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A Dual-Band Dual-Circular Polarization
Antenna for Ka-Band Satellite Communications

Simon Mener, Raphael Gillard, Langis Roy

Abstract— A novel Ka-band dual-band dual circularly polarized
antenna array is presented in this letter. A dual-and antenna with
left-hand circular polarization for the Ka-band downlink
frequencies and right-hand circular polarization far the Ka-band
uplink frequencies is realized with compact annularing slots. By
applying the sequential rotation technique, a 2x2ubarray with
good performance is obtained. This paper describethe design
process and presents simulation and measurement réts.

Index Terms— Antenna array, dual circular polarization, dual
frequency, annular slot, sequential rotation techrgque.

I. INTRODUCTION

ecause satellite communication (SatCom) systemidpav

large capacities are in demand, new SatCom antersirag

the Ka-band are being investigated. This higheratjpe
frequency provides at the same time high data lnalts and
miniaturized antenna systems [1]. In terms of ohoiof
polarization, circularly polarized (CP) microstaptennas [2-5]
are most attractive because they can facilitatentation
between transmitter and receiver and are highlyabla for
mobility, weather penetration, and reduction of tipath
reflections [6]. The proposed antenna system thesedxhibits
dual band functionality with dual-circularly polaation
operation to provide an independent single bearh witarge
steering range in each band: uplink from 30 GH810GHz
with Right-Hand CP and downlink from 20 GHz to 2HG
with Left-Hand CP. Recent developments mainly uselpolic
antennas with mechanical beam coverage [7-10] dtilayer
configurations [11-12] with a significant cost. Mistrip
antennas are widely preferred especially when lgro8ize,
weight, compatibly with other integrated circuiaid costs are
of main concern. In recent years, only a few ingasions of
Ka-band SatCom antennas operating under circularipation
have been carried out. In [13], a multiple seriagfel
sequential rotation feeding network for 64 eleménfwesented
but only for a single band. Dual-CP operation haserb
demonstrated using a mechanical polarization sdiegror by
using the stacked patch technique [15].

In comparison to this design, as introduced in [l
proposed antenna is fabricated only on two layatseanploys
multiple annular slots to provide dual-band dual-@feration
in Ka-band with low profile, low return loss, velgw axial

ratio and narrow beam coverage of £30°.
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It uses sequential rotation to obtain a broad iraped and
axial-ratio bandwidth.

In Section Il, the measurement of miniaturized kng
elements using annular slots is presented and tad¢bdnd
dual-CP principle is explained. Section Il summaeas the
performance of experimental 2x2 subarrays with -thaad
dual-CP capability. Finally, in Section IV, condlss are
drawn.

Il.  EXPERIMENTAL VALIDATION OF MINIATURIZED ELEMENTS
FOR DUAL-BAND DUAL -CP

Printed slot antennas have attractive features acedpto
patch antennas: larger bandwidth, lower profile doder
conductor loss [6]. Moreover, they can easily paudwo
different operating frequency bands and CP radiafi@-22].
The proposed radiating element (Fig. 1) then ctsg$ two
miniaturized annular ring slots. The larger sloegtes at 20.5
GHz and is LH circularly polarized while the smallene
operates at 30.5 GHz and is RH circularly polariZeaich slot
is fed by 2 microstrip lines with phase quadraturerder to
produce CP. CP could also be obtained from a sifegldline
by adding stubs to the annular ring slot (as ir)[28 by using a
L-shape microstrip line (as in [24]). However, stwell-known
[6]-[25] that 2 feedlines improve the overall CRbwidth. The
chosen substrate is the moderately high permittiRbgers
TMM10i substrate i{=0.38mm,e,=9.8) supporting the metallic
ground plane (including the annular ring slots) ati
feedlines. It is glued with a 3M bonding film ordanm-thick
low-permittivity foam layer. The heiglit between the radiating
elements and the additional ground plane is opécthi 4mm
(cf. Fig. 1).

Both elements can be accommodated in a 7x7 hattice.
This corresponds to an array with X&nd 0.7, inter-element
spacing at 20 and 30 GHz respectively, thus allgwieam
scanning up to +60° and £30° for downlink and uglin
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Fig. 1. Proposed dual-band dual-CP antenna withaturnzed annular ring
slots in Ka-band. (a) Top view=7mm,R;=1.25mm,R,=0.95mm,R3=0.9mm,
Rs=0.6mm (b) 3D viewh=4mm.



Each slot element has first been optimized indiaiiyuwith
the HFSS commercial software package. Prototypes tieen
been fabricated and tested. They are shown in EigThe
experimental results of reflection coefficient, gaand axial
ratio against frequency or elevation anglare shown in Fig. 3-
5, respectively. Note that during the measurements,
absorbing layer is placed behind each antenna ppress
backward radiations and associated disturbances.
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(a)
Fig. 2. Pictures of the fabricated miniaturized alanring slot antennas in Ka-
band. (a) Back view of the 20 GHz-band prototy®. Kront view of the 20
GHz-band prototype. (c) Back view of the 30 GHzdbamototype. (d) Front
view of the 30 GHz-band prototype.
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Fig. 3. Simulated and measured reflection coefficief the miniaturized

annular slot antennas. (a) 20 GHz-band. (b) 30 Gim.
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Fig. 4. Simulated and measured gain of the minidrannular slot antennas.

(a) 20.5 GHz in the x-z plane. (b) 30.5 GHz in tkeplane.
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Fig. 5. Simulated and measured axial ratio of theiaturized annular slot

antennas. (a) 20.5 GHz in the x-z plane. (b) 3042 @& the x-z plane.

GHz bands for the downlink and uplink antenna respely.
The shift (uplink band) of the measured reflectamefficient
towards the lower frequency are attributed to fadifdn
imperfections and perturbations brought by the egctor. In
Fig. 4, the measured gain in each band agreeswiihllthe
simulated value (measured maximum gain in the tsidad
direction Gyaxis 1.2 dB and 1 dB for the downlink and uplink
antennas, respectively). Note that an additionaligd plane is
required to suppress backward radiations and tairlat higher
gain. The measured gain of the Tx element is ndiegause of
the small dynamic range of the test setup and édisoto the
perturbation by the connector. Fig. 5 shows thesueal and
simulated axial ratios. The measured results at@s@ood as
the simulated performanc&Rgn,=2.5dB andAR.s=4.1dB at
20.5 GHz and Ry,=1.4dB andARe=3.2dB at 30.5 GHz, in
the broadside direction.

In the next section, we demonstrate how this initia
performance may be improved at the array level gusin
sequential rotation.

Two 2x2 subarrays are now studied. These are fobyddur
annular ring slots arranged sequentially in origotaand in
phase to achieve radiation symmetry, to cancel siralde
higher-order modes and to obtain purer polarizafizé]. For
the sake of simplicity, 2 different subarrays viié considered
as shown in Fig. 6. In the first one, four slotsrking at 20
GHz are fed using sequential rotation and in tlveseé one, the
same process is applied to four slots working atGBz. Non
excited elements working in the other band are mislided to
account for possible mutual coupling. Both subasregn thus
be seen as specific sets of elements extracted &darger
interlaced array (as shown in Fig. 6).

FOUR-ELEMENT SUBARRAY MEASUREMENT

20GHz

Dual-band/ Dual-CP ¥
Subarray

2 entrelaced arry -

B @

O (@
®

Fig. 6. Dual-band/ Dual-CP concept: two interlag@days with appropriate
sequential rotation in Ka-band.

In Fig. 3, both the measured and simulated -10dB

reflection coefficient cover the [19.5-21.5] GHzdafR9-31]



To demonstrate the proposed concept, a prototypeach
subarray has been fabricated and tested. Theiurp&tare  The coupling between ports is lower than -19dB s&rine
shown in Figs. 7 and 8, respectively for the 20 didnd and entire bandwidth. Moreover, a very good reflectamefficient
30 GHz-band. is obtained for each port at the central frequency
(S14/S20/S39/S44<-16dB in the two frequency-bands). The large
difference between simulation and measurement islyndue
to the fabrication and assembly imperfections dedeffect of
the connector. The experimental radiation patterrcircular
polarization is plotted in Fig. 11 for both freq@gnbands
against elevation anglé Note that during the measurements,
an absorbing layer is placed behind each subarFay.
completeness, the axial ratio of both subarrayghdsvn in Fig.
12 against frequency for the broadside direction.

In Fig. 11, the measured gain in each band agre#iswith
the simulated result (measured maximum gain inbtieadside

@) ‘ (b)

Fig. 7. Pictures of the fabricated subarray comgose four elements in direction Gyax is 4 _dB and 5 d_B for the 20 GHz-and 30 C_-}HZ—
sequential rotation in the 20 GHz-band. (a) Baekwi(b) Front view. subarrays respectively). The improvement of thelardtio is

clearly demonstrated in the broadside direction: dkial ratio
bandwidths of 3 dB are better than 3GHz for botgfiency
bands. Beam coverage of £30° can thus be obtaioedhé
downlink and uplink frequencies.
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The simulated and experimental S-parameter resnés Fig. 11. Simulated and measured gain of the 2x2rsaip. (a) 20.5 GHz in the
presented in Figs 9 and 10 for the 20GHz-and 30 -GH¥Z plane. (b) 30.5 GHz in the x-z plane.
subarrays respectively.
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Fig. 9. Simulated and measured reflection coeffica# the 2x2 subarray
against frequency. (a) 20 GHz-band. (b) 30 GHz-band IV. CONCLUSION
. ] . A novel Ka-band dual-band dual-CP antenna array is
1 presented in this letter. Two interlaced arraysheasing an
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appropriate sequential rotation have been applednprove
the polarization purity and to generate a LHCPatalin on the
downlink frequencies and a RHCP radiation of thdinkp
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Fig. 10. Simulated and measured transmission ci&ffi of the 2x2 subarray (0.5 dB respectively) over a frequency band of 19522z and
against frequency. (a) 20 GHz-band. (b) 30 GHz-band 20-32 GHz
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