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We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of
equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional
quasiparticles between opposite edge states, thus acting as a beam splitter in the framework of the electron
quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning
at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in
experiments, represent the cleanest states for heat transport since excess heat and mixed shot noise both vanish
only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens
in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional
physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations
to the overlap of Lorentzian wave packets. Even though mixed and heat noise have nonlinear dependence on the
voltage bias, and despite the noninteger power-law behavior arising from the fractional quantum Hall physics,
an arbitrary superposition of levitons always generates minimal excitation states.

DOI: 10.1103/PhysRevB.95.245415

I. INTRODUCTION

The emerging field of electron quantum optics aims at
manipulating electrons one by one in ballistic, coherent
conductors [1]. In this way it is possible to reproduce
quantum-optical experiments and setups in solid-state devices,
using fermionic degrees of freedom (electrons in mesoscopic
systems) instead of bosonic ones (photons in waveguides
and optical cavities). For this purpose, a huge effort was
committed towards the realization of single-electron sources,
which clearly represent a crucial building block to perform
any quantum-optical experiment in electronic systems. The
first proposal to extract a single electron out of the filled Fermi
sea was theoretically discussed by Büttiker and collaborators
and is known as the mesoscopic capacitor [2,3]. It consists
of a quantum dot connected to a two-dimensional electron gas
through a quantum point contact (QPC), where a periodic drive
of the energy levels of the dot leads to the alternate injection
of an electron and a hole into the system for each period of the
drive [4,5]. An equally effective yet conceptually simpler idea
to conceive single-electron excitations was discussed by Levi-
tov and co-workers, who showed how to excite a single electron
above the Fermi sea applying well-defined voltage pulses
to a quantum conductor [6–8]. While a generic voltage drive
would generate an enormous amount of particle-hole pairs in
the conductor, a Lorentzian drive carrying an integer amount
of electrons per period produces particlelike excitations only.
Such single-electron excitations are now dubbed levitons.
Although challenging, the idea of voltage pulse generation
proved to be simpler than the mesoscopic capacitor as it
does not involve delicate nanolithography, thus drastically
simplifying the fabrication process of the single-electron
gun. Hanbury-Brown and Twiss partitioning experiments and
Hong-Ou-Mandel interferometers with single-electron sources
were experimentally reported using both the mesoscopic
capacitor and levitons [9–11]. Several proposal have been

formulated to use levitons as flying qubits for the realization
of quantum logic gates [12], as a source of entanglement
in Mach-Zehnder interferometers [13–15], or to conceive
zero-energy excitation carrying half the electron charge [16].
Quantum tomography protocols for electron states were also
theoretically developed [17,18] and implemented using levi-
tons as a benchmark quantum state [19]. Moreover, in a recent
work it was shown that conditions for minimal excitations
are unaffected in the fractional quantum Hall (FQH) regime
[20]. Here, the notion of leviton was extended to interacting
systems of the Laughlin sequence, and it was demonstrated
that Lorentzian pulses carrying integer charge represent the
cleanest voltage drive despite the fundamental carriers being
quasiparticles with fractional charge and statistics [21–24].

Despite several challenging and fascinating problems con-
cerning charge transport properties, electric charge is far from
being the only interesting degree of freedom we should look
at in the framework of electron quantum optics. Energy, for in-
stance, can be coherently transmitted over very long distances
along the edge of quantum Hall systems, as was experimentally
proved by Granger et al. [25]. This observation is of particular
interest, as typical dimensions of chips and transistors are
rapidly getting smaller and smaller due to the great technolog-
ical advance during the last decades. Indeed, the problem of
heat conduction and manipulation at the nanoscale has become
more actual than ever [26], as demonstrated by great recent
progress in the field of quantum thermodynamics. Topics
such as quantum fluctuation-dissipation theorems [27–31],
energy exchanges in open quantum systems [32,33], energy
dynamics and pumping at the quantum level [34–38],
coherent caloritronics [39,40], and thermoelectric phenomena
[41–43] have all been extensively investigated, in an attempt
to extend the known concepts of thermodynamics to the
quantum realm. In this context, a particular emphasis has
been focused on the role of quantum Hall edge states both
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from the theoretical [44–49] and experimental points of view
[25,50–54].

A natural question immediately arises when one considers
energy dynamics in electron quantum optics, namely, what
kind of voltage drive gives rise to minimal excitation states
for heat transport in mesoscopic conductors. This is the
fundamental question we try to answer in this paper. To
this end, we study heat conduction along the topologically
protected chiral edge states of the quantum Hall effect. We
analyze heat current fluctuations as well as mixed charge-heat
correlations [55,56] when periodic voltage pulses are sent to
the conductor and partitioned off a QPC [11]. Starting from
the dc regime of the voltage drive, where simple relations
between noises and currents can be derived in the spirit of
the celebrated Schottky’s formula [57,58], we introduce the
excess signals for charge, heat, and mixed fluctuations, which
basically measure the difference between the zero-frequency
noises in an ac-driven system and their respective reference
signals in the dc configuration. The vanishing of excess heat
and mixed noise is thus used to flag the occurrence of a
minimal excitation state for heat transport in the quantum
Hall regime. With this powerful tool we demonstrate that
minimal noise states for heat transport can be achieved only
when the voltage drive takes the form of Lorentzian pulses
carrying an integer multiple of the electron charge, i.e., when
levitons are injected into the quantum Hall edge states. We
study this problem both in the integer regime and in the FQH
regime, where strong interactions give rise to the fractional
properties of quasiparticle excitations. Our results show a
striking robustness against interactions since integer levitons
still represent minimal excitation states despite the highly
nonlinear physics occurring at the QPC due to the peculiar
collective excitations of the FQH state.

Having recognized levitons as the fundamental building
block for heat transport, we then turn to the second central
issue of this paper, which deals with the robustness of
multiple overlapping Lorentzian pulses as minimal excitation
states. Indeed, Levitov and collaborators demonstrated that
N levitons traveling through a quantum conductor with
transmission T < 1 represent N independent attempts to pass
the barrier, with the total noise not affected by the overlap
between their wave packets. This is no more guaranteed when
we look for quantities which, unlike the charge current and
noise, have a nonlinear dependence on the voltage bias. Two
types of nonlinearities are considered in this work. The first one
comes from the mixed and heat shot noise, whose behaviors are
∼V 2(t) and ∼V 3(t), respectively, in Fermi liquid systems. The
second one is a natural consequence of FQH physics, which
gives rise to exotic power laws with noninteger exponents. We
show that, while currents and noises are sensitive to the actual
number of particles sent to the QPC, excess signals always
vanish for arbitrary superposition of integer levitons. One then
concludes that levitons show a remarkable stability even with
regard to heat transport properties, combined with the equally
surprising robustness in the strongly correlated FQH liquid.
This provides further evidence of the uniqueness of the leviton
state in the quantum Hall regime.

The content of the paper is organized in the following
way. The model for the FQH bar in presence of a periodic
voltage drive is presented in Sec. II, followed by the evaluation

of expectation values for noises and currents in Sec. III.
Excess signals are then introduced in Sec. IV, where results
concerning their vanishing for quantized Lorentizan voltage
pulses are also presented. Finally, we analyze the problem of
multiple levitons in Sec. V, before drawing our conclusions in
Sec. VI. Three appendixes are devoted to the technical details
of the calculations.

II. MODEL

We consider a quantum Hall system with filling factor ν =
1/(2n + 1), n ∈ N. The special case n = 0 corresponds to the
integer quantum Hall regime at ν = 1, where the single chiral
state on each edge is well described by a one-dimensional
Fermi liquid theory. Conversely, values n > 0 describe a
fractional system in the Laughlin sequence [21], with still
one chiral mode per edge. The free Hamiltonian modeling
right- and left-moving states on opposite edges is H0 =
HR + HL with [59]

HR/L = v

4π

∫
dx[∂xφR/L(x)]2, (1)

where φR/L(x) are bosonic fields satisfying
[φR/L(x),φR/L(y)] = ±iπ sign(x − y). In Eq. (1) and
throughout the rest of the paper we set h̄ = 1. The
parameter v is the propagation velocity for the chiral edge
states, meaning that free bosonic fields evolve in time as
φR/L(x,t) = φR/L(x ∓ vt,0). One can relate the bosonic
description to creation and annihilation of quasiparticles
through bosonization identities [60,61]

ψR/L(x) = fR/L√
2πa

e±ikFxe−i
√

νφR/L(x), (2)

where the field ψ represents annihilation of a quasiparticle
with fractional charge −e∗ = −νe (e > 0). The parameter a

in Eq. (2) is a short-distance cutoff and fR/L are the so-called
Klein factors. They will be omitted in the rest of the paper, as
they do not affect our calculations. In the bosonic formalism,
quasiparticle density operators are given by

ρR/L(x) = ∓
√

ν

2π
∂xφR/L(x). (3)

Quasiparticle tunneling occurs at x = 0 due to the presence
of a QPC, schematically depicted in Fig. 1. This is modeled
through the tunneling Hamiltonian

Ht = �eie∗ ∫ t

0 V (t ′)dt ′ψ
†
R(0,t)ψL(0,t) + H.c., (4)

with � the constant tunneling strength. Here, the phase
eie∗ ∫ t

0 V (t ′)dt ′ takes into account the presence of a periodic
voltage bias V (t) = Vdc + Vac(t) in terminal 1 (see Fig. 1),
where Vdc is a time-independent dc component and Vac(t)
is a pure periodic ac signal, i.e.,

∫ T

0 Vac(t ′)dt ′ = 0 with
T = 2π/ω the period of the drive. This results in a phase
shift of ψR(0,t), as can be inferred by solving the equation of
motion for the bosonic field subjected to an additional voltage
drive (see Appendix A). The periodic phase e−iϕ(t), with
ϕ(t) = e∗ ∫ t

0 Vac(t ′)dt ′, will be conveniently handled through
the Fourier series e−iϕ(t) = ∑+∞

l=−∞ ple
−ilωt , with coefficients
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FIG. 1. Fractional quantum Hall liquid in a four-terminal setup.
Two gate voltages create a quantum point contact at x = 0, allowing
for tunneling between opposite edges. A periodic bias V (t) is applied
to contact 1, while contacts 3 and 4 are grounded. Backscattered
currents and their fluctuations are detected in contact 2.

pl given by

pl =
∫ T

0

dt

T
eilωt e−iϕ(t). (5)

Each coefficient pl represents the probability amplitude for
an electron to emit or absorb l energy quanta from the
electromagnetic field [11]. Details of the calculation of Eq. (5)
for the voltage drives considered in this work are given in
Appendix B.

In the following, we will discuss charge and heat current
fluctuations as a function of the total charge q injected during
one period of the drive, in units of the elementary charge e.
For a FQH edge state with conductance G = ν e2

2π
this reads

q = 1

e

∫ T

0
GV (t ′)dt ′ = e∗

ω
Vdc. (6)

III. ZERO-FREQUENCY HEAT AND MIXED NOISE

Operators for charge and heat currents backscattered off the
barrier and detected in terminal 2 are defined as [62]

JC(t) = e∗ṄL(t), (7a)

JQ(t) = ḢL(t) − μṄL(t), (7b)

where NL(t) = ∫
dx ρL(x,t) is the number of quasiparticles

in the left-moving edge, μ = vkF is the chemical potential in
contact 2, and ḢL follows from Eq. (1). Our focus will be on
the zero-frequency component of the power spectra

Sij = 2
∫ T

0

dt

T

∫ +∞

−∞
dt ′〈�Ji(t)�Jj (t ′)〉, (8)

with i,j = {C,Q} and the operator �Ji(t) = Ji(t) − 〈Ji(t)〉
describing charge and heat current fluctuations. We will use
the shorthand notation SC = SCC for the charge shot noise,
SX = SCQ for the mixed correlator, and SQ = SQQ for the
heat noise.

We resort to the Keldysh nonequilibrium formalism [63,64]
for the calculation of expectation values, whose details are
reported in Appendix C. To lowest order in the tunneling we

obtain

SC = 4(e∗)2|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′ cos

[
e∗

∫ t

t ′
dt ′′V (t ′′)

]
× e2νG(t ′−t), (9)

SX = 4e∗|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′ sin

[
e∗

∫ t

t ′
dt ′′V (t ′′)

]
× eνG(t ′−t)∂t ′e

νG(t ′−t), (10)

SQ = 4|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′ cos

[
e∗

∫ t

t ′
dt ′′V (t ′′)

]
× eνG(t ′−t)∂t∂t ′e

νG(t ′−t) (11)

with G(τ ) = 〈[φR/L(0,τ ) − φR/L(0,0)]φR/L(0,0)〉 the bosonic
correlation function, equal for both right- and left-moving
modes, and λ = �/(2πa) the reduced tunneling constant.
Introducing the Fourier transform of egG(τ ), namely, P̂g(E) =∫

dτ eiEτ egG(τ ), and the series representation for e−iϕ(t) we get

SC = 2(e∗)2|λ|2
∑

l

|pl|2

× {P̂2ν[(q + l)ω] + P̂2ν[−(q + l)ω]}, (12)

SX = e∗ω|λ|2
∑

l

|pl|2(q + l)

× {P̂2ν[(q + l)ω] + P̂2ν[−(q + l)ω]}, (13)

SQ = |λ|2
∑

l

|pl|2
[

2π2ν2

1 + 2ν
θ2 + 1 + ν

1 + 2ν
(q + l)2ω2

]
× {P̂2ν[(q + l)ω] + P̂2ν[−(q + l)ω]} (14)

for the zero-frequency component of the noises. In particular,
at temperature θ = 0 one has

P̂g(E) = 2π

�(g)ωc

∣∣∣∣ E

ωc

∣∣∣∣g−1

�(E), (15)

with ωc = v/a the high-energy cutoff and �(E) the Heaviside
step function. The noises then reduce to

SC = (e∗)2

ω
|λ|2 4π

�(2ν)

(
ω

ωc

)2ν ∑
l

|pl|2|q + l|2ν−1, (16)

SX = e∗|λ|2 2π

�(2ν)

(
ω

ωc

)2ν ∑
l

|pl|2|q + l|2ν sign(q + l),

(17)

SQ = ω|λ|2 2π (1 + ν)

�(2ν)(1 + 2ν)

(
ω

ωc

)2ν ∑
l

|pl|2|q + l|2ν+1.

(18)

Equation (15) and subsequent Eqs. (16), (17), and (18) show
the familiar power-law behavior of the Luttinger liquid [65,66].

It is instructive to calculate also the averaged charge and
heat currents flowing into contact 2 for later use. In this case,

245415-3



LUCA VANNUCCI et al. PHYSICAL REVIEW B 95, 245415 (2017)

Keldysh formalism yields

〈JC(t)〉 = 2ie∗|λ|2
∫ +∞

0
dτ sin

[
e∗

∫ t

t−τ

dt ′′V (t ′′)
]

× [e2νG(τ ) − e2νG(−τ )], (19)

〈JQ(t)〉 = i|λ|2
∫ +∞

0
dτ cos

[
e∗

∫ t

t−τ

dt ′′V (t ′′)
]

× [∂τ e
2νG(τ ) − ∂τ e

2νG(−τ )]. (20)

The dc component of charge and heat currents in presence
of the periodic drive is then obtained by averaging over one
period T . Below we give the results for the zero-temperature
signals, using the symbol 〈. . . 〉 to denote the time average∫ T

0
dt
T

〈. . . 〉:

〈JC(t)〉 = |λ|2e∗

ω

2π

�(2ν)

(
ω

ωc

)2ν ∑
l

|pl|2|q + l|2ν−1

× sign(q + l), (21)

〈JQ(t)〉 = |λ|2 π

�(2ν)

(
ω

ωc

)2ν ∑
l

|pl|2|q + l|2ν . (22)

Intermediate steps of the calculation and finite-temperature
expressions for 〈JC(t)〉 and 〈JQ(t)〉 are developed in
Appendix C.

IV. EXCESS SIGNALS AND NOISELESS DRIVE

A. From Schottky formula to the ac regime

We start the discussion considering a dc-biased conductor,
i.e., V (t) = Vdc with Vac(t) = 0. Such a situation entails that
Fourier coefficients in Eq. (5) reduce to pl = δl,0. In this case,
charge current and noise at temperature θ = 0 are linked by
[22,23,67]

SC = 2e∗〈JC〉, (23)

which can be easily checked from our formulas. Equation (23)
is a manifestation of the Schottky relation for a system with
fractionally charged carriers [57,58]. It is linked to the fact
that transmission of uncorrelated single-particle excitations
through a barrier is described by Poisson distribution, hence,
the proportionality between shot noise and charge current.
Interestingly, similar expressions can be derived relating mixed
and heat noise to the heat current for a dc bias. From Eq. (22)
and assuming Vdc > 0, one gets the following formula for the
heat current:

〈JQ〉 = |λ|2 π

�(2ν)

(
e∗Vdc

ωc

)2ν

. (24)

Similarly, mixed and heat noise are obtained from Eqs. (17)
and (18) with the condition pl = δl,0. They reads

SX = e∗|λ|2 2π

�(2ν)

(
e∗Vdc

ωc

)2ν

, (25)

SQ = e∗Vdc|λ|2 2π (1 + ν)

�(2ν)(1 + 2ν)

(
e∗Vdc

ωc

)2ν

. (26)

Comparing the last three results we immediately notice a
proportionality between SX, SQ, and 〈JQ〉, namely,

SX = 2e∗〈JQ〉, (27)

SQ = 2e∗ 1 + ν

1 + 2ν
Vdc〈JQ〉. (28)

Equations (27) and (28) are generalizations of Schottky’s
formula to the heat and mixed noise. They show that the
uncorrelated backscattering of Laughlin quasiparticles at the
QPC leaves Poissonian signature in heat transport properties
also, in addition to the well-known Poissonian behavior of
the charge shot noise described by Eq. (23). This holds
both in a chiral Fermi liquid (i.e., at ν = 1, when tunneling
involves integer electrons only) and in the FQH regime, with
proportionality constants governed by the filling factor ν.
Similar relations for transport across a quantum dot were
recently reported [55,68,69].

In general, the Schottky relation breaks down in the ac
regime since the oscillating drive excites particle-hole pairs
contributing to transport. Nevertheless, when a single electron
is extracted from the filled Fermi sea we expect the photon-
assisted zero-frequency shot noise to match the lower bound
set by Schottky’s Poissonian dc relation. Thus, the quantity

�SC = SC − 2e∗〈JC(t)〉, (29)

which we call excess charge noise, vanishes in the presence
of a minimal excitation state as already mentioned in earlier
works [11,20,70]. For completeness, we quote its expression
at zero temperature:

�SC = (e∗)2

ω
|λ|2 8π

�(2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl|2|q + l|2ν−1. (30)

We now address the central quantities of interest for this
paper. Equation (27), representing a proportionality between
the mixed charge-heat correlator SX and the heat current for
a dc voltage drive governed by the charge e∗, leads us to
introduce the excess mixed noise given by

�SX = SX − 2e∗〈JQ(t)〉. (31)

As for �SC , this quantity measures the difference between the
noise in presence of a generic periodic voltage drive and the dc
reference value. Using the results of Sec. III, the excess mixed
noise reads

�SX = −e∗|λ|2 4π

�(2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl|2|q + l|2ν . (32)

The vanishing of �SX should highlight an energetically clean
pulse, for which the mixed noise reaches the minimal value
SX = 2e∗〈JQ(t)〉 expected from Schottky’s formula for the
mixed noise (27). With a very similar procedure it is possible
to extract the excess component of the zero-frequency heat
noise due to the time-dependent drive. Equation (28) states
that SQ is proportional to the heat current multiplied by the
voltage bias in the dc limit. In view of this consideration, we
define the excess heat noise

�SQ = SQ − 2e∗ 1 + ν

1 + 2ν
V (t)〈JQ(t)〉. (33)

245415-4
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The time-averaged value of V (t)〈JQ(t)〉 can be calculated from
Eq. (20) using the relation e∗V (t)e−iϕ(t) = (ωq + i∂t )e−iϕ(t).
Then, from the above definition we get

�SQ = ω|λ|2 4π (1 + ν)

�(2ν)(1 + 2ν)

(
ω

ωc

)2ν ∑
l<−q

|pl|2|q + l|2ν+1.

(34)

B. Physical content of the excess signals

Let us now look for the physics described by Eqs. (32) and
(34). Once again, it is enlightening to start from the analogy
with the charge shot noise. In the ν = 1 quantum Hall state,
described by a one-dimensional chiral Fermi liquid, the excess
charge noise �SC is proportional to the number of holes Nh

induced in the Fermi sea by the voltage drive. One has

Nh(t) =
+∞∑

k=−∞
nF(vk)〈ck(t)c†k(t)〉

= v2

(2πa)2

∫
dτ ′

∫
dτ e−ie

∫ τ ′
τ ′−τ

dt ′V (t ′)e2G(τ )

∝ SC − 2e〈JC(t)〉, (35)

where nF(E) = �(−E) is the Fermi distribution at zero
temperature. A similar relation is obtained in the fractional
regime when we introduce the effective tunneling density of
states Dν(E) of the chiral Luttinger liquid, which is reported
in Appendix C. The number of quasiholes in the FQH liquid
reads

Nqh =
+∞∑

k=−∞

ωc

2π
Dν(vk)nF(vk)〈cqp,k(t)c†qp,k(t)〉

= v2

(2πa)2

∫
dτ ′

∫
dτ e−ie

∫ τ ′
τ ′−τ

dt ′V (t ′)e2νG(τ )

∝ SC − 2e∗〈JC(t)〉. (36)

It is worth noticing that Eqs. (35) and (36) hold in an
unperturbed system without tunneling between opposite edges.
The shot noise induced by the presence of the QPC can thus
be viewed as a probe for the number of holes (or quasiholes in
the case of a fractional filling) generated by the ac pulses.

We now consider the energy associated with holelike
excitations for a generic filling factor of the Laughlin sequence,
that reads

Eqh = −
+∞∑

k=−∞

ωc

2π
Dν(vk)nF(vk)vk〈cqp,k(t)c†qp,k(t)〉. (37)

This quantity can be written as

Eqh = i

2

v2

(2πa)2

∫
dτ ′

∫
dτ e−ie∗ ∫ τ ′

τ ′−τ
dt ′V (t ′)∂τ e

2νG(τ )

= 1

2

v2

(2πa)2

∫
dτ ′

∫
dτ

{
sin

[
e∗

∫ τ ′

τ ′−τ

dt ′V (t ′)

]

+ i cos

[
e∗

∫ τ ′

τ ′−τ

dt ′V (t ′)

]}
∂τ e

2νG(τ ). (38)

0
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Lor
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FIG. 2. Excess mixed noise −�SX as a function of the charge per
period q at zero temperature. The high-energy cutoff is set to ωc =
10 ω. Behavior for Lorentzian pulses (full black line) and sinusoidal
voltage drive (dashed red line) is reported.

Then, comparing this result with Eqs. (10) and (20) we find
that �SX measures the energy associated with the unwanted
quasiholes generated through the periodic voltage drive,
namely,

Eqh ∝ −SX + 2e∗〈JQ(t)〉 = −�SX. (39)

This accounts for the negative value of �SX arising from
Eq. (32). A similar relation involving the sum of the squared
energy for each value of k holds for �SQ:

+∞∑
k=−∞

ωc

2π
Dν(vk)nF(vk)(vk)2〈cqp,k(t)c†qp,k(t)〉 ∝ �SQ. (40)

In Fig. 2, we show the behavior of the excess mixed noise
as a function of the charge q injected during one period T .
Notice that we normalize �SX by a negative quantity, in
order to deal with a positive function. Two types of bias are
considered: a sinusoidal drive and a train of Lorentzian pulses
given, respectively, by

Vsin(t) = Vdc[1 − cos(ωt)], (41)

VLor(t) = Vdc

π

∑
k

η

η2 + (t/T − k)2
, (42)

with η = W/T the ratio between the half-width W at half-
maximum of the Lorentzian peak and the period T . The former
is representative of all kinds of nonoptimal voltage drive, while
the latter is known to give rise to minimal charge noise both at
integer [8] and fractional [20] fillings. We will set η = 0.1, a
value lying in the range investigated by experiments [11]. At
ν = 1, both curves display local minima whenever q assumes
integer values. However, while the sinusoidal drive always
generates an additional noise with respect to the reference
Schottky value 2e∗〈JQ(t)〉, the Lorentzian signal drops to
zero for q ∈ N, indicating that the mixed noise SX due to
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levitons exactly matches the Poissonian value set by Eq. (27).
Since the excess mixed noise is linked to the unwanted energy
introduced into the system as a result of hole injection [see
Eq. (39)], Fig. 2 shows that there is no holelike excitation
carrying energy in our system. The bottom panel of Fig. 2
shows the same situation in a ν = 1

3 FQH bar. The hierarchy
of the ν = 1 configuration is confirmed, with Lorentzian pulses
generating minimal mixed noise for q ∈ N and sinusoidal
voltage displaying nonoptimal characteristics with nonzero
�SX. As for the charge excess noise, no signature for fractional
values of q arises, signaling once again the robustness of
levitons in interacting fractional systems. This is markedly
different from driven-quantum-dot systems, where a strategy
to inject a periodic train of fractionally charged quasiparticles
in the FQH regime has been recently discussed [71].

The same analysis can be carried out for the excess heat
noise �SQ. Equation (34) suggests that the excess heat noise
vanishes for the very same conditions that determine the van-
ishing of �SC and �SX, given that we get a similar structure
with only a different power-law behavior. This expectation is
confirmed in Fig. 3, where we report the behavior of �SQ for
both ν = 1 and 1

3 . Lorentzian pulses carrying integer charge
per period represent minimal-heat-noise states, independently
of the filling factor.

We conclude this section with a brief mathematical remark
on the vanishing of the excess signals. Equations (30), (32),
and (34) all share a similar structure in terms of the Fourier
coefficients pl , the only difference being the power-law
exponents 2ν − 1, 2ν, and 2ν + 1, respectively. Then, we can
explain the common features of �SC , �SX, and �SQ by
looking at the Fourier coefficient of the Lorentzian driving
voltage. In such case, the analytical behavior of e−iϕ(t) as
a function of the complex variable z = eiωt guarantees that
pl<−q = 0 when q is an integer, as shown in Appendix B. This
immediately leads to the simultaneous vanishing of the three

0

1

2

3
×10−3

ν = 1
Lor

Sin

0 1 2 3

q

0

1

2

3

4

5
×10−2

ν = 1/3

Δ
S Q

/
(ω

|λ
|2 )

FIG. 3. Excess heat noise �SQ as a function of the charge per
period q. Full black and dashed red lines represent Lorentzian and
sinusoidal drives, respectively. The temperature is θ = 0 and the
cutoff is ωc = 10 ω.

excess signals at integer charge q. Let us also remark that the
Lorentzian pulse is the only drive showing this striking feature,
as Eqs. (30), (32), and (34) all correspond to sums of positive
terms and can thus only vanish if |pl|2 is zero for all l below
−q. The only way this is possible is with quantized Lorentzian
pulses.

V. MULTIPLE LORENTZIAN PULSES

In the previous section we demonstrated that quantized
Lorentzian pulses with integer charge q represent minimal
excitation states for the heat transport in the FQH regime, but
this statement may potentially fail when different Lorentzian
pulses have a substantial overlap. Indeed, nonlinear quantities
such as JQ, SX, and SQ may behave very differently from
charge current and noise, which are linear functions of the
bias V (t) in a Fermi liquid. For instance, at ν = 1 one already
sees a fundamental difference between average charge and
heat currents in their response to the external drive, as JC

is independent of Vac, while JQ goes like V 2
dc + V 2

ac(t) [see
Eqs. (21) and (22)]. Then, one might wonder whether the
independence of overlapping levitons survives when we look at
such nonlinearity. In this regard, Battista et al. pointed out that
in Fermi liquid systems N levitons emitted in the same pulse
are not truly independent excitations since heat current and
noise associated with such a drive are proportional to N2 times
the single-particle heat current and N3 times the single-particle
heat noise, respectively. Nevertheless, well-separated levitons
always give rise to really independent excitations with JQ and
SQ both equal to N times their corresponding single-particle
signal, due to the vanishing of their overlap [72]. Moreover,
an additional source of nonlinearity is provided by electron-
electron interactions giving rise to the FQH phase, whose
power-law behavior is governed by fractional exponents, thus
strongly deviating from the linear regime.

In the following, we study how nonlinearities due to heat
transport properties and interactions affect the excess signals
we introduced in Sec. IV. For this purpose, we consider a
periodic signal made of a cluster of N pulses described by

VN (t) =
N−1∑
j=0

Ṽ

(
t − j

α

N
T

)
, (43)

where Ṽ (t) is periodic of period T . We still consider the
parameter q as the total charge injected during one complete
period T of the drive VN (t), which means that each pulse in
the cluster carries a fraction q/N of the total charge. Inside a
single cluster, the N signals in Eq. (43) are equally spaced with
a fixed time delay �t = αT/N between successive pulses.
Note that α = 0 corresponds to several superimposed pulses,
giving VN (t)|α=0 = NṼ (t). Also, for α = 1 we just get a new
periodic signal with period T/N . We thus restrict the parameter
α to the interval 0 � α < 1. An example of such a voltage drive
is provided in Fig. 4.

Fourier coefficients for a periodic multipulse cluster can be
factorized in a convenient way (see Appendix B). Here, we
take as an example the simple case N = 2, whose coefficients
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FIG. 4. Time-periodic voltage drive given by Eq. (43) in the case
of N = 2 Lorentzian-shaped pulses per period at total charge q = 1
(i.e., 1

2 for each pulse). The top panel represents two completely
overlapping pulses (α = 0), for which we simply have V2(t) = 2Ṽ (t).
The central and bottom panels correspond to nontrivial cases α =
0.45 and 0.9 with finite overlap between pulses. In all cases, the
behavior of individual Lorentzian pulses Ṽ (t) and Ṽ (t − α

N
T ) are

depicted with dashed, thin lines.

are given by

p
(2)
l (q) =

+∞∑
m=−∞

eiπαmpl−m

(
q

2

)
pm

(
q

2

)
. (44)

Each pulse carries one half of the total charge q, a fact that is
clearly reflected in the structure of Eq. (44).

Let us first focus on an integer quantum Hall effect with
ν = 1. It is easy to see that, at least in the dc regime, SX and SQ

scale as V 2 and V 3, respectively. It is then natural to wonder
if a cluster of Lorentzian pulses still gives rise to minimal
values of SX and SQ when the interplay of nonlinearities, ac
effects, and overlapping comes into play. We thus look for the
excess mixed and heat noises for the case of N = 2 Lorentzian
pulses per period, in order to shed light on this problem. The
top and bottom panels of Fig. 5 show the excess mixed and
heat noises, respectively, in presence of two pulses per period
at ν = 1. For α = 0 we get a perfect superposition between
pulses, and we are left with a single Lorentzian carrying the
total charge q. This case displays zeros whenever the total
charge reaches an integer value, as was already discussed in
the previous section. Higher values of α represent nontrivial
behavior corresponding to different, time-resolved Lorentzian
pulses. A Lorentzian voltage source injecting q = 1

2 electrons
per period is not an optimal drive (and so is, a fortiori, an
arbitrary superposition of such pulses). As a result, signals for
α = 0.45 and 0.9 turn out to be greater than zero at q = 1.
However, �SX and �SQ still vanish at q = 2, where they
correspond to a pair of integer levitons, showing the typical
behavior of minimal excitation states with no excess noise.
This demonstrates that integer levitons, although overlapping,
always generate the Poissonian value for heat and mixed noises
expected from their respective Schottky formulas. It is worth

0

1

2

3

−
Δ
S X

/
(e
|λ
|2 )

×10−3

ν = 1

α = 0

α = 0.45

α = 0.9

0 1 2 3

q

0

1

2

Δ
S Q

/
(ω

| λ
|2 )

×10−3

ν = 1

FIG. 5. Excess signals −�SX (top panel) and �SQ (bottom
panel) as a function of q for a cluster of two identical Lorentzian
pulses separated by a time delay αT/2. All curves refer to the case
of ν = 1 and zero temperature. The cutoff is set to ωc = 10 ω.

noticing that the blue curves in Fig. 5 (nearly approaching
the limit α → 1) almost totally forget the local minimum in
q = 1 and get close to a simple rescaling of the single-pulse
excess noises �SX( q

2 ) and �SQ( q

2 ). This is because α → 1 is
a trivial configuration corresponding to one pulse per period
with T ′ = T

2 , as was mentioned before.
It is even more remarkable, however, to still observe a

similar qualitative behavior in the FQH regime, where one
may expect this phenomenon to break down as a result of
the strong nonlinearities due to the chiral Luttinger liquid
physics. Figure 6 shows that both signals drop to zero for
q = 2, representing a robust evidence for a minimal excitation
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3

4
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−
Δ
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/
(e
|λ
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ν = 1/3

FIG. 6. Excess signals −�SX and �SQ as a function of q for two
identical Lorentzian pulses with time delay αT/2 at fractional filling
ν = 1

3 and zero temperature. The cutoff is set to ωc = 10 ω.
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FIG. 7. Excess mixed noise −�SX as a function of q for a cluster
of two Lorentzian pulses. Here, q is partitioned asymmetrically, with
the two pulses carrying, respectively, 1

3 and 2
3 of the total charge per

period. One should compare this figure with Figs. 5 and 6, where
−�SX for identical pulses is plotted. The time delay between pulses
is αT/2, with different values of α according to the legend. The cutoff
is set to ωc = 10 ω and the temperature is θ = 0.

state even in a strongly interacting fractional liquid. We stress
that such a strong stability of heat transport properties is an
interesting and unexpected result both at integer and fractional
filling factor. Indeed, the bare signals 〈JQ〉, SX, and SQ are
affected by the parameters governing the overlap between
pulses, namely,

〈JQ〉(N) = N〈JQ〉(1)
, (45a)

SX
(N) = NSX

(1), (45b)

SQ
(N) = NSQ

(1), (45c)

even at q = N , in accordance with Ref. [72]. Nonetheless,
such differences are washed out when the dc Schottky-type
signals are subtracted from SX and SQ in Eqs. (31) and (33),
giving

�SX
(N) = �SX

(1) = 0, (46)

�SQ
(N) = �SQ

(1) = 0. (47)

While multiple levitons are not independent [in the sense of
Eqs. (45)], they do represent minimal excitation states even
in presence of a finite overlap between Lorentzian pulses.
This is a remarkable property which seems to distinguish the
Lorentzian drive from every other type of voltage bias.

Let us note that the robustness with respect to the overlap
of Lorentzian pulses is an interesting result for the charge
transport at fractional filling as well. Indeed, 〈JC〉 and SC do
not show a trivial rescaling at ν = 1. Nevertheless, we have
checked that the excess charge noise �SC is insensitive to
different overlap between levitons as it vanishes when exactly
one electron is transported under each pulse, i.e., when q =
N . Note that a very similar behavior was described for the

excess charge noise in Ref. [73], where multiple pulses were
generated as a result of fractionalization due to interchannel
interactions in the integer quantum Hall regime at ν = 2.

To provide a further proof for our results, we analyze a two-
pulse configuration with an asymmetrical charge distribution,
namely, a case in which the first pulse carries 1

3 of the total
charge q while the second pulse takes care of the remainder. It
is straightforward to verify that the phase e−iϕ(t) associated
with such a drive is represented by a Fourier series with
coefficients

p
(2)
l (q) =

+∞∑
m=−∞

eiπαmpl−m

(
q

3

)
pm

(
2q

3

)
, (48)

where the asymmetry in the charge distribution is manifest, as
opposed to the symmetric case in Eq. (44). In view of previous
considerations, we expect this signal to be an optimal voltage
drive when both pulses carry an integer amount of charge. This
condition is obviously fulfilled when q = 3, so that the total
charge can be divided into one and two electrons associated
with the first and second pulse, respectively. Figure 7 confirms
our prediction, showing the first universal vanishing point
shared by all three curves at q = 3 instead of q = 2.

In passing, it is worth remarking that the choice of multiple
Lorentzian pulses with identical shape was only carried out for
the sake of simplicity. A generalization to more complicated
clusters with different width η gives rise to a very similar
qualitative behavior (not shown).

VI. CONCLUSIONS

A study of charge and heat current fluctuations and charge-
heat cross correlations in a periodically driven fractional
quantum Hall system has been presented, with the goal of
identifying minimal excitation states for heat transport. We
have considered a quantum-optical protocol in which periodic
voltage pulses are applied to the conductor, exciting electronic
excitations. They are then scattered against a quantum point
contact, leading to random partitioning of charge and heat
in full analogy with the optical Hanbury-Brown and Twiss
experiment. We have shown that charge, mixed, and heat noises
measured in one of the output arms of our interferometer all
reach their minimal value (set by the respective Poissonian
dc relations) when levitons impinge on the beam splitter,
that is, when the voltage drive generates Lorentzian pulses
carrying an integer amount of electronic charge along the edge
states of the quantum Hall system. These results extend the
notion of leviton as a minimal excitation state in quantum
conductors to the heat transport domain. Our analysis is
valid both in the integer quantum Hall effect and in the
Laughlin fractional regime, despite the exotic physics due to
the presence of fractionally charged quasiparticles induced by
strong electron-electron interactions.

Furthermore, superposition of multiple levitons has been
studied, demonstrating the robustness of levitons with respect
to arbitrary overlap between them regardless of the nonlinear
dependence on the voltage bias typical of heat-transport-
related quantities, and despite the characteristic nonlinear
power laws of the chiral Luttinger liquid theory. Our results
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designate levitons as universal minimal excitation states for
mesoscopic quantum transport of both charge and heat.
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APPENDIX A: EQUATION OF MOTION FOR
THE BOSONIC FIELD

In this Appendix, the phase shift eie∗ ∫ t

0 dt ′V (t ′) introduced
in the main text is explicitly derived from the equation of
motion for the field φR . We consider a generic external
voltage bias V(x,t) coupled with the right-moving density
ρR(x) = −

√
ν

2π
∂xφR(x). Adding the capacitive coupling to the

total Hamiltonian H0 we get

H = v

4π

∫
dx[(∂xφR)2 + (∂xφL)2]

− e
√

ν

2π

∫
dx V(x,t)∂xφR(x). (A1)

The equation of motion for the field φR is easily derived

(∂t + v∂x)φR(x,t) = e
√

νV(x,t). (A2)

Solutions of Eq. (A2) are of the form

φR(x,t) = φ
(0)
R (x,t) + e

√
ν

∫ t

0
dt ′V[x − v(t − t ′),t ′], (A3)

where φ
(0)
R (x,t) = φ

(0)
R (x − vt,0) is the free chiral field in the

equilibrium, nonbiased configuration. Causality due to the
propagation of excitations at finite velocity v is manifest in
Eq. (A3).

To make contact with experiments we consider a uniformly
oscillating semi-infinite voltage contact. Indeed, in a typical
experimental setup, electrons travel a long way through
Ohmic conductors before reaching the mesoscopic system.
We model this situation through the factorization V(x,t) =
�(−x − D)V (t), with D the finite distance between the
contact and the QPC (which is located at x = 0) and �(x)
the Heaviside step function. Then, Eq. (A3) reads

φR(x,t) = φ
(0)
R (x,t) + e

√
ν

∫ t− x+D
v

0
dt ′V (t ′). (A4)

The unimportant constant time delay D/v generated by the
finite distance D will be neglected throughout this paper.
Finally, from bosonization identity (2) we get the quasiparticle
field at x = 0

ψR(0,t) = ψ
(0)
R (0,t)e−ie∗ ∫ t

0 dt ′V (t ′), (A5)

where the phase shift eie∗ ∫ t

0 dt ′V (t ′) is recovered. It is worth
noticing that we dropped the label (0) in the main text in order
to avoid a cumbersome notation.

APPENDIX B: FOURIER SERIES FOR THE
PHASE FACTOR

This Appendix is devoted to the Fourier analysis of the
periodic signal e−iϕ(t), with ϕ(t) = e∗ ∫ t

0 Vac(t ′)dt ′. Here, we
work with voltage drives whose dc and ac components
are constrained by the request Vmin = 0, where Vmin is the
minimum value for a single pulse, but more general choices
with independent dc and ac amplitudes are possible [70,72].
We thus consider

Vsin(t) = Vdc[1 − cos(ωt)], (B1)

VLor(t) = Vdc

π

+∞∑
k=−∞

η

η2 + (t/T − k)2
, (B2)

where ω is the angular frequency and η = W/T governs the
width of each Lorentzian pulse, with W the half-width at
half-maximum. The sinusoidal drive is used as a prototype
for nonoptimal voltage drives, while the Lorentzian signal
fulfills the condition discussed by Levitov and collaborators
for minimal excitations in quantum conductors. They both
come into play through the dynamical phase e−ie∗ ∫ t

0 dt ′V (t ′) =
e−iϕ(t)e−iωqt , with q = e∗Vdc/ω the total charge injected
during one period of the drive. The Fourier series e−iϕ(t) =∑

l ple
−ilωt allows to deal with the time-dependent problem

as a superposition of time-independent configurations, with
energy shifted by an integer amount of energy quanta ω.
Coefficients for Vsin(t) are easily found to be pl = Jl(−q)
[74], where Jl is the Bessel functions of the first kind. For
the Lorentzian case, it is convenient to switch to a complex
representation in terms of the variable z = eiωt . After some
algebra and introducing γ = e−2πη one finds [70,73]

pl = 1

2πi

∮
|z|=1

dz zl+q−1

(
1 − zγ

z − γ

)q

. (B3)

From Eq. (B3) one can make use of complex binomial series
and Cauchy’s integral theorem [75,76] to finally get

pl = qγ l

∞∑
s=0

(−1)s
�(l + s + q)

�(1 + q − s)

γ 2s

s!(s + l)!
. (B4)

With the help of Eq. (B3) one also realizes the uniqueness of
the Lorentzian drive with integer q. Under this assumption the
integrand function in Eq. (B3) does not have any singularity
outside the unit circle for l < −q, even at infinity. This
automatically translates into pl = 0 for l < −q, hence, the
vanishing of the excess signals in Eqs. (30), (32), and (34).

Finally, let us briefly discuss the case of multiple pulses
of Sec. V. The phase accumulated for the periodic signal
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VN (t) = ∑N−1
j=0 Ṽ (t − j α

N
T ) is given by

ϕN (t) = e∗
∫ t

0
dt ′

⎡⎣N−1∑
j=0

Ṽ

(
t ′ − j

α

N
T

)
− Ṽdc

⎤⎦
=

N−1∑
j=0

[
ϕ̃

(
t − j

α

N
T

)
− ϕ̃

(
− j

α

N
T

)]
, (B5)

where ϕ̃(t) = e∗ ∫ t

0 dt ′[Ṽ (t ′) − Ṽdc]. Each phase factor e−iϕ̃(t)

can be written as

e−iϕ̃(t) =
∑

l

pl

(
q

N

)
e−ilωt (B6)

since each pulse Ṽ involves only a fraction of the total charge
q. The corresponding Fourier coefficients for e−iϕN (t) reads

p
(N)
l (q) = exp

⎡⎣i

N−1∑
j=0

ϕ̃

(
− j

α

N
T

)⎤⎦∫ T

0

dt

T
eilωt

N−1∏
j=0

e−iϕ̃(t−j α
N

T )

= exp

⎡⎣i

N−1∑
j=0

ϕ̃

(
− j

α

N
T

)⎤⎦∫ T

0

dt

T
exp(ilωt)

+∞∑
m0=−∞

+∞∑
m1=−∞

· · ·
+∞∑

mN−1=−∞
exp(−im0ωt)pm0

(
q

N

)

× exp

{
− im1ω

[
t − α

N
T

]}
pm1

(
q

N

)
. . . exp

{
− imN−1ω

[
t − (N − 1)

α

N
T

]}
pmN−1

(
q

N

)

= exp

[
i

N−1∑
j=0

ϕ̃

(
− j

α

N
T

)] +∞∑
m1=−∞

· · ·
+∞∑

mN−1=−∞
exp

{
i
2π

N
α[m1 + · · · + (N − 1)mN−1]

}

× pl−m1−...−mN−1

(
q

N

)
pm1

(
q

N

)
· · · pmN−1

(
q

N

)
. (B7)

As an example, coefficients for N = 2 are given by

p
(2)
l (q) = eiϕ̃(− αT

2 )
+∞∑

m=−∞
eiπαmpl−m

(
q

2

)
pm

(
q

2

)
. (B8)

Note that the time-independent phase eiϕ̃(− αT
2 ) has been omitted

in Eq. (44) of the main text, as it is washed out as soon as
we compute the squared modulus of p

(2)
l . Finally, it is worth

remarking that in the case of Lorentzian pulses with q = N

one should require mi � −1 to prevent the vanishing of p
(N)
l .

It follows that p
(N)
l (N ) = 0 for l < −N and �SC , �SX, and

�SQ all vanish under these circumstances (see Figs. 5–7).

APPENDIX C: CALCULATION OF CURRENTS
AND NOISES

In this Appendix we apply the Keldysh nonequilibrium
contour formalism [63,64] to the calculation of currents and
noises defined in Sec. III. In this framework, one has

〈JC(t)〉 = e∗

2

∑
η0

〈
TKṄL(tη0 )e−i

∫
cK

dt ′Ht(t ′)〉, (C1)

〈JQ(t)〉 = 1

2

∑
η0

〈
TKḢL(tη0 )e−i

∫
cK

dt ′Ht(t ′)〉 − μ

e∗ 〈JC(t)〉,

(C2)

with TK the time-ordering operator along the back-and-forth
Keldysh contour cK, whose two branches are labeled by η0 =
+,−. The transparency of the QPC can be finely tuned with the
help of gate voltages. In the low reflectivity regime, tunneling
can be treated as a perturbative correction to the perfectly

transmitting setup. Then, at first order in the perturbation we
have

〈JC(t)〉 = − i
e∗

2

∑
η0,η1

∫ +∞

−∞
dt ′η1〈TKṄL(tη0 )Ht(t

′η1 )〉

= ie∗|λ|2
∑
η0,η1

∫ +∞

−∞
dτ η1 sin

[
e∗

∫ t

t−τ

dt ′′V (t ′′)
]

× exp[2νGη0η1 (τ )] (C3)

for the charge current, with λ = �/(2πa). In the last equation
we explicitly showed the matrix structure of Keldysh Green’s
functions due to the twofold time contour. Indeed, both t and
t ′ can be placed along the forward-going or backward-going
branch of cK, giving rise to the 2 × 2 matrix

〈TKψR/L(0,tη0 )ψ†
R/L(0,t ′η1 )〉 = exp[2νGη0η1 (τ )]

2πa
. (C4)

Similarly, the heat current reads

〈JQ(t)〉 = − i

2

∑
η0,η1

∫ +∞

−∞
dt ′η1〈TKḢL(tη0 )Ht(t

′η1 )〉 − μ

e∗ JC(t)

= i|λ|2
∑
η0,η1

∫ +∞

−∞
dτ η1 cos

[
e∗

∫ t

t−τ

dt ′′V (t ′′)
]

× exp[νGη0η1 (τ )]∂τ exp[νGη0η1 (τ )]. (C5)

Green’s functions along Keldysh contour are related to the real-
time correlation function G(τ ) = 〈[φR/L(0,τ ) − φR/L(0,0)]
φR/L(0,0)〉. In particular, one has [63](

G++(τ ) G+−(τ )
G−+(τ ) G−−(τ )

)
=

(
G(|τ |) G(−τ )
G(τ ) G(−|τ |)

)
, (C6)
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where the bosonic correlation function G(τ ) at finite tempera-
ture θ reads

G(τ ) = ln

[
πτθ

sinh(πτθ )(1 + iωcτ )

]
(C7)

in the limit ωc/θ � 1. Using Eq. (C6), we get

〈JC(t)〉 = 2ie∗|λ|2
∫ +∞

0
dτ sin

[
e∗

∫ t

t−τ

dt ′′V (t ′′)
]

× [e2νG(τ ) − e2νG(−τ )], (C8)

〈JQ(t)〉 = i|λ|2
∫ +∞

0
dτ cos

[
e∗

∫ t

t−τ

dt ′′V (t ′′)
]

× [∂τ e
2νG(τ ) − ∂τ e

2νG(−τ )]. (C9)

At this stage it is useful to introduce the Fourier transform
P̂g(E) = ∫

dτ eiEτ egG(τ ) of the bosonic Green’s function, that
reads [77,78]

P̂g(E) =
(

2πθ

ωc

)g−1
eE/(2θ)

�(g)ωc

∣∣∣∣�(
g

2
− i

E

2πθ

)∣∣∣∣2

. (C10)

Interestingly, Pg(E) is nothing but the usual Fermi distribution
multiplied by the effective tunneling density of states of
the chiral Luttinger liquid [48]. Indeed, one has P̂g(E) =
Dg(E)nF(−E), with

Dg(E) = (2π )g

�(g)ωc

(
θ

ωc

)g−1
∣∣�(

g

2 − i E
2πθ

)∣∣2∣∣�(
1
2 − i E

2πθ

)∣∣2 (C11)

and the Fermi distribution defined having zero chemical
potential

nF(E) = 1

1 + eE/θ
. (C12)

A constant tunneling density of states is recovered for the
Fermi liquid case ν = 1, in accordance with the assumption of
linear dispersion typical of the Luttinger liquid paradigm. At
θ = 0 we resort to the asymptotic limit of the gamma function
[79] to obtain Eq. (15):

P̂g(E) = 2π

�(g)ωc

∣∣∣∣ E

ωc

∣∣∣∣g−1

�(E). (C13)

Using Fourier representations for e2νG(τ ) and e−iϕ(t) we obtain

〈JC(t)〉 = |λ|2e∗ ∑
l,m

p∗
l pmei(l−m)ωt

× {P̂2ν[(q + m)ω] − P̂2ν[−(q + m)ω]}, (C14)

〈JQ(t)〉 = 1

2
|λ|2

∑
l,m

p∗
l pmei(l−m)ωt (q + m)ω

× {P̂2ν[(q + m)ω] − P̂2ν[−(q + m)ω]}. (C15)

Averaging over one period of the voltage drive we get

〈JC(t)〉 = |λ|2e∗ ∑
l

|pl|2

× {P̂2ν[(q + l)ω] − P̂2ν[−(q + l)ω]}, (C16)

〈JQ(t)〉 = |λ|2 ω

2

∑
l

|pl|2(q + l)

× {P̂2ν[(q + l)ω] − P̂2ν[−(q + l)ω]}, (C17)

where the notation 〈. . . 〉 stands for
∫ T

0
dt
T

〈. . . 〉. Equations (21)
and (22) of the main text immediately follow when we perform
the zero-temperature limit of Eqs. (C16) and (C17).

We now turn to the calculation of the noises defined in
Eqs. (8). First of all, we note that all terms 〈Ji(t)〉〈Jj (t)〉, with
i,j = C,Q, are O(|λ|4), and the lowest-order terms in the
perturbative expansion are thus given by

〈TK�Ji(t
+)�Jj (t ′−)e−i

∫
cK

dτHt(τ )〉
= 〈Ji(t

+)Jj (t ′−)〉 + O(|λ|4). (C18)

Therefore, one gets the following expression for the zero-
frequency charge noise

SC = 2(e∗)2
∫ T

0

dt

T

∫ +∞

−∞
dt ′〈TKṄL(t+)ṄL(t ′−)〉

= 4(e∗)2|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′ cos

[
e∗

∫ t

t ′
dt ′′V (t ′′)

]
× e2νG(t ′−t), (C19)

with the help of the matrix representation (C6). Mixed and
heat noises are obtained in similar ways: the former reads

SX = 2e∗
∫ T

0

dt

T

∫ +∞

−∞
dt ′〈TKṄL(t+)ḢL(t ′−)〉 − μ

e∗SC

= 4e∗|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′ sin

[
e∗

∫ t

t ′
dt ′′V (t ′′)

]
eνG(t ′−t)∂t ′

× eνG(t ′−t), (C20)

while the latter is given by

SQ = 2
∫ T

0

dt

T

∫ +∞

−∞
dt ′〈TKḢL(t+)ḢL(t ′−)〉

− 2
μ

e∗SX +
( μ

e∗
)2
SC

= 4|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt ′ cos

[
e∗

∫ t

t ′
dt ′′V (t ′′)

]
eνG(t ′−t)∂t∂t ′

× eνG(t ′−t). (C21)
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Using the series e−iϕ(t) = ∑
l ple

−ilωt and the Fourier trans-
form for eνG(t ′−t) one is left with

SC = 2(e∗)2|λ|2
∑

l

|pl|2

× {P̂2ν[(q + l)ω] + P̂2ν[−(q + l)ω]}, (C22)

SX = e∗ω|λ|2
∑

l

|pl|2(q + l)

× {P̂2ν[(q + l)ω] + P̂2ν[−(q + l)ω]}, (C23)

SQ = |λ|2
π

∑
l

|pl|2
∫ +∞

−∞
dE E2P̂ν(E)

× {P̂ν[(q + l)ω − E] + P̂ν[−(q + l)ω − E]}, (C24)

thus recovering Eqs. (12) and (13) of the main text. To get
Eq. (14) as well, we exploit the integral [79]∫ +∞

−∞

dY

2π
Y 2P̂g1 (Y )P̂g2 (X − Y )

= P̂g1+g2 (X)

1 + g1 + g2

[
g1g2π

2θ2 + g1(1 + g1)

g1 + g2
ω2

]
. (C25)

The latter leads to

SQ = |λ|2
∑

l

|pl|2
[

2π2ν2

1 + 2ν
θ2 + 1 + ν

1 + 2ν
(q + l)2ω2

]
× {P̂2ν[(q + l)ω] + P̂2ν[−(q + l)ω]}. (C26)

One should note that for ν = 1 and finite temperature we have

SC = e2|�|2ω
πv2

+∞∑
l=−∞

|pl|2(q + l) coth
(q + l)ω

2θ
, (C27)

SX = e|�|2ω2

2πv2

+∞∑
l=−∞

|pl|2(q + l)2 coth
(q + l)ω

2θ
, (C28)

SQ = |�|2ω3

3πv2

+∞∑
l=−∞

|pl|2
[(

πθ

ω

)2

+ (q + l)2

]

× (q + l) coth

[
(q + l)ω

2θ

]
, (C29)

consistently with previous results in the literature
[29,31,70,72,73,80].
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