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Eigenvalues of tridiagonal pseudo-Toeplitz
matrices

Devadatta Kulkarni, Darrell Schmidt, Sze-Kai Tsui 

Department of Mathematical Sciences, Oakland University, Rochester, MI 48309 4485, USA

In this article we determine the eigenvalues of sequences of tridiagonal matrices that

contain a Toeplitz matrix in the upper left block.
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1. Introduction

Although Hermitian matrices are known to have real eigenvalues only, the
evaluation of these eigenvalues remains as misty as ever. For tridiagonal ma-
trices there are several known methods describing their eigenvalues such as
Gershgorin's theorem [5], Sturm sequences for Hermitian tridiagonal matrices
[1,4], etc. The eigenvalues of a tridiagonal Toeplitz matrix can be completely
determined [11]. Attempts have been made to resolve the eigenvalue problem for
matrices which are like tridiagonal Toeplitz matrices but not entirely Toeplitz
(see [2,3,12,13]). This paper falls in the same general direction of investigation.
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We study tridiagonal matrices which contain a Toeplitz matrix in the upper left
block. We call them pseudo-Toeplitz to make a distinction from all the matrices
studied before in [2,3,12], etc. The major feature of our treatment is the con-
nection between the characteristic polynomials of these tridiagonal pseudo-
Toeplitz matrices and the Chebyshev polynomials of the second kind, whereby
we can locate the eigenvalues that fall in the intervals determined by the roots of
some Chebyshev polynomials of the second kind. In other words, we use these
intervals derived from roots of some Chebyshev polynomial as a reference to
determine the eigenvalues of the original pseudo-Toplitz matrix. In fact, we are
able to determine the location of all eigenvalues of some tridiagonal pseudo-
Toeplitz matrices which have either all entries real with a nonnegative product
from each o�-diagonal pair or the entries on the main diagonal purely imagi-
nary with a negative product from each o�-diagonal pair (see Corollary 3.4). In
Section 2, we lay down a basic tool for ®nding the eigenvalues of tridiagonal
Toeplitz matrices, which is markedly di�erent from the traditional approach
used in [2,11,12]. In Section 3, we give a detailed account of the number of ei-
genvalues in each such interval whose end points are consecutive roots of a pair
of Chebyshev polynomials related to the given tridiagonal pseudo-Toeplitz
matrix. We also show that, for a sequence of (real) tridiagonal matrices with a
positive product from each pair of o�-diagonal entries, the eigenvalues of two
consecutive matrices in the sequence interlace (see Proposition 3.1). Further-
more, we discuss a lower bound for the number of real eigenvalues for tridi-
agonal pseudo-Toeplitz matrices of a ®xed dimension (see Theorem 3.6). In
Section 4, we demonstrate examples of tridiagonal pseudo-Toeplitz matrices for
which we can completely determine their real eigenvalues graphically.

These techniques have been also applied in in®nite dimensional program-
ming [10] and in numerical solutions of heat equations [3]. Standard references
for the Chebyshev polynomials are [6,8,9].

2. Eigenvalues of tridiagonal Toeplitz matrices

It is known that the eigenvalues of tridiagonal Toeplitz matrices can be
determined analytically. The method employs the boundary value di�erence
equation [11]. In this section, we provide a di�erent approach to the solution
which will be extended to determine eigenvalues of several more general ma-
trices in the later sections.

Let Tn�a; b; c� be an n� n tridiagonal matrix de®ned by

Tn�a; b; c� �

a c 0

b . .
. . .

.

. .
. . .

.
c

0 b a

26664
37775:
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When b � c � 1 we denote Tn�a; b; c� by Tn�a�. Tn�a; b; c� is the same matrix
denoted by T 0

n �a; b; c� in the later sections. We denote the characteristic poly-
nomial of Tn�a� by /n�a��k�, and it is related to the nth degree Chebyshev
polynomial of the second kind. Indeed, expanding det�Tn�a� ÿ kI� by the last
row, we have

/n�a��k� � �aÿ k�/nÿ1�a��k� ÿ /nÿ2�a��k� �1�

for n P 2, with /0�a��k� � 1;/1�a��k� � aÿ k. Substituting aÿ k � 2x, (1)
becomes

/n�a��x� � 2x/nÿ1�a��x� ÿ /nÿ2�a��x� �2�

for n P 2, with /0�a��x� � 1, /1�a��x� � 2x. Thus, /n�a��x� is the nth degree
Chebyshev polynomial of the second kind, denoted by Un. It is well-known
that

Un�x� � sin��n� 1� cosÿ1�x��
sin�cosÿ1 x� for jxj6 1;

and the roots of Un�x� are cos kp=�n� 1�� ��k � 1; 2; . . . ; n�. Thus, we have the
following proposition.

Proposition 2.1. The eigenvalues of Tn�a� are

aÿ 2 cos �kp=�n� 1�� for k � 1; 2; . . . ; n:

Next, we relate Tn�a; b; c� to Tn�a�. Note that

1

bc
p Tn�a; b; c� � Tn

a

bc
p ;

b

bc
p ;

c

bc
p

� �
;

and the eigenvalues of aTn�a; b; c� are just a times the eigenvalues of Tn�a; b; c�.
Thus, it su�ces to consider the characteristic polynomial
/n a= bc

p
; b= bc
p

; c= bc
pÿ �

of Tn a= bc
p

; b= bc
p

; c= bc
pÿ �

: As above, we can see
that /n a= bc

p
; b= bc
p

; c= bc
pÿ �

satis®es the same recurrence relation and initial
conditions as /n a= bc

pÿ �
:

/n�k� �
a

bc
p

�
ÿ k

�
/nÿ1�k� ÿ /nÿ2�k��n6 2�;

where /0�k� � 1 and /1�k� � a= b
p

cÿ k. Thus,
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/n
a

bc
p ;

b

bc
p ;

c

bc
p

� �
� /n

a

bc
p

� �
� Un:

From Proposition 2.1 we know that the eigenvalues for Tn a= bc
pÿ �

are
a= bc
p ÿ 2 cos �kp=�n� 1�� �k � 1; 2; . . . ; n�: Hence, we have the following re-

sult.

Theorem 2.2. The eigenvalues of Tn�a; b; c� are

aÿ 2 bc
p

cos �kp=�n� 1�� for k � 1; 2; . . . ; n:

3. Main results

In this section we study the eigenvalues of those tridiagonal matrices the
upper left block of which are Toeplitz matrices. That is, we consider

where

Tn�a; b; c� �

a c 0

b . .
. . .

.

. .
. . .

.
c

0 b a

26664
37775; Bk �

ak ckÿ1 0

bkÿ1
. .

. . .
.

. .
. . .

.
c1

0 b1 a1

26664
37775:

In the previous section we have determined the eigenvalues of Tn�a; b; c�
completely. Now we consider T k

n �a= bc
p

; b= bc
p

; c= bc
p �: We denote the char-

acteristic polynomials of T k
n �a= bc
p

; b= bc
p

; c= bc
p � and �1= bc

p �Bk by
/k

n�k� and wk�k�; k P 1, respectively, where /0
0�k� � 1, w0�k� � 1. Expanding

det T k
n �a= bc
p

; b= bc
p

; c= bc
p � ÿ k I

ÿ �
by the last k rows using the Laplace de-

velopment, we have for n P 1 and k P 1 that

/k
n�k� � /0

n�k�wk�k� ÿ
bkck

bc
/0

nÿ1�k�wkÿ1�k�: �3�

It follows from Eq. (2) in Section 2 that /0
n�x� is the nth degree Chebyshev

polynomial Un�x� of the second kind with
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a

bc
p ÿ k � 2x: �4�

If k is a root of (3) but not a common root of Unÿ1 and wk, then

Un�k�
Unÿ1�k� �

�bkck=bc�wkÿ1�k�
wk�k�

:

Let Un�x�=Unÿ1�x� � pn�x�, n P 1 and p0�x� � 1. Then

pn�x� � Un�x�
Unÿ1�x� �

2xUnÿ1 ÿ Unÿ2�x�
Unÿ1

� 2xÿ 1

pnÿ1�x� ; n P 1;

and

p0n�x� � 2� p0nÿ1�x�
p2

nÿ1�x�
� 2�

Xnÿ1

k 1

2

p2
nÿ1p2

nÿ2 . . . p2
nÿk

; n P 1;

� 2� 2

U 2
nÿ1

Xnÿ1

k 1

U 2
nÿ1ÿk: �5�

Thus, p0n�x� > 0 for all n P 1 and for all x in the domain of pn. Next we denote
for 16 j6 k,

gj�k� �
wjÿ1�k�bjcj=bc

wj�k�
:

We compare their graphs.
Let g1; . . . ; gnÿ1, be the zeros of Unÿ1 and n1; . . . ; nn be the zeros of Un. It is

known that ÿ1 < n1 < g1 < n2 < g2 < � � � < nnÿ1 < gnÿ1 < nn < 1. Also denote
g0 � n0 � ÿ1 and gn � nn�1 � 1. It follows from (5) that pn is strictly in-
creasing in each interval �gjÿ1; gj�, 16 j6 n. The graph of pn�x� is shown in
Fig. 1.

In order to describe the behavior of gj; 16 j6 k, we impose the following
conditions for the ensuing paragraphs through Corollary 3.4

aj

bc
p ;

a

bc
p are real and

bjcj

bc
P 0; 16 j6 k: �6�

For 26 j6 k, expanding the determinant that generates wj�k�, by the ®rst
row, we have

wj�k� �
aj

bc
p

�
ÿ k

�
wjÿ1�k� ÿ

bjÿ1cjÿ1

bc
wjÿ2�k�:
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It follows that

gj�k� �
�bjcj=bc�wjÿ1�k�

aj= bc
p ÿ k

ÿ �
wjÿ1�k� ÿ �bjÿ1cjÿ1=bc�wjÿ2�k�

� bjcj=bc

aj= bc
p ÿ k

ÿ �ÿ gjÿ1�k�
and

g0j�k� �
�bjcj=bc��1� g0jÿ1�k��
��aj=bcÿ k� ÿ gjÿ1�k��2

; 26 j6 k

g01�k� �
b1c1=bc

�a= bc
p ÿ k�2 : �7�

By induction, g0k�k� is nonnegative, and hence g0k�x�6 0 in view of (4). Due to
(6) the tridiagonal matrices �1= bc

p �Bk are similar to symmetric matrices and
hence they have exactly k real eigenvalues, counting multiplicities (see [7,
p. 174]).

Next, we look into the situation where the eigenvalues of �1= bc
p �Bk and the

eigenvalues of �1= bc
p �Bkÿ1 are interlacing. For this we prefer to denote

Ak �

a1 c1 0

b1
. .

. . .
.

. .
. . .

.
ckÿ1

0 bkÿ1 ak

26664
37775

as a sequence of tridiagonal matrices satisfying bjcj > 0; 16 j6 k ÿ 1, and aj,
16 j6 n, are real. In this notation we have the following proposition.

Fig. 1. y pn�x�.
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Proposition 3.1. The eigenvalues of Ak are distinct and interlace strictly with
eigenvalues of Akÿ1 for k P 2.

Proof. The proof is by induction on k. We denote the characteristic polynomial
of Ak by uk�k�. The root of u1�k� is a1 and

u2�k� � �kÿ a1��kÿ a2� ÿ b1c1:

It follows from b1c1 > 0 that u2�k� has one root in �max�a1; a2�;1� and one
root in �ÿ1;min�a1; a2��. Thus, the assertion holds for k � 2. Assume that the
assertion holds for order k ÿ 1. Let q1 < q2 < � � � < qkÿ1 be the eigenvalues of
Akÿ1, and f1; < � � � <; fkÿ2 be the eigenvalues of Akÿ2, where
q1 < f1 < q2 � � � < fnÿ2 < qnÿ1 by hypothesis. Now ukÿ2�k� � �ÿ1�kÿ2kkÿ2�
lower order terms so that ukÿ2�k� �

Qkÿ2
j 1 �fj ÿ k�. It follows that

�ÿ1�kÿ2�jukÿ2 > 0 on �fkÿ2ÿj; fkÿ1ÿj�; 06 j6 k ÿ 2, where f0 � ÿ1; fkÿ1 � 1.

Since qkÿ1ÿj 2 �fkÿ2ÿj; fkÿ1ÿj�; �ÿ1�k�jukÿ2�qkÿ1ÿj� > 0, 06 j6 k ÿ 2.

Expanding the determinant that generates uk�k� by the last row yields

uk�k� � �ak ÿ k�ukÿ1�k� ÿ bkÿ1ckÿ1ukÿ2�k�; k P 2: �8�

Then it follows from (8) and bkÿ1ckÿ1 > 0 that �ÿ1�k�juk�qkÿ1ÿj� < 0,
06 j6 k ÿ 2. So uk has a zero in �qjÿ1; qj�; 26 j6 k ÿ 1. It remains to show that
uk has a zero in each of �ÿ1; q1� and �qkÿ1;1�. Observe that �ÿ1�kuk�k� � kk�
lower terms, so �ÿ1�kuk�qkÿ1� < 0 < �ÿ1�kuk�k� for k su�ciently larger than
qnÿ1. Thus, uk has a zero in �qkÿ1;1�. Also uk�q1� < 0 < uk�k� for k su�ciently
smaller than q1. Thus, uk has a zero in �ÿ1; q1�. �

Now, let f16 � � � 6 fk be the roots of wk�x� and q16 � � � 6 qkÿ1 be the roots
of wkÿ1�x�. Then, it follows from Proposition 3.1 that
f1 < q1 < f2 < q2 < � � � < qkÿ1 < fk if bjcj=bc > 0 for 16 j6 k. However, if
bjcj � 0 for some 16 j6 k, then wk and wkÿ1 have common root(s). Let l be the
largest index, j, such that bjcj � 0. Then, expanding the determinant that yields
/k

n�k� by the last l rows according to the Laplace development, we have

/k
n�k� � ~/kÿl

n �k�wl�k�;
where ~/kÿl

n �k� is the characteristic polynomial of ~T k
n which is the n� �k ÿ l�

order square matrix in the upper left corner of T k
n . ~T k

n is of the form T k
n if we

reindex the entries in the lower right corner of ~T k
n . We also note that gk�x�, in its

reduced form, has exactly k ÿ l poles and k ÿ 1ÿ l zeros. The l real roots of
wl�x� are roots of /k

n�k�. In this decoupled case, we may focus our attention on
determining roots of ~/kÿl

n �k�. We also have an equation analogous to (3)

~/kÿl
n �k� � /0

n�k� ~wkÿl�k� ÿ
bkck

bc
/0

nÿ1�k� ~wkÿ1ÿl�k�;
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where for 06 j6 k ÿ lÿ 1, ~wkÿjÿl�k� is the characteristic polynomial of the
matrix �1= bc

p � ~Bkÿjÿl, where

~Bkÿjÿl �

akÿj ckÿjÿ1 0

bkÿjÿ1
. .

. . .
.

. .
. . .

.
cl�1

0 bl�1 al�1

266664
377775:

Thus gk, in its reduced form, is ~gkÿl � �bkck=bc� ~wkÿ1ÿl=
~wkÿl:

It follows from the intermediate value theorem that pn�x� and gk�x�, in its
reduced form, must agree with each other at least once in every interval
�gjÿ1; gj�; 16 j6 n; for pn�x� is strictly increasing and g0k�x� < 0 wherever gk�x�
is de®ned in �gjÿ1; gj�, 16 j6 n from (7). If a pole of gk�x�; fi; 16 i6 k ÿ l is not
a pole of pn�x�, then fi must fall in an interval �gjÿ1; gj�, for some j, 16 j6 n. If
fi; fi�1; . . . ; fi�r are the poles of gk�x� that lie in �gjÿ1; gj� for some j, then by the
intermediate value theorem, pn�x� and gk�x� must agree exactly once in each of
the following intervals, �gjÿi; fi�; �fi; fi�1�; . . . ; �fi�r; gj�, giving rise to r � 1 roots
of /k

n�k� in Eq. (3). In this notation we have the following theorem.

Theorem 3.2. Suppose that gk�x� is in the reduced form. Then
(i) for 16 j6 n, �gjÿ1; gj� contains one more root of /k

n�x� than poles of gk�x�;
(ii) /k

n�x� has n� k real roots. Furthermore, these roots are distinct, if
bjcj 6� 0; 16 j6 k.

Proof. (i) Follows immediately from the discussion before the theorem. For (ii) it
su�ces to show that ~/kÿl

n has n� �k ÿ l� real roots. We note that each common
pole of gk�x� and pn�x� gives rise to a root of /k

n�x� in Eq. (3). We may now
assume that ~gkÿl�x� and pn�x� have no common poles. Thus, it follows from part
(i) that the ~/kÿl

n �x� must have n� �k ÿ l� real roots. If bjcj 6� 0 for all 16 j6 k,
then it follows from Proposition 3.1 that /k

n�x� has n� k distinct real roots. �

A similar analysis of the location of roots of /k
n�x� can be done with regards

to intervals �njÿ1; nj�; 16 j6 n� 1, which is in the following theorem.

Theorem 3.3. Suppose bjcj 6� 0; 16 j6 k. Each �njÿ1; nj� for 16 j6 n� 1
contains one more root of /k

n�x� than zeros of gk�x�.

Proof. The graph of pn�x� in �njÿ1; nj� is depicted in Fig. 2.
If gk�x� has no zeros in �njÿ1; nj�, then it follows from Proposition 3.1 that

gk�x� can have at most one pole, ql; in �njÿ1nj�. In addition, if gk�x� has no pole
in �njÿ1nj�, then the graph of gk�x� is strictly decreasing on this interval, and
gk�x� > 0 or gk�x� < 0 for all x in �njÿ1; nj�, and hence gk�x� and pn�x� agree
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exactly once in �njÿ1; nj�. If there is exactly one pole, fi, of gk�x� such that
njÿ16 fi6 nj, then gk�x� is strictly decreasing and gk�x� < 0 in �njÿ1; fi�, and is
strictly decreasing and gk�x� > 0 in �fi; nj�. If njÿ16 fi < gjÿ1, gk�x� and pn�x�
agree exactly once in �fi; nj�. If gjÿ1 < fi6 nj, then gk�x� and pn�x� agree exactly
once in �njÿ1; fi�. If fi � gjÿ1, then gk�x� and pn�x� are not equal for all x in
�njÿ1; nj�. But, fi � gjÿ1 is a root of /k

n�x�.
In general, suppose gk�x� has r zeros, qi < qi�1 � � � < qi��rÿ1�, in �njÿ1; nj�.

Then pn�x� has no zeros in each of �nj; qi�; �qi; qi�1�; . . . ; �qi��rÿ1�; nj�. Re-
peating the argument in the previous paragraph with the roles of
pn�x� and gk�x� reversed, we conclude that there is exactly one root of /k

n�x� in
each of the intervals �nj; qi�; �qi; qi�1�; . . . ; �qi��rÿ1�; nj�, a total of r � 1
roots. �

Corollary 3.4. (i) If bjcj P 0; 16 j6 k, bc > 0 and a; aj are real, 16 j6 k, then
T k

n �a; b; c� has n� k real eigenvalues. Furthermore, these eigenvalues are distinct
if bjcj > 0; 16 j6 k.

(ii) If bc < 0, bjcj < 0, and a; aj are purely imaginary complex numbers for
16 j6 k, then T k

n �a; b; c� has n� k distinct eigenvalues.

Proof. If x0 is a root of /k
n�x�, then a= bc

p ÿ 2x0�� k0� is a root of /k
n�k�, and

thus aÿ 2 bc
p

x0 is an eigenvalue of T k
n �a; b; c�. If bjcj P 0; 16 j6 k,

bc > 0 and a; aj are real 16 j6 k, then condition (6) is satis®ed. If
bc < 0 and bjcj < 0, and a; aj are purely imaginary complex numbers for
16 j6 k, then condition (6) is also satis®ed. The result follows from Theorem
3.2. The eigenvalues of T k

n �a; b; c� are of the form aÿ 2 bc
p

xi, 16 i6 n6 k,
where the xi's are distinct real roots of /k

n�x�. �

Fig. 2. y pn�x�.
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In the next section we demonstrate examples of T k
n �a; b; c� in which the ei-

genvalues can be determined completely by graphing in the case of k � 1 or 2.
Next, we will determine a lower bound for the number of real eigenvalues of

T k
n �a; b; c�. For the rest of this section, we assume that bc > 0; n P k, and

a; aj; bj; cj, 16 j6 k, are real. With these assumptions, all entries of
T k

n �a= bc
p

; b= bc
p

; c= bc
p � and T k

n �a; b; c� are real and bc � 1. In order to fa-
cilitate an induction argument on k, we rename the entries in T k

n �a; b; c� by
reversing fa1; . . . ; akg, fb1; . . . ; bkg, fc1; . . . ; ckg as fak; . . . ; a1g, fbk; . . . ; b1g,
fck; . . . ; c1g, respectively, and thereby write

Expanding the determinant for /k
n�k� by the last row we have

/k
n�k� � �ak ÿ k�/kÿ1

n �k� ÿ bkck/
kÿ2
n �k�; k P 2: �9�

In case k � 1, we have

/1
n�x� � �a1 ÿ a� 2x�/0

n�x� ÿ b1c1/
0
nÿ1�x�

with aÿ k � 2x. Thus, by Eq. (2), we have

/1
n�x� � �a1 ÿ a�Un�x� � 2xUn�x� ÿ b1c1Unÿ1�x�;
� �a1 ÿ a�Un�x� � Un�1�x� � �1ÿ b1c1�Unÿ1�x�:

Thus, /1
n�x� is a linear combination of Un�1�x�, Un�x� and Unÿ1�x�. In general,

we show that /k
n�x� is a linear combination of Un�k�x�, Un�kÿ1�x�; . . . ;Un�x�,

Unÿ1�x�; . . . ;Unÿk�x� by induction in k. Suppose that /1
n�x�; . . . ;/kÿ1

n �x� satisfy
the above assertion. From (9) we have

/k
n�x� � �ak ÿ a� 2x�/kÿ1

n �x� ÿ bkck/
kÿ2
n �x�;

and so

/k
n�x� � �ak ÿ a�/kÿ1

n �x� ÿ bkck/
kÿ2
n �x� � 2x/kÿ1

n �x�: �10�
By the induction hypothesis, the ®rst two terms on the right side of (10) are
linear combinations of Un�kÿ1�x�; . . . ;Unÿk�1�x�. The last term on the right side
of (10) is of the formX

nÿk�16 j6 n�kÿ1

aj2xUj�x�:
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By (2), 2xUj�x� � Uj�1�x� � Ujÿ1�x� and henceX
j

aj2xUj�x� �
X

j

aj�Uj�1�x� � Ujÿ1�x�� �
X

nÿk6 j6 n�k

bjUj�x�

with bj real. Thus, /k
n�x� is a linear combination of Un�k�x�; . . . ;Unÿk�x�. We

summarize this result in a proposition.

Proposition 3.5. /k
n�x� is a linear combination of Un�k�x�, Un�kÿ1�x�; . . . ;Unÿk�x�

with real coefficients.

Theorem 3.6. /k
n�k� has at least nÿ k real roots located in �aÿ 2; a� 2�.

Proof. Suppose that /k
n�x� has fewer than nÿ k real roots in �ÿ1; 1�, say

f16 f26 � � � 6 fm, m < nÿ k. Consider a polynomial f �x� � Qm
j 1�xÿ fj� of

degree m on �ÿ1; 1�. f �x� can be written as a linear combination of
U0�x�;U1�x�; . . . ;Um�x�, i.e., f �x� �Pm

j 0 ajUj�x�. Next consider the weighted
inner product

h/k
n�x�; f �x�i �

Z 1

ÿ1

�1ÿ x2�ÿ1=2/k
n�x�f �x� dx;

which is nonzero since /k
n�x� and f �x� are of either the same sign or the op-

posite sign over each of the following intervals �ÿ1; f1�; �f1; f2�; . . . ; �fm; 1�. On
the other hand, it follows from Proposition 3.5 that

/k
n�x� �

X
nÿk6 j6 n�k

bjUj�x�

and hence

/k
n; f


 � � X
nÿk6 j6 n�k

bjUj�x�;
Xm

j 0

ajUj�x�
* +

� 0; m < nÿ k;

a contradiction since the polynomials uj�x� are orthogonal with respect to this
inner product. Hence, /k

n�x� has at least nÿ k real roots in �ÿ1; 1�, and
therefore, /k

n�k� has at least nÿ k real roots in �aÿ 2; a� 2�. �

4. Examples

For the sake of simplicity, we require bc > 0 in this section.
We study the eigenvalues of a matrix

11



which corresponds to the case of k � 1.
By examining the roots of the characteristic polynomial of

�1= bc
p �T 1

n �a; b; c� and using the substitution a= bc
p ÿ k � 2x, we get from (3)

that, for n P 1, the roots x of /k
n�a��x� satisfy the equation

bc�e1 � 2x�Un�x� ÿ b1c1Unÿ1�x� � 0; �11�

and if x is not a common root of Unÿ1�x� and e1 � 2x, then

Un�x�
Unÿ1�x� �

b1c1

bc�e1 � 2x� ; �12�

where e1 � �a1 ÿ a�= bc
p

and Un�x� denotes the nth degree Chebyshev poly-
nomial of the second kind. We have seen in Corollary 3.4 that if
b1c1 > 0 and bc > 0, T 1

n �a; b; c� has n� 1 real distinct eigenvalues, obtained by
studying the intersection of the graphs

g1�x� � b1c1=bc�e1 � 2x� with pn�x� � Un�x�=Unÿ1�x�

in the xy-plane. By looking at the graph of y � g1�x�, we can determine the
location of eigenvalues of T 1

n �a; b; c� precisely.
Let g0 < n1 < g1 < n2 < � � � < giÿ1 < ni < gi < � � � < gnÿ1 < nn < gn where

g0 � ÿ1, gn � 1 and n1; n2; . . . ; nn are the roots of Un�x� and g1; g2; . . . ; gnÿ1

are the roots of Unÿ1�x�. If bc > 0 and �aÿ a1�=2 bc
p

coincides with one of the
gi's, it is a root of (11). Otherwise, we call the interval �giÿ1; gi� the distinguished
interval if giÿ1 < �aÿ a1�=2 bc

p
< gi. With this notation we have the following

result.

Theorem 4.1. If bc > 0 and giÿ1 < �aÿ a1�=2 bc
p

< gi for some i, there is ex-
actly one root of (12) in each of the nÿ 1 intervals �gjÿ1; gj�
where j 6� i; 16 j6 n. If b1c1 > 0, then there are precisely two additional roots
of (12), exactly one lying in each of the intervals

giÿ1;
aÿ a1

2 bc
p

� �
and

aÿ a1

2 bc
p ; gi

� �
:

If b1c1 < 0, then there may be zero, one or two additional roots of (12) in the
interval (giÿ1; gi).

12



Proof. Let d1 and d2 be the parts of the graph of g1�x� for x < ÿe1=2 and for
x > e1=2, respectively. We observe that if giÿ1 < ÿe1=2 < gi, from Fig. 1, we see
that d1 meets each component of the graph y � Un�x�=Unÿ1�x� once in the iÿ 2
intervals on the left of �giÿ1; g1�, and d2 meets each component in nÿ i� 1
intervals once on the right of �giÿ1; g1�, producing nÿ 1 roots of (12). This
holds, if b1c1 > 0, then y � g1�x� � b1c1= bc

p �e1 � 2x� is decreasing on each
interval �ÿ1;ÿe1=2� and ÿe1=2;1� � as depicted in Fig. 3; or if b1c16 0. Now
if b1c1 > 0, the component of the graph of y � Un�x�=Unÿ1�x� in the distin-
guished interval, �giÿ1; gi�, meets both d1 and d2, and we get two additional
roots of (12) (see Fig. 1 along with Fig. 3). If b1c1 < 0, the graph of y � g1�x� is
increasing on ÿ1;ÿe1=2� � and on ÿe1=2;1� �. With bc; a and a1 ®xed,
b1 and c1 can be chosen so that b1c1 < 0 and each of the three illustrations in
Fig. 4 occurs. �

Now we study the eigenvalues of a matrix

which is the case k � 2.
By examining the roots of the characteristic polynomial of

�1= bc
p �T 2

n �a; b; c� and using the substitution a= bc
p ÿ k � 2x, we get from (3),

for n P 1,

Fig. 3. y g1�x�.
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bc�4x2 � �e1 � e2�2x� e1e2 ÿ d�Un�x� ÿ b2c2�e1 � 2x�Unÿ1�x� � 0: �13�
If x is not a common root of factors in two summands,

Un�x�
Unÿ1�x� �

b2c2�e1 � 2x�
bc�4x2 � �e1 � e2�2x� e1e2 ÿ d� ; �14�

where

a1 ÿ a

bc
p � e1;

a2 ÿ a

bc
p � e2;

b1c1

bc
� d

and Un�x� denotes the nth degree Chebyshev polynomial of the second kind.
We have seen in Corollary 3.4, that if b2c2 > 0, b1c1 > 0 and bc > 0,
T 2

n �a; b; c� has n� 2 real distinct eigenvalues.
With the help of the graph of

y � g2�x� � b2c2�e1 � 2x�
bc�4x2 � �e1 � e2�2x� e1e2 ÿ d� ;

we can determine the locations of roots of (14). Let
g0 < n1 < g1 < � � � < giÿ1 < ni < gi < � � � < gnÿ1 < nn < gn, where g0 � ÿ1,
gn � 1 and n1; n2; . . . ; nn are the roots of Un�k� and g1; g2; . . . ; gnÿ1 are the
roots of Unÿ1�k�. We set

Fig. 4. Intersections when b1c1 < 0:
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h1 �
ÿ�e1 � e2� ÿ �e1 ÿ e2�2 � 4d

q
4

;

h2 �
ÿ�e1 � e2� � �e1 ÿ e2�2 � 4d

q
4

and

D � �e1 ÿ e2�2 � 4d:

Note that x � h1 and x � h2 are vertical asymptotes of y � g2�x� if D P 0. If
DP 0 and h1 or h2 is a root of Unÿ1�x�, it is a root of (13); otherwise, let us
denote by J1 and J2 the intervals to which h1 and h2 belong respectively,
amongst intervals �giÿ1; gi� for i � 1; 2; . . . ; n. In this notation, we have the
following result.

Fig. 5. g2�x� b2c2�e1 � 2x�
bc�4x2 � �e1 � e2�2x� e1e2 d�.
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 Theorem 4.2. If D < 0, the Eq. (14) has n real roots, at least one lying in each 
interval �gjÿ1; gj� for j � 1; 2; . . . ; n.

Proof. The result follows from looking at the graphs given in Fig. 5 comparing
them with the graph of y � Un�x�=Unÿ1�x� in Fig. 1. �

Theorem 4.3. Suppose D > 0, and h1; h2 are not roots of Unÿ1�x�.
(i) Then Eq. (15) has at least one real root in each interval �gjÿ1; gj�, for

16 j6 n, which is not distinguished, accounting for at least nÿ 2 or nÿ 1 roots
of (14) depending on whether J1 6� J2 or J1 � J2.

(ii) If b2c2 > 0, b1c1 > 0, then there are exactly n� 2 distinct real roots of
(14) and each nondistinguished interval �giÿ1; gj�; 16 i6 n, contains exact-
ly one root of (14). If b2c2 > 0, b1c1 < 0, then there are at least n real roots
of (14).

(iii) If b2c2 < 0 and J1 6� J2, then there are at least n real roots of (14) when
b1c1 < 0, and at least nÿ 2 real roots of (14), when b1c1 > 0.

Fig. 6. y g2�x�;D > 0.
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Proof. (i) Fig. 6 depicts the graph of y � g2�x� for four cases. From Figs. 1 and
6, it can be seen that g2�x� and pn�x� have at least one intersection in any given
nondistinguished interval �gjÿ1; gj�, for some 16 j6 n, for x � gjÿ1, and x � gj

are vertical asymptotes of pn�x�, and the x-axis is a horizontal asymptote of
g2�x�.

(ii) Suppose b2c2 > 0 and b1c1 > 0. Then g02�x� < 0 for all x 6� h1; h2. If
J1 6� J2, then each Jj; j contains two roots accounting for all
2� 2� �nÿ 2� � n� 2 roots using (i). If r1 � J2, then J1 contains three roots
accounting for all 3� �nÿ 1� � n� 2 roots using (i). In either case, all roots of
(14) are accounted for, and thus all nondistinguished intervals contain exactly
one root of (14) again. Suppose b2c2 > 0 and b1c1 > 0 and b1c1 < 0. The dis-
tinguished interval J1 or J2 that contains h2 contain two roots (Fig. 6). If
J1 6� J2, this interval contains at least two roots of (14) accounting for
2� �nÿ 2� � n roots, using (i). If J1 � J2, J1 contains at least one root of (14)
in J1 \ �h1;1� accounting for 1� �nÿ 1� � n roots, by (i) again.

(iii) The number of real roots is at least nÿ 2 by Theorem 3.6. In addition, if
b2c2 < 0, b1c1 < 0 and J1 6� J2, then it can be seen from Fig. 6 that the dis-
tinguished interval that contains h1 necessarily contains two roots of (14) ac-
counting for 2� �nÿ 2� � n roots. Finally, if J1 � J2, then one root of (14) is
guaranteed in J1 \ �ÿ1; h1� of (14), accounting for 1� �nÿ 1� � n roots. �

Theorem 4.4. If D � 0, then there are at least n distinct real roots of �13�.

Proof. The graph of g2�x� is given in Fig. 7, where x � h1 is the vertical as-
ymptote of g2�x�.

If D � 0, then c1b1 < 0. If h1 does not lie in the interval �gjÿ1; gj�; 16 j6 n,
then Eq. (14) has at least one root in �gjÿ1; gj�. If h1 2 �gjÿ1; gj�, it can be seen
easily from Fig. 7 that only one root is guaranteed in any open interval
�gjÿ1; gj� that contains h1. Note that if h1 coincides with gj, then one of the
intervals �gjÿ1; gj� and �gj; gj�1� necessarily contains a root of (14) while the
other might not contain a root. In this case, h1 is a root of (13). �

Fig. 7. y g2�x�;D 0.
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Remark 4.5. The positions of the real roots discussed in Theorems (4.2) (4.4)
can be determined completely by the graphs of pn�x� and g2�x�.
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