a function of the two shape and scale
parameters of the Inverse Gamma distribution. The GD is then
approximated by assuming the geodesic coordinate functions
as straight lines. Another strategy considering fixed shape
parameters was also introduced in [41] for SIRVg0 models,
but it was not used in this study as it was shown to be less
efficient.

3) Similarity between GGC models: For copula-based mod-
els, there are currently no available closed form of the GD. A
Monte-Carlo approach to approximate the KLD between two
copula-based models was suggested in [24]. But, this tech-
nique often implies high computational costs. More recently,
a closed form of the KLD was introduced for Gaussian copulas
[38]. This expression equals to the sum of one KLD measured
between two Gaussian models for the copula and p KLD
between univariate models for the marginals. The symetric
version of this KLD was used here for comparing two copula-
based models.

In order to assess the retrieval performances in CBIR,
various indices can be used (see [43] for a review). Between
these, the most commonly used indices are Precision and
Recall, usually presented as a Precision versus Recall graph
(PR graph). The Precision corresponds to the average fraction
of retrieved patches that are relevant amongst the n top
closest patches, whereas the Recall is the average fraction
of relevant patches that are retrieved in the top n closest
image. The PR graph is constructed by varying the parameter
n between 1 and NT , the total number of patches in the
database. This is equivalent to varying the distance threshold
between the query image and the other images of the database.
The Recall increases with n, whereas the Precision decreases
when n increases. A texture model is therefore considered
more performant than others when its associated PR curve
is closer to the upper-right corner of the graph. This graphic
representation is similar to ROC curves which plots the true
positive rate versus the true negative rate. Nonetheless, as
recommended in [44], the use of PR graphs was preferred
as it can be more informative when the analysed database
is unbalanced in terms of number of samples per class. The
PR graph gives a general insight on the ability of a model to
detect all the images of a same class without having to scan the
entire database. The interpretation of PR graphs is used here to
identify which multivariate model would be the best choice for
the classification of VHR remote sensing data. In the next part
of this section, the proposed strategy for using wavelet-based
multivariate models in a supervised classification is presented.

B. Supervised Classification

The classification of VHR optical data using texture features
can be addressed in different manners. The most intuitive
way is to proceed with a pixel-wise approach using a slid-
ing window to characterize local spatial dependencies. This
approach is often preferred when using GLCM descriptors
resulting in images of parameters subsequently used as inputs
in a classifier [6], [9]. This classification technique may have
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however some drawbacks: (1) the optimal size of the sliding
window is not easily determined automatically and trials and
errors are often needed to fix it; (2) the VHR of optical
data readily translates into high local variability which can
be difficult to fully capture during the learning phase without
requiring a large database; (3) the computational cost of a
pixel-wise analysis can be prohibitive given the size of the
objects to classify in regard to the spatial resolution of the
image; (4) the use of a sliding window can be the source of
classification errors especially at the vicinity of object edges
where mixed textures may be present. For all these reasons,
we opted for a region-wise classification based on a pre-
segmentation of the image to classify as advocated for example
in [45], [46]. This alternative enables to reduce the number of
entities to classify to the number of regions obtained by the
segmentation and thereby to reduce the computational cost and
to increase the homogeneity of the classification results. The
proposed supervised classification method operates as follows.

During the learning phase, texture features are extracted
from each patch of a learning texture database. This database
is the same as the one used during the CBIR analysis. As a
reminder, this database was created by extracting texture-wise
homogeneous regions representative of the different classes of
interest. In parallel, the same texture features are extracted
from each region identified during the pre-segmentation. In
the case of multivariate models, the wavelet decomposition
is applied on the entire image to classify. At each scale
of the decomposition, a label image derived from the pre-
segmentation is downsampled to the size of the wavelet
subbands so that the wavelet coefficients corresponding to
each region can be easily identified. The multivariate modeling
is next performed by only considering the neighborhoods
contained in each region within each subband. Once texture
features are extracted from the learning database and form
the regions of the pre-segmentation, a classifier is used to
determine which class is affected to each region according to
its decision rules. The classification results is further validated
by comparing it with a ground truth if available.

Any kind of classification algorithms can be adapted to
this classification scheme as long as it includes a notion
of similarity or if it respects the probabilistic nature of the
proposed multivariate models. Three types of classification
algorithms are tested in the following section: k-Nearest
Neighbors (k-NN), maximum likelihood (ML) and Support
Vector Machine (SVM). The k-NN relies only on a similarity
measure between the texture features derived from the learning
samples and the region to classify. The majority class among
the k-NN is affected to the region. Similarly to the CBIR
analysis, a GD or KLD is used to measure similarities. In the
ML classifier, a log-likelihood criterion is computed between
the multivariate models estimated on the learning samples and
the local observations of the spatial dependency within each
region. The model learned on the regions is not used in this
case. A region is classified according to the class of the sample
that maximizes this likelihood criterion. The advantage of the
ML classification in comparison to k-NN is that it does not
require to re-estimate new features from each of the region.
This can be helpful in the case of small-sized regions (over-

segmentation) for which the number of local observations in
each region may not be sufficient to estimate a stable model.
Nonetheless, the computational cost of the ML classifier can
be significantly higher, especially when a large number of
regions are to be classified. To use a SVM classifier, a non-
linear kernel-based transformation is first applied on the data to
project them in a new space where a hyperplan between classes
can be defined. To do so, a Gaussian kernel K is adapted to the
similarity measure between models by replacing the Euclidean
distance with the KLD or the GD [47], [48]:

K(x, x′) = exp
(
−distance(x, x′)2

2σ2

)
(11)

where (x, x′) is a couple of observations and σ the standard
deviation of the Gaussian kernel. The value of σ is fixed here
to maximise the performance of the classifier through a cross-
validation procedure.

IV. EXAMPLES OF APPLICATIONS

In this section, we illustrate the proposed strategy with
two examples of application of wavelet-based multivariate
modeling for the classification of VHR optical remote sensing
data. Both examples aim at the detection of one particular
land cover in VHR panchromatic Pléiades data: vineyards and
cultivated oyster fields.

A. Detection of Vineyards

Because of the periodic aspect of vine rows, textural
analysis for the detection of vineyards is often performed
through the use of frequency-based methods relying on the
Fourier transform [49], [50], [51]. Among these frequency-
based methods, Rabatel et al. [12] suggested an unsupervised
segmentation approach in which each vine plot is isolated by
selecting its frequency response in the Fourier domain using
adapted Gabor filters. To apply frequency-based approaches
in this context, a good contrast is needed between vine rows
and inter-rows for the periodic structure to be visible. But,
according to the Shannon-Nyquist theorem, such structure
would only be observable if the spatial resolution of the image
is at least twice as small as the period of the pattern. In many
French wine-growing regions and in particular in the area of
Bordeaux, the plant density is such that the inter-row distance
can be close to 1 meter. Using VHR panchromatic data such
as those produced by the Pléiades sensor (spatial resolution
of 0.7 m) can therefore be problematic. Aliasing artifacts can
be common in these data. This will result in a significantly
altered texture in which the periodic aspect of vine rows is
no longer clearly visible. In this application, we explore the
potentialities of four wavelet-based multivariate models (SCM,
SIRVgauss, SIRVg0, GGC) to detect vineyards despite the
presence of these artifacts. The classification results obtained
with these models are compared with those produced when
using GLCM descriptors and the unsupervised segmentation
approach proposed in [12].

To achieve this, we used four panchromatic images acquired
by the Pléiades sensor on three wine appellations within the
wine-growing region of Bordeaux: Sauternes, Saint-Émilion
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Fig. 3: Examples of texture patches used in a learning database
for vineyards classification.

and Pessac-Léognan. Plant densities in these three appellations
are such that the inter-row distances (IRD) are of approxi-
mately 1 to 1.2 m in Pessac-Léognan and 1.4 to 2 m in Saint-
Émilion and Sauternes. Besides, if the spatial resolution of
panchromatic Pléiades data is of 0.7 m, the Ground Sampling
Distance (GSD) at the time of the image acquisition only
reaches this resolution at the nadir of the satellite for an
incidence angle close to 0°. For the Pléiades data used in
this study, the incidence angle is significantly higher (from
13° to 33°) except for the Sauternes image (4°) and the GSD
is hence significantly increased (from 0.75 to 0.9 m). Aliasing
effects and the resulting alteration of textures is all the more
important that the GSD is high and that the IRD is low.

From each of the four panchromatic data, a texture database
is created by extracting image patches (128×128 pixels) from
texture-wise homogeneous areas in the data. These selected
patches are representative of the different land cover classes
to distinguish in the landscape. In the wine-growing region of
Bordeaux, the landscape is dominated by vineyards standing
alongside typical peri-urban land covers. Four main classes
are therefore considered: vineyards, forest, low vegetation
(i.e. meadows, regenerating vineyards, bare soil, etc.) and
built areas (Fig. 3). The texture databases constructed from
each of the four panchromatic data contains 25 patches for
the forest, low vegetation and built areas classes. For the
vineyards, the lack of rotation invariance of the wavelet-based
texture features has to be taken into consideration and a fairly
exhaustive set of patches in terms of orientation has to be
created. To do so, we included in the database 25 image
patches of vineyards for each main classes of orientation
defined by intervals of 20° between 0° and 180° (9 classes
of orientation). Each database contains a total of 300 image
patches with 225 for vineyards only.

The created databases are first exploited in a CBIR analysis
to compare the retrieval performances of the tested multivari-
ate models with those obtained with GLCM descriptors. In
order to extract GLCM descriptors from image patches, the

distance between pairs of pixels is set to 1 and four Haralick
descriptors are selected: entropy, homogeneity, correlation
and mean. These four descriptors are extracted from each
GLCM computed in four orientations (0°, 45°, 90°, 135°) and
further averaged to obtain rotation invariant descriptors [52].
These parameters are selected as they maximize the retrieval
performances of the GLCM. Besides, multivariate models are
applied on subbands obtained with a DWT with Daubechies
db4 wavelet filters. Wavelet db4 filters are chosen as they
enable a compromise between the spatial extent of the filter
and its localization in frequency. The number of scales in the
decomposition is set to 2 producing six wavelet subbands (2
scales × 3 orientations). Neighborhoods of 3×3 are considered
within each subband to represent the observations of the local
spatial dependency. A total of six sets of model parameters
are extracted for each image patch of the database (one set
for each wavelet subband).

The PR curves of the wavelet-based multivariate models
and the GLCM descriptors are shown in Fig. 4 for each of the
texture databases derived from the four Pléiades panchromatic
data. It appears clearly on these curves that the retrieval
performances of the multivariate models depend directly on the
ratio GSD/IRD associated with the processed image data. The
more this ratio increases, the more the PR curves struggle to
get closer to the upper right corner of the graph, synonym of a
perfect retrieval behavior. Indeed, when this ratio is lower than
0.5 (Fig. 4a), i.e. when the conditions of the Shannon-Nyquist
theorem are respected, the texture associated with vineyards
is less altered and retrieval performances are high with PR
curves close to the upper right corner of the graph. In this case,
GLCM descriptors as well as models like SCM and GGC are
the more performant. Conversely, when the ratio is close to
0.5 (Fig. 4b) or slightly higher than 0.5 (Fig. 4c), the texture is
potentially more altered and retrieval performances decrease.
In those cases, multivariate models such as SCM and GGC
display higher performances than GLCM descriptors. Finally,
when the ratio GSD/IRD is significantly higher than 0.5 (Fig.
4d), the level of alteration of textures is such that none of
the tested texture analysis succeeds to retrieve the textures
efficiently. This lower sensitivity of wavelet-based multivariate
models to the texture alteration confirms their ability to capture
more informative components of the texture in the wavelet
domain than GLCM descriptors in the image domain. This
is in agreement with previous results [53] in which wavelet-
based features were shown to be more adapted to capture lower
and mid-frequency texture information, while the GLCM is
more efficient to describe high-frequency textural components.
Two multivariate models display significantly better retrieval
performances than the two others in this particular context
of application, i.e. the SCM and the GGC models. These
two models are further tested in the proposed supervised
classification strategy.

The texture patches database used previously in the CBIR
analysis are further used in the classification process as a train-
ing database. Prior to the classification, a pre-segmentation is
operated on the image using a Mean-Shift algorithm [54]. As
this algorithm relies directly on the distribution of gray levels,
a smoothing filter is first applied on the image to prevent
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(a) GSD/IRD = 0.35 (b) GSD/IRD = 0.5 (c) GSD/IRD = 0.61 (d) GSD/IRD = 0.75

Fig. 4: Recall/Precision curves for GLCM and four multivariate models obtained with vineyard texture databases created from
four panchromatic Pléiades data.

Method OA kappa PA UA Time 1

Gabor 87.83 0.69 68.14 89.67 23 sec.
GLCM - SVM 85.29 0.66 77.56 75.17 2 min.
SCM - ML 94.93 0.88 97.18 87.75 79 min.
GGC - ML 94.09 0.87 97.51 85.42 84 min.

OA = Overall Accuracy - PA = Producer’s Accuracy - UA = User’s
Accuracy

TABLE I: Accuracy indices and computational time for vine-
yards classification

regions from following vine rows, creating thereby irregular
narrow contours. The minimum region size parameter of the
Mean-Shift algorithm is also set at a low value (500 pixels) so
that regions containing mixed textures are limited. The result
can be therefore over-segmented. Note that other segmentation
algorithms could be used for this step. The identified regions
are then classified according to the chosen classifier by either
extracting new features from these regions when using k-NN
and SVM or by estimating a likelihood criterion when using
the maximum likelihood (ML) classifier. Classification results
are then compared with a ground truth for validation.

The classification results obtained with GLCM descriptors
as well as with the SCM and GGC wavelet-based multivariate
models are presented in Fig. 5 for an image extract of one of
the Pléiades data acquired on the Pessac-Léognan appellation
with a GSD/IRD ratio equal to 0.61 (Fig. 5a). These results
are compared with the segmentation result achieved with the
unsupervised method based on the use of Gabor filters [12].
Regions classified or segmented as vineyards are displayed
in accordance with their consistency with the ground truth
(Fig. 5c) by describing them in terms of true positives, false
positives, true negatives and false negatives. Only the results
obtained with the most efficient classifier are presented for
each textural analysis appoach in Fig. 5. The corresponding
accuracy indices as well as computational time are shown in
Table I. These results are discussed here below.

1 These durations were obtained with an Intel Core i5-3570 CPU at 3.40
GHz and 8 GB of RAM, running the 64 bit version of Windows 7 operating
system. The codes for the supervised classification (SVM and ML) and the
Gabor filters approach were implemented and run in MATLAB (version
8.5, R2015a, 64 bit). These durations do not include the Mean-Shift pre-
segmentation and the model training, these steps being identical for all texture-
based approaches.

Methods using texture features (GLCM and multivariate
models) reveal higher detection performances than the seg-
mentation method using Gabor filters. This lesser ability of
Gabor filters to detect vine plots in this context is mainly due
to the short IRD (1 to 1.2 m) which significantly contributes
to the attenuation of the frequency response of the vine plots.
Plots with the lowest IRD are practically undetected by this
approach (see false negatives in Fig. 5d). Besides, the presence
of missing vines in most of the plots interrupts locally the
frequency patterns. This translates in small false negative
areas appearing in the detected plots. Nevertheless, despite this
under-detection problem of Gabor filters, the confusion with
other land covers (false positives and user’s accuracy) is low in
comparison to the use of texture features. Confusions however
occur with the neighboring road network which also produces
a frequency response in the Fourier spectrum. Concerning
the textural approaches, higher detection performances are
observed when using multivariate models. Results obtained
with these models (Fig. 5f-5g) display indeed higher true
positive and lower false positive rates than those obtained
with GLCM descriptors (Fig. 5e). This confirms the higher
sensitivity to texture attenuation observed for the GLCM in
the CBIR analysis. The best compromise between higher true
positive and lower false positive is achieved when using the
SCM model (Fig. 5f). Most of the false positives are due to
confusions with low vegetation which can share similarities
with vineyards especially when the texture pattern associated
with vine rows is significantly altered. Also, regions defined
by the pre-segmentation algorithm tend to spread beyond
the limits of vine plots and create mixed regions, especially
around narrow paths delimiting the plots. These detection
errors are due to the Mean-Shift algorithm rather than to the
texture analysis. Overall, wavelet-based multivariate models
and the proposed strategy to apply them in this particular
context of vineyards classification proved to produce higher
detection performances than standard approaches such as
GLCM descriptors or Gabor filters. These observations are
confirmed by the accuracy evaluation (Table I) with higher
accuracy indicators for multivariate models than for GLCM
descriptors or Gabor filters. It can however be noted that the
computational duration of the classification is, as expected,
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(a) Image Extract (b) Mean-Shift Pre-segmentation (c) Ground Truth

(d) Gabor Filters Segmentation (e) GLCM - SVM (f) SCM - ML (g) GGC - ML

Fig. 5: Classification results on an extract of the 2012-08-22 Pléiades data acquired in Pessac-Léognan appellation. Green
contours in Fig. 5b correspond to the frontiers of the regions obtained with the Mean-Shift algorithm.

significantly higher for wavelet-based mulvariate modeling
with a computational cost up to 40 times higher than the use of
GLCM descriptors and up to 200 times higher than the use of
Gabor filters. This higher computational time is mainly due to
the calculation of the maximum likelihood criterion between
the multivariate models estimated on each training sample and
the local observations within each region to classify.

In the following application, the proposed classification
strategy is adapted to the detection of small and narrow
structures in the case of cultivated oyster fields mapping.

B. Detection of Cultivated Oyster Fields

In the Arcachon Bay, a mesotidal lagoon located in the
South-West of France, oysters are traditionally grown on
racks of a few tens of meters to more than hundred meters
long. These racks are set directly on the sediment in groups
of two to five spaced by 1 to 2 meters. These groups of
parallel structures are directly visible in VHR optical data
and can be detected by using texture analysis in order to
assess the evolution of the area occupied by this shell farming
industry. Some recent studies demonstrate the interest of the
international community to detect and map oyster habitat in
tidal flats [55], [56]. In these studies, oyster reefs are mainly
detected by making use of the radar backscattering properties
specific to these land covers in SAR remote sensing data. Here,

we adapt the proposed classification strategy using wavelet-
based multivariate models to detect such structures in VHR
optical data.

For this application, we used a panchromatic image acquired
by the VHR Pléiades sensor in April 2013. This image covers
a large central part of the Arcachon Bay where the oyster
farming activity is predominant. The learning database used
for this application is created differently than in the previous
application. The use of same-sized image patches to learn
texture features may indeed be less appropriate in the case of
oyster fields mapping as narrow groups of oyster racks may be
separated by a few meters large spaces of bare sediment. The
textural signature derived from such patches would therefore
include textural informations relative to both oyster racks and
bare sediment. Instead, unevenly-sized Regions Of Interest
(ROI) whose contours are adapted to the shapes of the struc-
tures to detect are extracted from the image. Three classes of
land covers are considered: cultivated oyster fields (40 ROIs),
abandoned fields (20 ROIs) and foreshores (20 ROIs) (Fig. 6).
The latter corresponds to any area of bare sediment where no
oyster is grown. For this class, image patches of the same size
are extracted since the texture associated with foreshores is
homogeneous in vast areas.

First, the learning database is analysed in a CBIR framework
to compare retrieval performances and identify which multi-
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Fig. 6: Examples of texture ROI used in the learning database
for oyster fields classification.

variate model would perform best in the context of application.
To extract GLCM texture descriptors from ROIs, the same
parametrization of the GLCM than in the previous application
is used, i.e. the distance between pairs of pixels is set to 1 and
four Haralick descriptors (entropy, homogeneity, correlation
and mean) are computed in four orientations before being
averaged. Besides, multivariate modeling is applied on the
six subbands obtained by applying a DWT with Daubechies
db4 wavelet filters and 2 scales and 3 orientations of de-
composition. Neighborhoods of 3×3 are considered within
each subband to represent the observations of the local spatial
dependency. As in the previous application, a total of six sets
of model parameters are extracted for each image patch of the
database (one set for each wavelet subband).

The computed PR curves show higher retrieval perfor-
mances for almost all the multivariate models in comparison to
GLCM descriptors with the exception of the SIRVgauss model
(Fig. 7). It is worth noting that conversely to the application
dedicated to the vineyards detection, PR curves are decreasing
faster and are more distant from the upper right corner. This
gives hints on the potentially higher level of confusion between
the considered classes. This could be explained by the shared
anisotropy between the cultivated oyster fields and abandoned
fields which could be the source of classification errors. The
performances of the three best multivariate models (SCM,
SIRVg0 and GGC) are further assessed in classification.

The ROI database used previously in the CBIR analysis
is further used in the classification process as a training set.
Prior to the classification, a Mean-Shift pre-segmentation is
performed on the image to classify. As groups of oyster-
growing racks can be narrow, the Mean-Shift algorithm is
deliberately parametrized to create an over-segmentation with
the minimum region size parameter set to 100 pixels. Small
regions are hence produced (Fig. 8b). The identified regions
are then classified according to the chosen classifier by either
extracting new features from these regions when using k-NN
classifier for GLCM descriptors or by estimating a likelihood

Fig. 7: Recall/Precision curve for GLCM and four multivariate
models obtained with the texture database created from 2013-
04-25 panchromatic Pléiades data.

criterion when using the maximum likelihood (ML) classifier
for multivariate models. Classification results are presented
in Fig. 8 for an image extract of one of the Pléiades data.
As previously, regions classified as cultivated oyster fields are
displayed in accordance with their consistency with the ground
truth (Fig. 8c) by describing them in terms of true positives,
false positives, true negatives and false negatives. Only the
results obtained with the most efficient classifier are presented
for each textural analysis appoach in Fig. 8. The corresponding
accuracy indices and computational time results are shown in
Table II. These results are discussed here below.

Method OA kappa PA UA Time 1

GLCM - kNN 86.28 0.66 83.13 69.2 47 sec.
SCM - ML 89.39 0.61 82.88 61.23 98 min.
SIRVg0 - ML 86.3 0.7 87.72 71.44 104 min.
GGC - ML 88.01 0.7 84.27 72.87 109 min.

OA = Overall Accuracy - PA = Producer’s Accuracy - UA = User’s
Accuracy

TABLE II: Accuracy evaluation for oyster racks classification

The produced classification results show an equivalent ca-
pacity of two of the selected multivariate models (SIRVg0,
GGC) to correctly detect oyster racks with a low proportion
of false positives (Fig. 8f-8g). Conversely, the result obtained
with the SCM model (Fig. 8e) reveals higher confusions with
the bare sediment spaces between oyster racks with signifi-
cantly higher false positives in those areas. However, as the
two other multivariate models (SIRVg0 and GGC), it prevents
confusion errors with abandoned fields. On the other hand,
even though it achieves a satisfactory delimitation of cultivated
oyster fields without significant confusion with bare sediments,
the use of GLCM descriptors also induces classification errors
with abandoned fields as it can be seen in the upper right part
of Fig. 8d. As it was observed for the detection of vineyards,
the best compromise between high level of true positives and
low level of false positives is observed in this application when
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(a) Image extract (b) Mean-Shift Pre-segmentation (c) Ground Truth

(d) GLCM - k-NN (e) SCM - ML (f) SIRVg0 - ML (g) GGC - ML

Fig. 8: Classification results on an extract of the 2013-04-25 Pléiades data acquired on the Arcachon Bay. Green contours in
Fig. 8b correspond to the frontiers of the regions obtained with the Mean-Shift algorithm.

using wavelet-based multivariate models. This also confirms
the better performances achieved with these models in the
CBIR analysis in comparison to GLCM descriptors. These
observations are confirmed by the accuracy evaluation (Table
I) with higher accuracy indicators for the SIRVg0 and GGC
models than for SCM and GLCM descriptors. As noted
previously for the detection of vineyards, the computational
cost of the maximum likelihood classification with waveled-
based multivariate models is as expected significantly higher
than the one observed for the k-NN classifier with GLCM
descriptors.

C. Discussion

In both applications detailed above, at least one of the tested
wavelet-based multivariate models revealed higher classifica-
tion accuracies than the use of GLCM descriptors, a standard
approach for textural analysis in VHR optical remote sensing
data. It was however observed that the models achieving the
highest accuracy can be different depending on the context of
application. The SCM and GGC models were indeed more
accurate to detect vineyards while the SIRVg0 and GGC
models displayed better performances in the case of oyster
fields mapping. In a recent work [27], a similar study was
carried on the classification of mono-specific forest stands and
showed that the SIRVgauss model was the best choice for this

particular application. Each context of application has indeed
its own specificities in terms of size, frequency and anisotropy
of the textures to differentiate. The best model to be used can
thereby be different depending on these specificities. A CBIR
analysis carried on the learning database has proven to be a
good way to identify the most adequate model prior to the
classification.

Overall, this confirms the interest of the use of multivariate
models to characterize textures and the potentially richer
textural information captured through this modeling approach
in the wavelet domain. The proposed supervised classification
strategy relying on the use of a learning database composed
of texture-wise homogeneous patches or ROI and a pre-
segmentation of the image to classify also revealed to be an
appropriate procedure and achieved satisfactory classification
results in both applications. This strategy was applied by using
a DWT, this choice being motivated by the ability of the DWT
to produce decorrelated subbands. Nonetheless, any other
types of wavelet decompositions (stationary wavelet transform,
complex wavelet transform, steerable pyramids, etc.) could be
used. Besides, one major quality of the proposed strategy is
that only a few parameters need to be set. The only choices
to be made concern the type of wavelet decomposition and
the number of scales of this decomposition, as well as the
eventual parameters related to the segmentation algorithm.
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Once these options are set, the rest of the procedure is
straightforward and can be easily adapted to any kind of
texture-based classification problems.

It is also worth noting that texture features derived from
DWT wavelet subbands are specific to the orientation of each
subband and features are not in essence rotation invariant.
Therefore, two identical anisotropic textures only differing
by their main orientation could be considered as different or
dissimilar when using such features. This problem comes from
the similarity measure used between models as the distance is
measured between pairs of orientation specific subbands. In the
applications exposed above, the lack of rotation invariance was
compensated by using a fairly exhaustive learning database in
which all possible orientations of the textures are represented.
In other cases, this exhaustivity can be more difficult to reach.
In [27], a solution was proposed by applying a rotation to each
region of the learning database and to each region to classify
in order to force the main orientation to 0° before proceeding
with the feature extraction. This solution proved to be efficient
with a significant increase in classification accuracy.

Finally, we employed here a Mean-Shift algorithm to per-
form the pre-segmentation to identify homogeneous regions
in the image to classify. As it was observed in the two
presented applications, this algorithm has some drawbacks,
especially in narrow areas where regions of mixed textures
can be created. A pre-treatment filtering process could be used
prior to the segmentation to avoid these mixed texture regions
by applying for example anisotropic diffusion filters [57] or by
using morphological neighborhoods [58]. Besides, any other
types of segmentation algorithm could be used to produce a
pre-partition of the image.

V. CONCLUSION

Although wavelet-based probabilistic models gained in pop-
ularity in the image processing and computer vision commu-
nities in the recent years, they have not yet been extensively
explored for applications in VHR optical remote sensing data.
Here, we gathered evidence that this approach is also perfectly
suitable for the supervised classification of land covers in such
VHR optical data. Moreover, we proposed a complete strategy
to apply wavelet-based multivariate models in a supervised
classification procedure of textures in VHR panchromatic data.
This strategy relies on a learning texture database made of
texture patches or ROI and on a pre-partition of the image
to classify. Texture features are extracted from the learning
database and from the regions of the pre-partition by using
multivariate models (SCM, SIRVgauss, SIRVg0, GGC) to rep-
resent the distribution of observed local spatial dependencies in
wavelet subbands in a multi-scale and multi-orientation frame-
work. A CBIR analysis carried on the learning database is first
conducted to identify the most efficient models to retrieve
textures in the context of application. A classifier based on
a similarity measure or a likelihood criterion is next used to
produce classification results with the most performant models.
The applicability of this strategy was tested in two distinct
contexts. In both applications, the use of the proposed strategy
has enabled to achieve satisfactory classification results with

at least one of the tested multivariate models displaying higher
classification accuracies than the standard texture analysis
using GLCM descriptors. These results confirm the pertinence
of using multivariate modeling in the wavelet domain to
capture potentially complex texture patterns and improve the
classification of VHR optical remote sensing data. Moreover,
the classification is almost straightforward with only a few
parameters to be set. In terms of perspective, this strategy
and the use of multivariate models could also be tested in a
context of multi-sensor data fusion by combining the modeling
of dependencies between color bands in mutispectral data or
polarimetric bands in SAR data with the modeling of spatial
dependencies in panchromatic image.
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