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Abstract—In order to improve asset knowledge and avoid third
part damages during road works, the localization of gas pipes
in a non-destructive way has become a wide domain of research
during these last years. The Ground Penetrating Radar (GPR)
is used to detect buried gas pipes. However it does not directly
provide a 3D position but a reflection map also called B-scan
that the user must interpret. In order to facilitate the B-scan
interpretation, we propose to use a dictionary of theoretical pipe
signatures. One of the most popular method to compute the
coefficients is the sparse coding. Nevertheless, clutter which is
noticeable by its horizontal shape makes difficult to decompose
it into sparse coefficients with this dictionary. Then a low-rank
matrix constraint which models the clutter is applied in order
to decompose the useful signal into sparse coefficients in a blind
source separation framework. Our method has been applied to
simulated and real data acquired on a test area. The proposed
method presents satisfying qualitative and quantitative results.
Index Terms—Gas pipes localization, GPR, Dictionary, Convo-
lutional sparse coding, Nuclear norm, Blind source separation

I. INTRODUCTION

While roadworks and civil engineering works operate near
network pipes, an inaccurate mapping of pipe networks can
cause damages which lead to human and economical damages.
Precise location of buried gas networks in a non-destructive
manner becomes primordial for all network system operators.
In our work, we are interested in using the Ground Penetrating
Radar (GPR) technology to get the position of the gas pipes.
However this sensor does not provide a position in the three
dimensions but a reflection map called B-scan which offers a
high degree of freedom in result interpretation. Operators need
experience to understand this particular data. In order to help
the non-expert users of GPR to detect and find the position
of buried pipes we need a tool to enhance the signal from the
reflections on pipes. The ground penetrating radar has been
widely used in different applications like civil engineering,
geological study or glaciology [1]. This device is equipped
with a transmitting and receiving antenna with a large band
and a high frequency (from 100 MHz to 2 GHz) placed
few centimetres above soil surface. An electromagnetic wave
is sent in the underground which is backscattered when it
encounters a heterogeneity. The shape of the impulse signal
looks like a Ricker wavelet. Then the receiving antenna records
the backscattered wave at each position as function of time
(vertical axis (t)). This function is called an A-scan.

By moving the GPR, a collection of A-scans is recorded at
different positions known (horizontal axis (x)) thanks to an
odometer. This ensemble of A-scans forms a B-scan in which
each value corresponds to the amplitude of the backscattered
wave at a certain position of recording and time. On a B-scan,
the shape of the ensemble of echoes and their intensity inform
about the nature of the object. Thereby, an hyperbolic shape
means there is a point object, for instance a pipe or a rock.
On the other hand, a linear shape could be a layer boundary.
Therefore, to localize the pipes, we have to find hyperbolas
in the B-scan. But the many backscattered waves recorded by
the receiving antenna make the detection difficult.
In order to define the problem, let Y be an observed B-scan
which is assumed to be linearly composed of independent
items: s the useful signal; it results of all the echoes on pipes
or layer boundaries, cl clutter; it is caused by the coupling
between the antenna and the soil surface. It is recognized by its
horizontal shape. And n, noise modelled as a random process
realization. In a simplified formulation, Y is expressed as :

Y (x, t) = s(x, t) + cl(x, t) + n(x, t) (1)

Several studies addressed the problem of removing clutter
and noise in GPR data. Two distinct types of methods have
been studied to remove the clutter but both of us exploit
its horizontal shape characteristic. The first one models the
clutter and subtracts it from the B-scan. The simplest method
computes an averaged A-scan which is subtracted for each
A-scan of the B-scan [1]. Other more sophisticated methods
model the clutter by a linear combination of exponential
functions [2]. The second kind of methods employs filters to
remove clutter. The filter is computed in different domain, in
the frequency-wavenumber domain [3] or in curvelet domain
[4] for example. The drawback of both types of methods is
their impact on the hyperbola energy.
In order to denoise seismic data a new frame with hyperbolic
shape has been developed by [5]. The frame is built on three
parameters. Both parameters jointly modified the thickness and
shape of hyperbola. The last one influence the flattening of the
hyperbola top. These parameters also act on the position of
the hyperbola top. Our work has been inspired by the frame
of [5] to build a dictionary of theoretical pipe signatures.
Nevertheless, in our case, the atoms remain centred regardless
the parameter values.



The thickness, the shape and the flattening of the atom are
controlled by independent parameters. The close atom shape
with the B-scan items are exploited.
Dictionary are very popular in the signal and image pro-
cessing community. They are used for denoising [6], pattern
recognition [7] or blind source separation [8] applications.
However, because of the dictionary dimension is much more
important than the B-scan dimension, its use sets the coef-
ficient computation and reconstruction problem. A solution
consist in imposing a sparsity constraint. For example Greedy
algorithms as Matching Pursuit [9] or proximal methods as
FISTA algorithm [10] have been proposed.
In the subsequent part, the proposed dictionary is presented.
Then the proposed method is detailed. On one hand, we show
the reason that lead us to use an additional constraint with the
sparsity. On the other hand, the method and the algorithm
steps are explained. Finally, in order to assess the method
performances, qualitative and quantitative results on simulated
and real data are shown.

II. DICTIONARY

The dictionary is composed of hyperbolas (g(x)) which are
convolved with a ricker wavelet (r(t)) according to vertical
axis. Each atom is parametrized by k = {α, σ, f, a, x0, t0}
We define an atom hk(x, t) of the dictionary :

hk(x, t) = e−α.A(x,t).(r(t) ? δ(t− g(x))) (2)

r(t|σ) =
2√

3σ.π1/4
.(1− t2

σ2
).e−

t2

2σ2 (3)

g(x|x0, t0, a, f) = a.
√
f2 + (x− x0)2 + t0 − f.a (4)

Where δ(.) is the Dirac distribution. α and function A(x, t)
impact the atom energy attenuation. Especially, as we are
working in a finite space, A ensures a low energy of the
atom close to the boundaries. Parameter σ is the standard-
deviation of the Ricker wavelet and controls the thickness
of the atom. Parameter a affects the opening of hyperbolas
(spacing of the hyperbola branches) which is directly related
to the wave velocity in the soil. Then f also affects the shape of
the hyperbola but plays a role in the flattening of the hyperbola
top located at (x0,t0).
The term f.a in Equation 4 ensures that the atom is centred
according to vertical axis at t0.

(a) f = 50; a = 1.5; σ = 5 (b) f = 150; a = 2; σ = 5

Figure 1: Atom examples with different parameters

The atoms have the particularity to be absolutely integrable
(L1(R2)) and square integrable (L2(R2)) for α > 0. This
property is ensured by the attenuation term e−α.A(x,t).
Because the hyperbola shape mainly depends on the parameter
a, in practice to keep a reasonable dictionary size, α, f and σ
are set such that only one shape parameter and two position
parameters remain.
For ck, the coefficient maps related to an centred atom hk of a
dictionary composed of K atoms, the B-scan Y can be defined
by:

Y (x, t) =

K∑
k=1

∑
u,v

ck(u, v).hk(u− x, v − t) (5)

Y =

K∑
k=1

ck ? hk (6)

The coefficients ck have to be computed and analysed in order
to extract the useful information.

III. PROPOSED METHOD

A. Sparse Coding issue with B-scans
To use the atom centred dictionary and to work faster, convo-
lutional sparse coding is applied to compute the coefficients
ck and to ensure a satisfying reconstruction of B-scan Y . As
the sparse coding, this method constraints the solution (i.e ck)
to be sparse. In theory, the sparsity is applied thanks to the
l0-norm such that ‖x‖0 , Card{i, s.t. xi 6= 0} (with the car-
dinality of the set x denoted Card{x}). However the function
minimization with l0 constraint is not convex. To overcome
this problem the l1-norm is preferred; ‖x‖1 ,

∑
k |xk|

In a physical point of view this constraint makes sense because
we attend to find scarce reflections on point objects in a B-
scan. The formulation of the function minimization is given
by :

arg min
{c1,...,cK}

‖
K∑
k

hk ? ck − Y ‖22 + ε

K∑
k

‖ck‖1 (7)

ε controls the sparsity level. Higher ε value, sparser are the
coefficients.
To solve this problem several methods have been proposed.
In [11], the solution is computed by using the Alternating
Method of Multipliers (ADMM) algorithm. ADMM [12]
solves successively subproblems to minimize the augmented
Lagrangian function. In [13] and [14], an adapted version
of respectively FISTA and Matching Pursuit algorithm are
detailed with convolution operator.
For a satisfying reconstruction, an important amount of coef-
ficients are necessary to reconstruct some part of a B-scan,
especially the direct wave and the background namely the
clutter cl. It is mostly represented by a horizontal structure.
This remark is illustrated in Figure 2 where ADMM algorithm
has been computed for a simulated B-scan with a perfect
clutter and three hyperbolas. Figure 2 (b) shows the coefficient
repartition for a single ck. A lot of coefficients are needed
to decompose clutter with the hyperbola dictionary. Another
example is also presented in Figure 3 with a real B-scan.



(a) Simulated example (b) Coefficient repartition

Figure 2: Simulated data : Coefficient repartition for ck

(a) B-scan (b) Coefficient repartition

Figure 3: Real data : Coefficient repartition for ck

B. Blind Source Separation

In order to increase the sparsity of the coefficients ck, a second
constraint is imposed to our minimization problem. Because
of the horizontal shape of the clutter and its high correlation
with nearby A-scans, we assume that the clutter is a low
rank matrix. Then our B-scan is composed of a low rank
matrix L (of the same dimension as Y ) and few elements of
the hyperbola dictionary. Similarly to the previously exposed
method, ADMM algorithm is applied. The objective function
is given by:

minimize ‖L‖∗ + ε‖S‖1 (8)
s.t. Y =

∑
k hk ? ck + L

S = C

with C = (c1, c2, ..., cK), S is a matrix of the same dimension
as C, H = (h1, h2, ..., hK). The nuclear norm of the matrix
X : ‖X‖∗ ,

∑
i σi i.e the sum of the singular value σi of

the matrix X . The weighting constant ε controls the sparsity
level of the coefficients S and intrinsically the rank of the
matrix L. When ε decreases then we are in the similar case
of a convolutional sparse coding with ADMM.
The 2D discrete Fourier transform operator of X and its
inverse are given by X̂ = F(X) and X = F−1(X̂).
In order to lighten the next formulations, the operators P ,
P̂ and P̂H respectively the reconstruction in time domain,
in Fourier domain and the coefficient computation in Fourier
domain are defined such that PC =

∑
k hk ? ck,

PC ' F−1(P̂Ĉ), P̂Ĉ =
∑
k ĥk ◦ ĉk and P̂H Ŷ = ĤH ◦ Ŷ

(◦ is the Hadamard product and xH is the conjugate of x).
The stopping criteria is defined such that Derri+1 = erri+1

Y −
erriY < δ with erriY = PSi + Li − Y
The subsequent part describes the subproblem solutions of the
ADMM algorithm.

Firstly, the augmented Lagrangian is defined by :

Lρ(L, S,C, λy, λs) = ‖L‖∗ + ε‖S‖1+

〈λy,PC + L− Y 〉+
ρy
2
‖PC + L− Y ‖22+

〈λs, S − C〉+
ρs
2
‖S − C‖22 (9)

with ρ = {ρy, ρs} the Lagrangian constants.
A solution C̃ is found by minimization of the augmented
Lagrangian with the primal and dual variables {L, S, λy, λs}
set. In order to solve this problem without the convolution
operator we work in the Fourier domain.

C̃ = arg min
C

Lρ(C;L, S, λy, λs) (10)

= F−1(arg min
Ĉ

〈λ̂y, P̂Ĉ + L̂− Ŷ 〉+
ρy
2
‖P̂Ĉ + L̂− Ŷ ‖22

+〈λ̂s, Ŝ − Ĉ〉+
ρs
2
‖Ŝ − Ĉ‖22)

(ρyP̂ĤH +ρsI)Ĉ = P̂H(ρy(Ŷ − L̂)− λ̂y) + λ̂s+ρsŜ (11)

As in [11], the Sherman-Morrison formula is applied to the
one-rank inversion problem of Equation 11 :

(A+ UV T )−1 = A−1 − A−1UV TA−1

1 + V TA−1U
(12)

Let B̂ the second member in Equation 11 :
B̂ = P̂H(ρy(Ŷ − L̂)− λ̂y) + λ̂s + ρsŜ

C̃ = F−1
(

1

ρs
(B̂ − ρyP̂H(P̂B̂)

ρs + ρyP̂ĤH
)

)
(13)

From the augmented Lagrangian, a solution S̃ is defined as :

S̃ = arg min
S

Lρ(S;L,C, λy, λs) (14)

= ε‖S‖1 + 〈λs, S − C〉+
ρs
2
‖S − C‖22

= proxερ−1
s ‖.‖1(C − λs

ρs
) (15)

The solution S has the convenient form to be expressed from a
proximal operator. Let Tτ denote the shrinkage operator given
by Tτ (x) = sgn(x)max(|x| − τ, 0)

S̃ = Tε/ρs(C −
λs
ρs

) (16)

An analogue way is used to find an optimal solution for L.

L̃ = arg min
L

Lρ(L;S,C, λy, λs) (17)

= ‖L‖∗ + 〈λy,PC + L− Y 〉+
ρy
2
‖PC + L− Y ‖22

= proxρ−1
y ‖.‖∗(Y − PC − λy

ρy
) (18)

Here, the singular value thresholding operator SVT is used
[16]. SVT τ (X) = UTτ (Σ)V T , with X = UΣV T

L̃ = SVT 1/ρy (Y − PC − λy
ρy

) (19)



Finally, the Lagrange multipliers are updated:

λi+1
y = λiy + PCi+1 + Li+1 − Y (20)

λi+1
s = λis + Si+1 − Ci+1 (21)

input : B-scan Y , Dictionary H , sparse constraint ε,
Lagrange constants ρy , ρs and δ

output: S, L, PS
while Derri+1 < δ do

initializations; N elements in Y and K atoms;
λ0y = 0N ; λ0s = 0NK; C0 = 0NK; Derr0 > δ; i = 0;
L update;
[U,Σ, V ] = SV D(Y − PCi − λiy/ρy);
Li+1 = U.Tρ−1

y
(Σ).V T ;

C update;
B̂ = P̂H(ρy(Ŷ − L̂i+1)− λ̂iy) + λ̂is + ρsŜ

i;

Ci+1 = F−1
(

1
ρs

(B̂ − ρyP̂H(P̂B̂)

ρs+ρyP̂ĤH
)
)

;

S update;
Si+1 = Tε/ρs(Ci+1 − λis/ρs);
λy and λs update;
λi+1
y = λiy + ρy(PCi+1 + Li+1 − Y );
λi+1
s = λis + ρs(S

i+1 − Ci+1);
i = i+ 1

end
Algorithm 1: Low Rank and Sparse minimization

IV. RESULTS

In order to asses the performances of our method, the results
on simulated and real B-scans are presented.
Firstly we applied our method on simulated B-scans composed
of a perfect clutter and several hyperbolas where their positions
have been randomly chosen. The performances for different
numbers of hyperbolas are presented in Table I. The number
of coefficients (‖α‖0) used for the reconstruction are close to
the hyperbola number (Nhyp) with a low reconstruction error
on L and Y . Moreover the additional coefficients are located
in a close area to the solution.

Nhyp ε ‖α‖1 ‖α‖0 ‖L̃−L0‖F
‖L0‖F

‖Ỹ−Y ‖F
‖Y ‖F

3 0.9 0.659 9 0.005 0.007
10 0.7 1.877 10 0.001 0.010
20 0.5 3.166 26 0.002 0.009
50 0.4 5.7 69 0.008 0.0133

Table I: Results of the reconstruction error, the sparsity level
and error on the low rank matrix L and B-scan Y for different
values of ε on simulated B-scans

Figure 6 shows the relation between the sparsity level of S and
the rank of L according to the weighting constant ε. When the
sparsity level is far from the "real" sparsity, the algorithm does
not correctly recover the matrix L.
Figure 4 shows the results for a simulated B-scan. The
dictionary coupled with the low rank matrix constraint allow
an efficient clutter removal without impacting the hyperbolas.

Then our method has been compared with the convolutional
FISTA [13] and ADMM with l1 constraint [11] on real data.
An inverse operator has also been computed with a Conjugate
Gradient algorithm [15]. Thus a dictionary is used to compute
the coefficients and a second one for the reconstruction. The
last method directly offers a coefficient computation and a
reconstruction without any iteration. However the coefficients
are not sparse.
The results are presented in Table II for different weighting
constants. The red rows indicate the large reconstruction
errors. The methods GC, FISTA, ADMM l1 only present a low
reconstruction error when an important amount of coefficients
are used (i.e with a low ε). In comparison, our method shows
a sparser (‖α‖1 and ‖α‖0/N with N coefficients) and better
reconstruction (PSNR and ‖Ỹ − Y ‖F /‖Y ‖F ). However it
needs more iterations (Niter) to converge. Figure 5 shows the
blind source separation of a real B-scan. The useful signal
has been decomposed with few coefficients and has been well
separated from the clutter.

Algorithm ε PSNR ‖Ỹ−Y ‖F
‖Y ‖F

‖α‖1 ‖α‖0
N

(%) Niter

CG × 31.4 0.0409 × × ×

FISTA
0.0001 25.2 0.0822 127.0585 100 210
0.001 14.3 0.2888 89.4755 99.8 201
0.005 3.8 0.9667 2.0845 2.4 271

ADMM l1

0.0001 39.3 0.0162 136.4 100 10
0.001 21.6 0.1241 103.5 42.5 47
0.005 8.5 0.5607 47.3 4.0 177

ADMM l1 + l∗
0.01 50.6 0.0044 5.0960 2.44 136
0.1 42.2 0.0116 1.2667 0.14 485
0.2 39.3 0.0161 0.8676 0.06 783

Table II: Results of the reconstruction error and the sparsity
level for different methods on real data
The proposed method could be used to enhance hyperbola
signature or to automatically detect hyperbolas in B-scan
with a wise coefficient analysis. Indeed the low number of
required coefficients for the reconstruction will simplify the
coefficient selection from physical restriction for example.
Figure 7 illustrates the reconstruction from the ten highest
coefficients computed from the B-scan example in Figure 3
(a). We notice that these coefficients are mostly associated to
the main hyperbola from the B-scan.

V. CONCLUSION

In this work, we have presented an hyperbola dictionary for
GPR data application. This dictionary is used in a blind
source separation scheme to distinguish the clutter and a sparse
representation of the useful signal. The sparsity will simplify
the coefficient analysis in a further step for the automatic
hyperbola detection or hyperbola signature enhancement. We
have shown that our method allows a reconstruction with
sparser coefficients of the useful signal than presented meth-
ods and a clutter removal without impacting the hyperbolas.
However this method needs more iterations to converge and
the estimation of the clutter can be unsatisfactory for a wrong
estimation of ε. In future work, an automatic estimation of
ε will be studied and an efficient way to exploit the sparse
coefficients.



(a) Simulated B-scan (b) Coefficient sum (c) PS (d) L

Figure 4: Blind source separation results for a simulated B-scan; (b) Sum of coefficients ck at each position (x, t) ; (c)
Reconstruction from the coefficients S and the dictionary PS; (d) The low rank matrix L

(a) Real B-scan (b) Coefficient sum (c) PS (d) L

Figure 5: Blind source separation results for a real B-scan; (b) Sum of coefficients ck at each position (x, t) ; (c) Reconstruction
from the coefficients S and the dictionary PS; (d) The low rank matrix L
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Figure 6: According to the weighting constant ε ; in blue :
Evolution of the coefficient sparsity level of S (normalized to
1); in red : the reconstruction error on the low rank matrix L

Figure 7: Reconstruction with the ten highest coefficients
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