
HAL Id: hal-01687733
https://hal.science/hal-01687733v1

Submitted on 18 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional Random Field and Deep Feature Learning
for Hyperspectral Image Segmentation

Fahim Irfan Alam, Jun Zhou, Alan Wee-Chung Liew, Xiuping Jia, Jocelyn
Chanussot, Yongsheng Gao

To cite this version:
Fahim Irfan Alam, Jun Zhou, Alan Wee-Chung Liew, Xiuping Jia, Jocelyn Chanussot, et al.. Condi-
tional Random Field and Deep Feature Learning for Hyperspectral Image Segmentation. IEEE Trans-
actions on Geoscience and Remote Sensing, 2019, 57 (3), pp.1612-1628. �10.1109/TGRS.2018.2867679�.
�hal-01687733�

https://hal.science/hal-01687733v1
https://hal.archives-ouvertes.fr

1

Conditional Random Field and Deep Feature
Learning for Hyperspectral Image Segmentation

Fahim Irfan Alam, Jun Zhou, Senior Member, IEEE, Alan Wee-Chung Liew, Senior Member, IEEE, Xiuping Jia,
Senior Member, IEEE, Jocelyn Chanussot, Fellow, IEEE, Yongsheng Gao, Senior Member, IEEE

Abstract—Image segmentation is considered to be one of the
critical tasks in hyperspectral remote sensing image processing.
Recently, convolutional neural network (CNN) has established
itself as a powerful model in segmentation and classification by
demonstrating excellent performances. The use of a graphical
model such as a conditional random field (CRF) contributes fur-
ther in capturing contextual information and thus improving the
segmentation performance. In this paper, we propose a method
to segment hyperspectral images by considering both spectral
and spatial information via a combined framework consisting
of CNN and CRF. We use multiple spectral cubes to learn
deep features using CNN, and then formulate deep CRF with
CNN-based unary and pairwise potential functions to effectively
extract the semantic correlations between patches consisting
of three-dimensional data cubes. Furthermore, we introduce
a deep deconvolution network that improves the segmentation
masks. We also introduced a new dataset and experimented
our proposed method on it along with several widely adopted
benchmark datasets to evaluate the effectiveness of our method.
By comparing our results with those from several state-of-the-art
models, we show the promising potential of our method.

Index Terms—Image Segmentation, Deep Learning, Condi-
tional Random Field, Convolutional Neural Network.

I. INTRODUCTION

Hyperspectral imaging technology acquires and analyses
images in contiguous spectral bands over a given spectral
range [1]. It enables more accurate and detailed spectral
information extraction than is possible with other types of
remotely sensed data. This capability has greatly benefited the
identification and classification of spectrally similar materi-
als. Along with spectral information, the spatial relationships
among various spectral responses in a neighborhood can be
explored, which allows development of spectral-spatial models
for accurate image segmentation and classification. Thanks
to these advantages, hyperspectral imaging has become a
valuable tool for a wide range of remote sensing applications
in agriculture, mineralogy, surveillance and environmental
sciences [2].

The research in hyperspectral image segmentation is faced
with several challenges. The unbalance between large dimen-
sionality of spectral bands and insufficient training samples

F. Alam, J. Zhou, A. Liew and Y. Gao are with the Institute of Integrated
and Intelligent Systems, Griffith University, Nathan, Australia. Corresponding
author: Jun Zhou (jun.zhou@griffith.edu.au).

X. Jia is with the School of Engineering and Information Technology,
University of New South Wales at Canberra, ACT, Australia.

J. Chanussot is with Laboratoire Grenoblois de l’Image, de la Parole, du
Signal et de l’Automatique (GIPSA-Lab), Grenoble Institute of Technology,
38402 Saint Martin d’Heres Cedex, France, and also with the Faculty of
Electrical and Computer Engineering, University of Iceland, 107 Reykjavı́k,
Iceland.

impose a major restriction on segmentation performance. Seg-
mentation algorithms exploiting only the spectral information
fail to capture significant spatial variability of spectral sig-
natures for the same class of targets [3] and therefore result
in unsatisfactory performance. With such critical issues un-
solved, hyperspectral segmentation faces a major drawback in
practical usage. Several strategies can be adopted to overcome
these problems. An effective solution is to design algorithms
using both spectral and spatial information, which provides
more discriminative information regarding object shape, size,
material, and other important features [4].

Spectral-spatial segmentation methods can be divided into
two categories. The first category uses the spectral and spatial
information separately in which the spatial information is
perceived in advance by the use of spatial filters [5]. After that,
these spatial features are added to the spectral data at each
pixel. Then dimensionality reduction methods can be used
before the final classification and segmentation. The spatial
information can also be used to refine the initial pixelwise
classification result as a post-processing step, e.g., via mean
shift [6] or Markov random field [7], which is a very common
strategy in image segmentation [8], [9]. The second category
combines spectral and spatial information for segmentation.
Li et al. proposed to integrates the spectral and spatial
information in a Bayesian framework, and then use either
supervised [10] or semi-supervised algorithm [11] to perform
segmentation. Yuan et al. [12] combined spectral and texture
information where linear filters were used to supply enhanced
spatial patterns. Gills et al. [13] modelled a hyperspectral
image as a weighted graph where the edge weights were
given by a weighted combination of the spectral and spatial
information between the nodes. Besides feature extraction
step, traditional image classification or segmentation methods,
such as watershed algorithm [14] and minimum spanning
forest [15], have been adopted to perform joint spectral-
spatial processing of hyperspectral image. Since hyperspectral
data are normally represented in three-dimensional cubes, the
second category of methods can result in a large number
of features containing discriminative information which are
effective for better segmentation performance.

Recent advances in training multilayer neural networks have
contributed much in a wide variety of machine learning prob-
lems including classification or regression tasks. The “deep”
architecture can extract more abstract and invariant features of
data, and thus have the ability to produce higher classification
accuracy than the traditional classifiers [16]. It has also demon-
strated its success in classifying spectral-spatial features [17],

ar
X

iv
:1

71
1.

04
48

3v
2

 [
cs

.C
V

]
 2

7
D

ec
 2

01
7

2

[18]. Amongst various deep learning models, convolutional
neural network (CNN) has been widely used for pixel-level
labeling problems. With this model, good representation of
features can be learned, which allows performing an end-
to-end labeling task [19]. Recently, this model was adopted
by Chen et al. [20] for feature extraction and classification
of hyperspectral images based on three-dimensional spectral
cubes across all the bands that combines both spectral and
spatial information. Similar works have been proposed to
extract spectral-spatial features from pixel or pixel-pairs using
deep CNN [21], [22], [23].

Because CNN can effectively discover spatial structures
among the neighboring patches of the input data, the resulting
classification maps generally appear smoother in spite of not
modeling the neighborhood dependencies directly. However,
the possibility of reaching local minima during training of
CNN and the presence of noise in the input images may create
holes or isolated regions in the classification map. Compared
with other machine learning methods, CNN is generally lim-
ited by the absence of shape and edge constraints. As a result,
the final segmentation appears rough on edges. Moreover,
in hyperspectral image remote sensing, cloud shadows and
topography cause variations in contrast, which often generates
incorrect classes in images. The presence of cloud also may
hide regions or decreases the contrast of regions. Due to these
reasons, CNN sometimes recognizes only parts of the regions
properly [24].

In these circumstances, a further step of segmentation pro-
duce much refined output. To this end, combining probabilistic
graphical models such as Markov Random Field (MRF) and
Conditional Random Field (CRF) with CNN brings signifi-
cant improvements by explicitly modelling the dependencies
between regions. CRFs have been used to model important
geometric characteristics such as shape, region connectivity,
contextual information between regions and so on. For these
reasons, there has been a recent trend on exploring the inte-
gration of CNN and CRF methods [25], [26], [27], [28]. For
example, Liu et. al [29] used CRF to refine the segmentation
outputs as a post-processing step. However, the CRF is entirely
disconnected from the training of the deep network. Instead
of using a disconnected approach, Chen et al. [30] proposed
a fully connected Gaussian CRF model where the respective
unary potentials were supplied by a CNN. Since CRF can
directly model spatial structures, if it can be formulated in
a deep modeling approach, the trained model will integrate
the advantages of both CNN and CRF in modeling the spatial
relationships in the data. Based on this combination, CRFs can
better fine-tune model features by using the incredible power
of CNNs.

Some recent methods combine CNNs and CRFs for seman-
tic segmentation. For example, Zheng et al. [31] formulated a
dense CRF with Gaussian pairwise potentials as a Recurrent
Neural Network (RNN) that was used to refine the upsampled
low-resolution prediction by a traditional CNN. We argue that
this stage of refinement process can be further improved by ap-
plying more advanced refinement methods, such as training a
deconvolution network [19]. Deconvolution network [32] was
employed to visualize activated features in a trained CNN and

update network architecture for performance enhancement. It
is plausible to use it in a segmentation framework to further
improve the output map obtained from earlier steps.

In computer vision applications, it is usually common to
train a deep network with large amount of samples. This,
however, is a very challenging task in hyperspectral remote
sensing applications since the number of training samples is
limited. Without abundant training samples, a deep network
faces the problem of “overfitting” which means the represen-
tation capability may not be sufficient to perform well on test
data. It is therefore very important to increase the size of the
training samples in order to handle this overfitting issue.

In our method, we treat hyperspectral images as spectral
cubes consisting of the image spanning over a few spectral
bands instead of all the bands across the spectra as in [20].
Such smaller-sized yet a large number of spectral cubes will be
able to provide more accurate local spectral-spatial structure
description of the data. Our framework, “3DCNN-CRF” (il-
lustrated in Fig. 1) starts with generating a coarse feature map
obtained by applying a CNN over the spectral cubes which
later constructs a CRF graph. We then calculate the unary and
pairwise potentials of the CRF by extending a CNN-based
deep CRF architecture [33] to cope with both spectral and
spatial information along the entire spectral channels. Finally,
a mean-field inference algorithm [34] was used to perform the
final segmentation. The main contributions of this paper are
as follows:
• 3DCNN is performed on spectral cubes containing a

small number of bands, which results in a more effective
spectral-spatial structure representation of the hyperspec-
tral data for the initial classification.

• CNN-based general pairwise potential functions in CRFs
are extended to explicitly model the spatial relations
among the spectral cubes to perform the segmentation.

• 3DCNN-CRF also learns a deep deconvolution network
during CRF pairwise potential training which is com-
posed of deconvolution, unpooling, and rectified lin-
ear unit (ReLU) layers. Learning deep deconvolution
networks improved the segmentation performance to a
considerable extent which is very relevant and practical
in the context of semantic segmentation.

• The size of the training samples is augmented by gen-
erating virtual samples from real ones in different band
groups, which produces different yet useful estimation of
spectral-spatial characteristics of the new samples.

• A new hyperspectral dataset is created and the image
regions containing relevant classes are manually labelled.
3DCNN-CRF is evaluated on this dataset and compared
with alternative approaches accordingly.

II. 3D CNN FOR HYPERSPECTRAL FEATURE
REPRESENTATION

Deep learning techniques automatically learn hierarchical
features from raw input data. When applied to hyperspectral
data, unsupervised deep learning methods such as stacked
autoencoder (SAE) [35] and deep belief network (DBN) [17]
can extract deep features in a layer-wise training fashion.

3

Fig. 1. Proposed Architecture of our method. The original image is converted into a feature map by a 3D CNN which is later used to train the proposed
deep CRF in order to generate unary and pairwise potentials. The output of deep CRF with deconvolution is later used to perform the final prediction.

However, the training samples composed of image patches
have to be converted into vectors in order to fit the input
layer of these models, which can not retain the original spatial
information in the image. Same problem applies to 1D-CNN
models when vectorized feature is used as the input. These
methods normally extract the spatial and spectral features
separately and therefore, they do not fully exploit the important
joint spectral-spatial correlation of image data which is very
important for segmentation.

In some CNN-based hyperspectral data classification meth-
ods [22], the spatial features are obtained by a 2D-CNN model
which exploits the first few principal component (PC) bands
of the original hyperspectral data. Yu et al. [21] proposed a
CNN architecture which uses a convolutional kernel to extract
spectral features along the spectral domain only. To obtain
features in the spatial domain, they used normalization layers
and a global average pooling (GAP) layer. On the other hand,
3D-CNN can learn the signal changes in both spatial and
spectral dimensions of local spectral cubes. Therefore, it can
exploit significant discriminative information for segmentation
and form powerful structural characteristics for hyperspectral
data.

In this paper, we use 3D CNN to obtain effective spectral-
spatial structure representation of the hyperspectral data for
the initial classification. 3D kernels are used for the important
convolution operations on the spectral cubes. A common
practice is to convolve the 3D kernels with a spatial neigh-
borhood along the entire spectral channels. However, in our
method, the original image, which has B bands, is divided
spectrally into several images consisting of neighboring L
bands where L� B. 3D convolution filters are applied to each
of these different band group images. These groups of bands
provide more detailed local spatial-spectral information so as
to let different wavelength ranges make distinct contribution
to the final classification/segmentation outcome. Repeated
convolution operations produce multiple feature maps along
the spectral cubes. Let (x, y) define a location in the spatial
dimension and z be the band index in the spectral dimension.
The value at a position (x, y, z) on the cth feature map is given
by [36]:

valxyzlj(c)
= f(

m∑
i=1

Pl−1∑
p=0

Ql−1∑
q=0

Rl−1∑
r=0

kpqrlij val
(x+p)(y+q)(z+r)
(l−1)ij + blj)

(1)

where l is the current layer that is being considered, m is the
number of feature maps in the (l−1)-th layer (previous layer),
j is the current kernel number, i is the current feature map in
the (l − 1)-th layer connected to the feature map of the l-th
layer, kpqrlij is the (p, q, r)-th value of the kernel connected to
the i-th feature map in the previous layer. Pl and Ql are the
height and the width of the kernel respectively, and Rl is the
size of the kernel along the spectral dimension.

Each feature map is treated independently. Therefore,
valxyzlij is calculated by convolving a feature map of the
previous layer with a kernel of the current layer. In this
process, the number of feature maps in the previous layer will
be multiplied by the number of kernels in the current layer
which will produce as many feature maps as the output of the
l-th convolution layer. Therefore, 3D convolution can preserve
the spectral information of the input data.

After the convolution operations between the kernels and the
spectral cubes, the intermediate feature maps pass through the
pooling layers and the activation functions. Finally, the feature
maps consisting of the data cubes are flattened into a feature
vector and feed into a fully-connected layer which extracts the
final learned deep spectral-spatial features. The output is later
fed to a simple linear classifier such as softmax function to
generate the required classification result. The entire network
is trained using the standard back propagation algorithm. Fig. 2
illustrates the working flow of the 3D CNNs used in our
proposed framework. After the CNN training, the learned
parameters θλ contain information distinct to each band group
along the spectral channel λ ∈ B. Such representation is very
useful for deep learning framework as the model will be able to
receive as much information as required to identify interesting
patterns within the data. The procedure of obtaining spectral-
spatial features by CNN is summarized in Algorithm 1.

The resulting 3D features map is used to formulate our
proposed deep CRF as explained in section III.

A. Addition of Virtual Samples

In many occasions, substantial number of weights in a CNN
introduces local minima in the loss function and eventually
restricts the classification performance. To overcome this issue,
large amount of samples can be used to update weights during
the training procedure. Unfortunately, the process of obtaining
samples, which normally requires manual labelling, is time
consuming and expensive. In remote sensing applications, the

4

Fig. 2. Working flow of 3D CNNs. (a) The original Hyperspectral cube with B bands. (b) Different band groups consisting of L bands (L � B) representing
our input. (c) Resulting feature maps after C1 convolution. (d) Resulting final feature map after applying series of convolutional, pooling and activation
function layers. (e) Classification map (f) Segmentation map after applying 3D CNN-based deep CRF. (g) Segmentation map after applying deconvolution.

Algorithm 1 3D-CNN Training Algorithm
Input: T Input Samples {X1, X2,. . . ,XT }, T target labels

in {Y1, Y2,. . . ,YT }, number of BP epochs R
1: for Each subcube M ×N × L in λ do
2: while epoch r : 1→ R do
3: while training sample i : 1→ T do
4: Perform convolution operations using Eq. (1) to

generate intermediate feature maps.
5: Compute Soft-max activation a = exp(o)∑

k exp(ok)
;

where o is the output of the final layer of the
network and first input to softmax classifier

6: Compute error E = yi-a
7: Back-propagate error to compute gradient δE

δoj
8: Update network parameter θλ using gradient de-

scent ∆wij = −η δE
δwij

where η is the learning rate
9: end while

10: end while
11: end for

Output: Trained CNN parameters θλ

number of available training samples is usually limited. This
imposes a great deal of challenges to the adoption of a deep
network model.

To address this issue, the size of the training samples can
be augmented by virtually sampling from the existing labelled
samples. Remote sensing scenes generally cover large areas
where pixels belonging to same class in different locations
fall under different radiations. We can simulate this lighting
condition in order to generate virtual samples by multiplying
with a random factor and also adding a gaussian noise.
A virtual sample y(λ) is therefore generated from two real
samples of the same class represented by xi(λ) and xj(λ) along
the spectral channel λ ∈ B by

y(λ) = αixi(λ) + (1− αi)xj(λ) + β (2)

where α indicates the effects of light intensity, which vary
under different atmospheric conditions and β is the added
random Gaussian noise, which may result from the interactions
of adjacent pixels.
y(λ) is assigned with the same class label as αixi(λ) since

the hyperspectral characteristics of the new fused virtual sam-

ple shall be sitting between xi(λ) and xj(λ) which belong to the
same class. Moreover, we generate virtual samples within band
groups and hence, they give us multiple spectral information of
the same sample from different wavelengths so as to further
augmenting the training data. We insert these new samples
into separate images by replacing the real samples which are
used for the fusion. The original image containing the limited
number of real samples and the augmented images containing
the virtual samples obtained from different wavelengths are
used for training the CNN.

We further augment the training samples by transforming
the sample pixels using rotation (90◦, 180◦, 270◦) and flipping
operations. This leads to 7 combinations which significantly
increase the amount of training data. Finally, the smaller
number of real samples and the augmented virtual samples,
generated by both sample fusion and transformation opera-
tions, are used together to train the CNNs. During the training
of the CNNs, part of the total number of real and virtual
samples are used for learning the weights of the neurons and
the rest are used for validating and updating the architecture.

III. CONSTRUCTING DEEP CRFS FOR SEGMENTATION

After applying 3D CNN into our original data, we obtain
initial classification outcome from the final feature map gener-
ated by the CNN. In many cases, CNN can effectively discover
spatial structures among the neighboring patches of the input
data, which generates smooth classification maps generally in
spite of not modeling the neighborhood dependencies directly.
However, it still encounters several problems such as

• There are holes or disconnected regions in the classifica-
tion map obtained by a CNN due to the occurrence of
reaching local minima during the training.

• CNN is generally limited by the absence of shape and
edge constraints. The final segmentation may appear
rough on edges of some regions or objects.

• In hyperspectral remote sensing, cloud shadows and
topography cause variations in the spectral responses
and influence the contrast of regions, which generates
incorrect classes in images. As a result, the CNN some-
times recognizes only parts of the regions, particularly as
observed in the Griffith-USGS dataset.

5

To resolve such critical issues, an additional step of seg-
mentation will contribute greatly in improving the initial clas-
sification output and produce much refined segments across
the image. We, therefore, propose an end-to-end modelling
approach by integrating CRF with CNN in order to utilize
the properties of both CNN and CRF to better characterize
the spatial contextual dependencies between the regions. We
believe that such end-to-end learning approach is very suitable
for hyperspectral image analysis as the integrated models will
make full use of the spatial relationships among spectral cubes
to perform the segmentation. This is the motivation of our
work.

In this section, we briefly explain the working principles of
this deep CRF employed in our framework. The deep CRF
model was motivated by the work of Lin et al. [33] which
works on color or grayscale images. We have significantly
extended this model to cope with the spectral dimension of
the data. CRF is an undirected probabilistic graphical model.
It has powerful reasoning ability and is able to train complex
features. During the training, CRF makes full use of the spatial
contextual information in the process which is very relevant
and useful in hyperspectral applications.

In this paper, we propose a deep CRF that will further
analyses the output obtained by the 3D CNN described in
the previous section. It is important to note that the output
provided by the 3D CNN is in the form of 3D feature
maps whose individual location is defined by spatial co-
ordinates along the spectral domain. We define these spectral-
spatial locations as voxels. Our proposed deep CRF is capable
of modelling these voxel-neighborhoods, therefore making it
ideal for processing hyperspectral data. The parameters of the
deep CRF used in our method were trained by stacks of CNNs
applied on the initial feature map. However, instead of using
group of bands, the CNNs used in the deep CRF consider the
entire spectral channels together as input to the network since
the initial feature map is already a powerful representation of
local spectral-spatial features with different wavelength ranges.

The nodes in the CRF graph correspond to each voxel in the
feature map along the B bands. The labels of the voxels are
given by l ∈ Y . Later, edges are formed between the nodes
which construct the pairwise connections between neighboring
voxels in the CRF graph by connecting one node to all other
neighboring nodes. The CRF model can be expressed as

P (l|v(d,λ); θλ) =
1

Z(v(d,λ))
exp(−E(l, v(d,λ); θλ)) (3)

where the network parameters θ along different wavelengths
λ shall be learned. E(l, v(d,λ); θλ) is the energy function that
models how compatible the input voxel v is. v is defined by
spatial co-ordinates d = {x, y} along the spectral domain
λ and is with a particular predicted label l. Z(v(d,λ)) =∑
exp[−E(l, v(d,λ); θλ)] is the partition function. In order

to combine more useful contextual information, we should
model the relationships between the voxels in the CRF graph.

Therefore, the energy function can be expressed as

E(l, v(d,λ); θλ) =
∑
p∈M
λ∈B

φ(lp, vp; θλ)+
∑

(p,q)∈N
λ∈B

ψ(lp, lq, vp, vq; θλ)

(4)
where M is the total number of voxels/nodes and N is
the total number of edges between the nodes in the CRF
graph. Here φ is a unary potential function calculated for
individual voxels, and ψ is a pairwise potential function which
is determined based on the compatibility among adjacent
voxels. In our method, we used 4-connectivity to connect
each node horizontally and vertically with four neighboring
nodes that have the spatial coordinates (x±1, y) or (x, y±1)
instead of connecting all other nodes in order to reduce the
computational complexity.

A. Unary potential functions

In our deep CRF model, we apply stack of 3D CNNs and
generate feature maps and a fully connected layer to produce
the final output of the unary potential at each individual
voxel along λ. The stack of 3D CNNs was applied on the
node feature vectors, obtained from the initial feature map,
to calculate the unary potential for each individual voxel
representing nodes in the CRF graph.

The unary potential function φ is computed as follows:

φ(lp, vp; θλ) = −logP (lp|vp; θλ) (5)

It is important to note that the network parameters θλ are
adjusted in the first CNN according to λ for different band
groups that provide much useful and discriminative informa-
tion about the data. However, during the deep CRF training,
θλ are adjusted in the stack of CNNs along the entire spectral
channels as they no longer are grouped into groups of bands.

B. Pairwise potential functions

The pairwise potential functions are calculated by consider-
ing the compatibility between the pair of voxels for all possible
combinations (in our case, four adjacent voxels). As the first
CNN applied to the original image gives us the feature vector
for individual voxels in the feature map, therefore, the edge
features can be formed by concatenating the feature vectors of
two adjacent voxels [37]. Stack of 3D CNNs are then applied
on the edge feature vectors which eventually gives us the
pairwise potential output. The pairwise potential function is
expressed as follows:

ψ(lp, lq, vp, vq; θλ) = µ(vp, vq)δp,q,lp,lq (fp, fq; θλ) (6)

Here µ() is the label compatibility function which encodes
the possibility of the voxel pair (vp, vq) being labeled as
(lp, lq) by taking the possible combinations of pairs. δp,q,lp,lq
is the output value of the CNNs applied to the pair of nodes
that are described by the corresponding feature vectors fp,fq
previously obtained by the initial CNN. θλ contains the CNN
parameters to be learned for the pairwise potential function
along the whole spectral channels λ.

After the unary and pairwise potentials from the deep CRFs
are obtained, future instances of test images can be segmented

6

by performing a CRF inference on our model, for which a
mean-field inference algorithm is adopted.

C. Mean-field Inference

CRF inference is performed on our deep model to obtain
the final prediction of a test image. By minimizing the CRF
energy, we obtain the most probable label assignment for the
voxels. But in practice, due to large number of parameters
contained in the CRF energy function for both unary and pair-
wise potentials, this exact minimization is nearly impossible.
To this end, the mean-field approximation algorithm [34] is
used to calculate the CRF distribution for maximum posterior
marginal inference. This is implemented by approximating the
CRF distribution P (v) by a simpler distribution Q(v) which is
expressed as the product of independent marginal distributions.

In this CRF model, we use two Gaussian kernels that operate
in the feature space defined by the intensity of voxel v at
coordinates d = {x, y} and the spectral band λ. For the
task of segmentation, we use those two-kernel potentials [34]
defined in terms of the feature vectors fp and fq for two
voxels vp and vq . The first term of this potential expresses the
size and shape of the voxel-neighborhoods to encourage the
homogeneous labels. The degree of this similarity is controlled
by a parameter θα. This term is defined by

k(1)(fp, fq) = w(1)exp

− ∑
d∈{x,y}

|vp,d − vq,d|2

2θ2α,d

 (7)

This kernel is defined by two diagonal covariance matrices
(one for each axis) whose elements are the parameters θα,d.

The second term of the potential is similar, only an ad-
ditional parameter γ is used for interpreting how strong the
homogeneous appearances of the voxels are in an area defined
by spatial co-ordinates d across the spectral channels λ. It is
defined by

k(2)(fp, fq) = w(2)exp(−
∑

d∈{x,y}

|vp,d − vq,d|2

2θ2α,d

−
∑
λ∈B

|vp,λ − vq,λ|2

2θ2γ,λ
) (8)

where |vp,d − vq,d| is the spatial distance between voxels p
and q and |vp,λ − vq,λ| is their difference across the spectral
domain. The influence of the unary and pairwise terms can be
adjusted with their weights w(1) and w(2).

The inference algorithm in [34] works in an iterative man-
ner. The first step is initialization in which a soft-max function
over the unary potential across all the labels for individual
voxels is performed. The second step is message passing which
applies convolutions with the two Gaussian kernels defined
above on the current estimation of the prediction of the voxels.
This reflects how strongly two voxels vp, vq are related to
each other. By using back propagation, we calculate error
derivatives on the filter responses. The next step is to take
the weighted sum of the filter outputs for each label of the
voxels. When each label is considered, it can be reformulated
as the usual convolution of filter with input voxels and the

output labels. The error can be calculated since both inputs and
outputs are known during the back-propagation. This allows
an automatic learning of filter weights. Next, a compatibility
transform step is performed followed by adding the original
unary potential for each individual voxel obtained from the
initial CNN. Finally, the normalization step of the iteration
can be expressed as another softmax operation which gives us
the final labels for the segments. Algorithm III-C summarized
the important stages of our deep CRF approach to segment
the image.

Algorithm 2 Deep CRF
Input: 3D feature map obtained from Algorithm 1, M

voxels in {v1,v2,. . . ,vM}
1: for Each v in M do
2: Add v in CRF graph
3: for Each vi,vj do
4: if vi is adjacent to vj then
5: Connect edge between vi and vj in CRF graph
6: end if
7: end for
8: end for
9: for Each v in M do

10: Compute unary potential function φ using Eq. (5)
11: end for
12: for Each vp,vq in N do
13: Compute pairwise potential function ψ using Eq. (6)
14: end for
15: Compute two-kernel potentials using Eqs. (7) and (8)
16: Train CRF using Eqs. (12), (13) and (14)
17: Execute Mean-Field inference algorithm

Output: Segmented regions

A segmentation map can be obtained from this step which
suffers from low-resolution representation of inaccurate object
boundaries due to repeated use of pooling layers during
CNN training. To overcome this problem, we further employ
deconvolution network during the CRF pairwise potential
computation and produce refined output in the segmentation
stage. We present the basic formulation of deconvolution and
the reasons of using it in section IV.

IV. PREDICTION

A convolution network has repeatedly used pooling layers
in order to reduce the input image size which restricts the
prediction performance of the network to some extent. It is not
always possible to reconstruct a high-resolution representation
of object boundaries accurately. As a result, low-resolution
prediction of the original input image is produced in the
prediction stage by CNN that eventually affects the CRF
segmentation as well. To overcome this problem and further
improve the prediction, we employed deconvolution network
during the CRF pairwise potential computation to produce
refined output in the segmentation stage.

A. Prediction refinement with deconvolution network
To obtain a high-resolution segmentation map from the

mean-field inference, we add a deconvolution network [30]

7

into our framework. Although the use of deconvolution can
be found in the literature, the learning of deconvolution is not
very common. In our method, we learn a deep deconvolution
network, which is composed of deconvolution, unpooling, and
rectified linear unit (ReLU) layers [32].

1) Unpooling: Pooling operation in a convolution network
is very common. Pooling improves classification performance
by filtering noisy activations in the lower layers and retaining
activations in the upper layers only. It can abstract activations
in a receptive field with a single value. Unfortunately, spatial
information within a receptive field is lost during pooling. As
a result, accurate localization that is required for image seg-
mentation is not always possible. To overcome this problem,
unpooling layers are used in the deconvolution network, which
does the exact reverse operation of the pooling layers. During
the CRF pairwise training, unpooling operation produces a
finer resolution of an object by reconstructing the original size
of the input data and thus restoring the detailed structures of
the object of interest. Generally, unpooling operation keeps
track of the locations of maximum activations which were
selected during the pooling operation. This information can
be very useful in placing the activations back to their original
pooled location.

2) Deconvolution: The unpooling operation produces a
large activation map which is not regular in nature. Although
deconvolution operation is similar to convolution operations,
it actually assigns a single input with multiple outputs unlike
convolution operation which connects multiple inputs within
a filter window or patch to a single activation value [30],
[19]. This operation produces a much denser activation map
compared to the sparse activation map obtained earlier. The
filters used during deconvolution operation help in strength-
ening the activations that are close to the target classes
and also suppressing the noisy activation from the regions
containing different classes. As a result, different layers of
the deconvolution network can help in reconstructing shapes
in different levels. The filters used in lower layers may help in
reconstructing the overall shape of an object while the higher
layer filters can help in more class-specific details of an object.
Therefore, more refined and accurate segmentation outcome
can be obtained by the use of deconvolution network.

In the proposed algorithm, we incorporate deconvolution
into the CNN training only during the deep CRF training.
This is because we want to produce a final dense segmentation
map with class-specific information in it instead of simply
applying it on low-resolution activation map as a separate step.
The integration of deconvolution during the pairwise potential
calculation of the deep CRF training particularly helps in
improving the segmentation accuracy to a larger extent. The
combination of unpooling, deconvolution, and rectification
operations during the final CNN training of the deep CRF
model contribute much in formulating the pairwise relations
between image patches and improving the final segmentation
performance.

V. CRF TRAINING

Exact maximum-likelihood training for undirected graphical
models is intractable as the computation involves marginal

distribution calculation of the model. This is even more com-
plex for conditional training when we are required to predict
certain l given observed input voxel v. This eventually leads
the decision of optimizing P (l|v) instead of p(l, v). Parameter
estimation in CRFs can be performed by maximizing the log
likelihood of a training input-output pair (v, l) as previously
defined in Equation (3) and Equation (4). For the proposed
CNN based CRF, the objective function for the CRF can be
defined as

∇(θ) =
∑
p∈M

(p,q)∈N×N
λ∈B

φ(lp, vp)ψ(lp, lq, vp, vq)− Z(v; θλ) (9)

Although such maximization of log-likelihood of (v, l) im-
proves performance, the conditional training is expensive
because the calculation of the log partition function Z(v)
depends on the model parameters as well as on the input
voxels along the spectral channels. Therefore, estimating CRF
parameters must include approximating the partition function
for each iteration during the training phase in the stochastic
gradient descent (SGD) method. This gets more complicated
when a large number of iterative steps are required for SGD
during the CNN training. Therefore, an efficient CRF training
is desirable in order to reduce the computational complexities.

In order to efficiently train a large model, we can divide the
entire model into pieces and then independently train those
pieces. Later, we can combine the learned weights from those
pieces and use it for testing purposes. This idea, known as
piecewise training, was discussed in [38].

A proposition was defined and proved in [38] about the
piecewise estimator that maximizes a lower bound on the true
likelihood. It says:

Z(A) ≤
∑
e

Z(A|e) (10)

Here, A|e is the vector A with zeros in the entries that do not
correspond to the edge e. Therefore, the piecewise objective
function for CRF can be defined for a training input-output
pair (v, l) as:

∇(θ) =
∑
p∈M

(p,q)∈N×N
λ∈B

φ(lp, vp)ψ(lp, lq, vp, vq)−
∑

(p,q)∈N×N

Z(v; θλ)

(11)
According to the proposition in Equation (10), for each v,
the bound needs to be applied separately which removes the
requirement of marginal inference for gradient calculation.
This idea can be incorporated into CRF training with CNN
potentials. We can formulate P (l|v) as a number of indepen-
dent likelihoods on both unary and pairwise potentials

P (l|v; θλ) =
∏
φ

∏
p∈M

Pφ(lp|v; θ)
∏
ψ

∏
(p,q)∈N×N

Pψ(lp, lq|v; θλ)

(12)
Both Pφ(lp|v; θλ) and Pψ(lp, lq|v; θλ) can be calculated from
unary and pairwise potentials respectively.

Pφ(lp|v;λ) =
exp[φ(lp, v; θλ)]∑
l′p
exp[φ(l′p, v; θλ)]

(13)

8

Pψ(lp, lq|v; θλ) =
exp[ψ(lp, lq, v; θλ)]∑
l′p,l

′
q
exp[ψ(l′p, l

′
q, v; θλ)]

(14)

As suggested by the piecewise CRF training evaluation func-
tion, it is not required to compute the partition function
anymore and we only need to calculate the log likelihood
of Pφ and Pψ . As a result, the gradient calculation can be
performed without partition function, thus saving expensive
inference.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on real-
world hyperspectral remote sensing images. Then we analyse
the performance of the proposed method in comparison with
several alternatives.

A. Hyperspectral Image Datasets

In the experiments, we used two widely used hyperspectral
datasets, i.e., Indian Pines and Pavia University, in order to
evaluate the effectiveness of our proposed method.

1) Indian Pines: Indian Pines data was acquired by the
Airborne Visible/Infrared Spectrometer (AVIRIS). It consists
of 145×145 pixels and 220 spectral reflectance bands in the
wavelength ranging from 0.4 − 2.5 × 10−6 meters and has
a spatial resolution of 20 meters. The number of bands was
reduced to 200 by removing water absorption bands. Sixteen
different classes on land-cover were considered in the ground
truth.

2) Pavia University: Pavia University dataset was collected
by Reflective Optics System Imaging Spectrometer (ROSIS-
3). It consists of 610×340 pixels and 115 spectral reflectance
bands in the wavelength ranging from 0.43 − 0.86 × 10−6

meters and has a spatial resolution of 1.3 meters. The number
of bands was reduced to 103 by removing noisy bands. Nine
different classes on land-cover were considered in the ground
truth. Fig. 3 shows randomly chosen bands extracted from
Indian Pines and Pavia University datasets.

Fig. 3. Sample bands from (a) Indian Pines (b) Pavia University

3) A New Dataset: For better evaluation of our proposed
method, we created a new dataset by collecting AVIRIS
images from the USGS database1. After downloading data
available in the USGS website, we performed a subsequent
pre-processing step to make the images compatible for use in
hyperspectral image analysis. After that, we manually labeled

1https://earthexplorer.usgs.gov/

Fig. 4. Image instances from the new dataset Griffith-USGS

the images. The details on the construction of this dataset are
described in Section VI-B.

We separated our experiments into two stages: classification
and segmentation. For both tasks, we compared our results
with state-of-the-art methods to evaluate the usefulness of our
proposed algorithm. The details of our experiments will be
presented later.

B. Construction of the new dataset

In the official AVIRIS website2, we downloaded remote
sensing data located in the region of north America spanning
over the United States of America, Canada and Mexico. We
used the data acquisition tool provided by the website for
selecting the regions from where data need to be extracted.
The AVIRIS sensor collects data that can be used for char-
acterization of the Earth’s surface and atmosphere from ge-
ometrically coherent spectroradiometric measurements. With
proper calibration and correction for atmospheric effects, the
measurements can be converted to ground reflectance data
which then can be used for quantitative characterization of
surface features.

In our research, we downloaded 19 scenes to build the
training and testing sets for deep learning. We cropped those
scenes into a number of individual portions to build 25 training
images and 35 testing images. As we captured scenes from
multiple locations, the spatial resolutions of the scenes used in
this dataset range from 2.4 to 18 meters. Each image consists
of approximately 145×145 pixels. Fig. 4 shows two instances
from the training set of our new dataset Griffith-USGS.

C. Pre-processing

After collecting the AVIRIS image data, the following step
was to undertake some pre-processing tasks in order to convert
images into a suitable form for proper use. Hyperspectral
sensors should be spectrally and radiometrically calibrated
before data analysis. NASA/JPL has already processed the
AVIRIS data to remove geometric and radiometric errors
associated with the motion of the aircraft during data col-
lection. However, the data should be further corrected for
atmospheric effects and converted to surface reflectance prior
to scientific analysis. To do the conversion, we used a tool

2https://aviris.jpl.nasa.gov/alt locator/

9

TABLE I
ARCHITECTURE OF THE CNNS

Dataset Classification Segmentation
Layer Pooling Layer Pooling

Indian Pines

1
2
3
4
5
6
7

2×2 1
2
3
4

2×2
No
No
2×2

2×2
No
No
2×2
No
2×2

Pavia University

1
2
3
4
5
6

2×2 1
2
3

2×2
No
2×2

2×2
No
No
2×2
No

Griffith-USGS

1
2
3
4
5
6

2×2 1
2
3

2×2
No
No

2×2
No
No
2×2
No

‘’FLAASH” [39] provided by ENVI. FLAASH is a model-
based radiative transfer program to convert radiance data to
reflectance. Developed by Spectral Sciences, Inc., FLAASH
uses MODTRAN4 radiation transfer code to correct images.

D. Manual Labelling

After obtaining the reflectance data, the next step was
to create the training and testing datasets accordingly. The
data that we obtained from AVIRIS were not labeled. As
our method relies on a supervised training approach, it was
important to construct a labeled set in order to fit into our
proposed framework. For this purpose, we performed a pixel-
wise manual labeling on the images. To increase the size of
the training set, we cropped smaller portions from the original
image. We made sure that the cropped portion should contain
instances of at least few classes that we want to segment. We
created a training set containing six classes, including road,
water, building, grass, tree and soil. The labeling was done
with the help of high-resolution color images in Google Earth.

E. Design of the CNNs

As mentioned before, we used spectral cube-based CNN in
this method that learns both spectral and spatial features. In
this section, we elaborate the design of all the CNNs used in
various stages of our framework.

For each CNNs used in our method, we used 32 5× 5× 5
convolution kernels. Depending on the datasets and the clas-
sification and segmentation stages, we adopted four to seven
convolution layers and two to four pooling layers with 2× 2
pooling kernel in each layer. The analysis on the selection
of convolution layers is provided later. ReLU layers were
used for all datasets as well. All layers were trained using
backpropagation/SGD. The architecture of the CNNs used in
our method is explained in Table I.

The ReLU layer cuts off the features that are less than 0.
The pooling layers reduces the size of the feature maps. The

size of the mini-batch is set to 100. For the logistic regression,
the learning rate is set to 0.003 for Indian Pines, 0.01 for
Pavia University and 0.005 for our new dataset. The number
of epochs was 700 in classification and 500 in segmentation
for Indian Pines, 600 in classification and 500 in segmentation
for Pavia University and for Griffith-USGS. The weights are
randomly initialized and gradually trained using the back prop-
agation algorithm. Each convolution kernel extracts distinct
features from the input and with the weights being learned.
The features convey meaningful structural information about
the data. Different kernels used in the convolution layers are
able to extract different features on the way to form a powerful
representation.

F. Results and Comparisons
In this paper, we intended to establish a meaningful connec-

tion between the tasks of classification and segmentation. The
increasing demands of critical image analysis tasks such as
improving the quality of the segmentation results introduce the
importance of employing multiple cues regarding the image
structure. In this regard, pixel-wise classification provides
useful input for the task of segmentation in terms of generating
an effective spectral-spatial structure representation of the
hyperspectral data. These initial inputs guide the subsequent
process of constructing deep CRF for segmentation. It is, in
fact, a common practice to use classification as an initial
step for performing segmentation [10], [40]. It is also a
common practice to compare the accuracy of classification
and segmentation in hyperspectral remote sensing [41], [10].

To begin with, we evaluated the effectiveness of the first
part of our framework which includes the execution of CNN
over the spectral cubes of the image that eventually results
in the classification step. For this purpose, we compared this
part to an SVM-based classification algorithm [42] which itself
is divided into two parts: (1) SVM with composite kernel
(SVM-CK) and (2) SVM with generalized composite kernel
(SVM-GCK). We compared our results with SVM-GCK as it
outperformed its counterpart SVM-CK.

We also compared our method with a spatial-spectral-
based method (MPM-LBP-AL) [41]. In this method, active
learning (AL) and loopy belief propagation (LBP) algorithms
were used to learn spectral and spatial information simul-
taneously. Then the marginal probability distribution were
exploited, which used the whole information in the hyper-
spectral data. We made comparisons with another supervised
method (MLRsubMLL) [10] that integrated spectral and spa-
tial information into a Bayesian framework. In this method, a
multinomial logistic regression (MLR) algorithm was used to
learn the posterior probability distributions from the spectral
information. Moreover, a subspace projection method was
used to characterize noisy and mixed pixels. Later, spatial
information is added using a multilevel logistic MRF prior.
Along with this, we also reported the performance of a
recent work developed by Chen et al. [20] who proposed
classification methods based on 1-D, 2-D and 3-D CNNs.
To fit into our method, we simply compared with their 1-D
CNN (1D-CNN-LR) and 3-D CNN (3D-CNN-LR) approaches
which used logistic regression (LR) to classify pixels.

10

We chose limited samples for training since we want to
simulate the real-world cases where the size of labelled data is
small. For our experiments, we chose 3 samples per class in the
extreme case and continued investigating on different numbers
of training samples per class, from 5 to 15. To improve the
classification performance and to avoid overfitting problem,
we increased the size of the training samples by augmentation
discussed in section II-A. We used those limited real samples
for augmenting the training set and the rest of the real samples
were included in the testing set. Classification performance
varied to a significant extent according to the selected training
samples since samples with good/bad representations affected
the performance. Also, during the CNN training, we used 90%
of the total number of training samples, consisting of limited
number of real samples and augmented samples, to learn the
weights and biases of the neurons and the rest of the 10% to
validate and further update the design of the architecture.

For performance evaluation, we calculated the overall accu-
racy (OA) and average accuracy (AA) with the corresponding
standard deviations. We repeated our experiments for ten times
over the randomly split training and testing data. Furthermore,
we assessed the statistical significance of our results by
applying binomial test in which the assessment was done by
computing the p-value from the paired t-test. We set the con-
fidence interval to 95% which declares statistical significance
at p < .05 level. Table II reports the pixelwise CNN-based
classification results on Indian Pines, Pavia University and
Griffith-USGS datasets with 15 real samples per class and
augmented samples for training. The results show that our
method achieved similar accuracy as 1D-CNN-LR [20]. Both
methods outperformed other pixel-wise classification methods
and were statistically significant in most cases. Therefore, we
can conclude that the CNN-based approaches can effectively
improve the classification accuracy.

As described before, we proposed to perform CNN-based
classification on spectral cubes instead of pixel-wise classifi-
cation. Table III reports 3-D CNN-based classification results
on Indian Pines, Pavia University and Griffith-USGS datasets
with 15 samples per class and augmented samples for training.
By keeping the CNN parameters the same as in the pixel-
based classification experiments, it is evident from the results
in Tables II and III that the classification accuracy can be
significantly improved with spectral cube-based representation.
The reason is that 3D operation better characterizes the spatial
and structural properties of the hyperspectral data. Both our
method and 1D-CNN-LR [20] outperform the rest of the meth-
ods, showing the power of deep neural networks. Our method
significantly outperforms 1D-CNN-LR [20] on Griffith-USGS
dataset, which proves the usefulness of the proposed paradigm.

Since it is a common practice to compare the accuracy of
classification and segmentation in hyperspectral remote sens-
ing [41], [10], we evaluated the effectiveness of the later stages
of our framework with MLRsubMLL [10] and WHED [14]
which also included explicit segmentation stages. We further
report the improved accuracy of 3D-CNN-LR [20] since this
method included L2 regularization and dropout in the training
process to improve the initial coarse classification results and
produce more refined output. Similarly, we also report the

final accuracies obtained by MPM-LBP-AL [41] in which
active learning was used in the later stages of their algorithm
to improve the accuracy previously obtained by estimating
the marginal inference for the whole image. We tested the
usefulness of deconvolution by (1) running the method without
using deconvolution at all, (2) using deconvolution during CRF
unary potential calculation and (3) using deconvolution during
CRF pairwise potential calculation stage. It is important to
note that we prefer to include deconvolution into pairwise
potential calculation stage as this step plays a major role
in constructing accurate segments by connecting regions that
actually belong to the same segment. Therefore, we applied
deconvolution in the deep pairwise potential calculation stage
rather than using it in other stages.

Table IV reports the segmentation accuracies on three
datasets respectively. The results show that our algorithm
outperforms the methods MLRsubMLL [10], MPM-LBP-
AL [41], 3D-CNN-LR [20] and WHED [14]. The integrated
CNN-based pairwise potentials defined on both spatial and
spectral dimensions significantly improved the coarse-level
prediction rather than doing local smoothness. During our
experiments, we observed that the classification map produced
by the initial CNN was too coarse for the Griffith-USGS
dataset since we collected images from different scenes. Those
scenes varied significantly in terms of resolution and con-
trast, and hence introduced more challenges in producing a
refined segmentation map. After integrating CRF potentials,
an approximately 7% increase in accuracy was observed
(Table IV), leading to significant advantages over the baseline
methods. Deconvolution network is capable of improving of
the final output, particularly when it is used during the pairwise
potential calculation, by effectively improving the accuracy on
connecting regions that belong to the same segment. The idea
of integrating deconvolution into pairwise potential computa-
tion was supported by the results this option outperforms the
other two versions where deconvolution was not used at all
and was used in calculating unary potentials. The results are
presented in Table V.

Fig. 5 illustrates the classification and segmentation results
on the Indian Pines, Pavia University and Griffith-USGS
datasets respectively. The first and the second columns are the
ground truth and the initial classification map on each dataset
generated by 3D CNN, respectively. The third column contains
binary error maps obtained by comparing the classification
results with the ground truth. The white pixels indicate the
parts of the image that are incorrectly classified. The fourth
column shows the final segmentation outcome using deep CRF
and deconvolution, whose error maps are presented in the last
column. The differences between the binary maps represented
in columns (c) and (e) show that the number of incorrectly
segmented pixels are significantly decreased after introducing
the deep CRF. This suggests the usefulness of CNN-based
deep CRF with deconvolution for segmenting hyperspectral
images.

G. Performance Analysis and Parameter Settings
1) Effect of Few Spectral Bands: In our algorithm, we

propose to use few spectral bands instead of the whole

11

TABLE II
CLASSIFICATION ACCURACIES ON DIFFERENT DATASETS (PIXELWISE). A ‘*’ DENOTES THAT THE BEST AVERAGE ACCURACY (SHOWN IN BOLD) IS

SIGNIFICANTLY BETTER THAT THE ACCURACY ACHIEVED BY THE CORRESPONDING METHOD ACCORDING TO A STATISTICAL PAIRED T-TEST FOR
COMPARING CLASSIFIERS

Dataset SVM-GCK [42] MPM-LBP-AL [41] MLRsubMLL [10] 1D-CNN-LR [20] Proposed Method

Indian Pines OA (%) 87.53 ± 2.30 90.07 ± 1.76 85.06 ± 1.92 92.93 ± 1.44 92.59 ± 0.55
AA (%) 88.97 ± 0.54∗ 90.01 ± 0.77 86.00 ± 1.09∗ 93.05 ± 2.14 92.96 ± 1.01

Pavia University OA (%) 89.39 ± 2.19 84.70 ± 1.22 87.97 ± 1.54 92.35 ± 1.08 92.06 ±1.36
AA (%) 91.98 ± 1.23 85.97 ± 0.07∗ 89.31 ± 0.77∗ 93.17 ± 1.26 93.97 ± 0.30

Griffith-USGS OA (%) 67.33 ± 2.71 68.69 ± 0.91 68.05 ± 0.19 75.07 ± 1.23 75.97 ± 0.19
AA (%) 70.45 ± 1.49∗ 69.33 ± 1.01∗ 69.02 ± 0.77∗ 75.98± 1.30∗ 76.42 ± 0.83

TABLE III
CLASSIFICATION ACCURACIES ON DIFFERENT DATASETS (SPECTRAL CUBES). A ‘*’ DENOTES THAT THE BEST AVERAGE ACCURACY (SHOWN IN BOLD)

IS SIGNIFICANTLY BETTER THAN THE ACCURACY ACHIEVED BY THE CORRESPONDING METHOD ACCORDING TO A STATISTICAL PAIRED T-TEST FOR
COMPARING CLASSIFIERS.

Dataset SVM-GCK [42] MPM-LBP-AL [41] MLRsubMLL [10] 3D-CNN-LR [20] Proposed Method

Indian Pines OA (%) 90.70 ± 1.35 92.20 ± 1.82 90.66 ± 0.20 97.88 ± 0.48 98.29 ± 0.33
AA (%) 90.83 ± 0.32∗ 92.18 ± 1.21∗ 89.91 ± 2.30∗ 99.18 ± 0.06 99.20 ± 0.09

Pavia University OA (%) 96.14 ± 2.19 87.25 ± 1.26 93.91 ± 1.44 98.60 ± 0.07 99.12 ± 0.41
AA (%) 96.05 ± 0.11 89.09 ± 0.08∗ 92.00 ± 1.04∗ 99.53 ± 0.05 99.69 ± 0.03

Griffith-USGS OA (%) 73.97 ± 1.21 63.19 ± 1.99 68.88 ± 1.45 77.71 ± 0.87 83.05 ± 1.19
AA (%) 74.97 ± 0.46∗ 65.02 ± 0.97∗ 69.95 ± 1.45∗ 78.95 ± 0.37∗ 84.98 ± 0.86

TABLE IV
SEGMENTATION ACCURACIES ON DIFFERENT DATASETS. A ‘*’ DENOTES THAT THE BEST AVERAGE ACCURACY (SHOWN IN BOLD) IS SIGNIFICANTLY

BETTER THAN THE ACCURACY ACHIEVED BY THE CORRESPONDING METHOD ACCORDING TO A STATISTICAL PAIRED T-TEST FOR COMPARING
CLASSIFIERS.

Proposed Method
Dataset MPM-LBP-AL

[41]
MLRsubMLL

[10] WHED [14] 3D-CNN-LR
[20] Without

Deconvolution
Deconvolution
in Unary CRF

Deconvolution
in Pairwise CRF

OA (%) 92.91 ± 1.24 91.85 ± 0.83 90.15 ± 1.95 98.25 ± 0.78 98.38 ± 0.37 99.04 ± 0.03 99.15 ± 0.16Indian Pines AA (%) 92.35 ± 1.90∗ 91.95 ± 0.74∗ 90.85 ± 2.05∗ 99.27 ± 0.12 99.29 ± 0.24 99.35 ± 0.10 99.41 ± 0.04
OA (%) 92.19 ± 0.50 94.77 ± 1.09 87.85 ± 1.75 98.80 ± 0.28 99.23 ± 0.03 99.32 ± 0.13 99.63 ± 0.07Pavia University AA (%) 93.85 ± 0.16∗ 95.35 ± 0.71∗ 86.50 ± 2.56∗ 99.60 ± 0.07 99.63 ± 0.05 99.70 ± 0.06 99.79 ± 0.03
OA (%) 69.89 ± 1.47 74.29 ± 0.66 70.20 ± 2.33 82.53 ± 0.69 84.91 ± 1.02 86.00 ± 0.29 88.92 ± 0.17Griffith-USGS AA (%) 70.19 ± 2.47∗ 75.06 ± 1.20∗ 71.85 ± 2.50∗ 83.04 ± 0.91∗ 84.55 ± 1.36∗ 85.05 ± 1.05∗ 89.13 ± 0.74

TABLE V
EFFECT OF DECONVOLUTION.

Dataset
Accuracy (%)

Without
Deconvolution

Deconvolution
in Unary CRF

Deconvolution
in Pairwise CRF

Indian Pines 99.29 99.35 99.41
Pavia University 99.63 99.70 99.79
Griffith-USGS 85.55 86.92 89.13

spectrum to construct the spectral-spatial representation of our
hyperspectral data during the classification stage. We chose
to use fewer bands in order to better characterize a range of
spectral variability among the entire spectral signature of the
data. Although during the training of CNNs, the large number
of spectral cubes results in a large number of feature maps,
these are able to capture the local image information well
and in precise, as well as can contribute to describing the
underlying materials which are very significant for segmenting
hyperspectral images. Furthermore, we augmented training
samples from these band groups which (1) increased the
size of the training samples significantly and (2) generated
more effective spectral-spatial representation of samples from
different wavelengths. During the experiments, we observed
that with smaller spectral cubes, we were able to detect a

wider range of spectral information from our input data and
hence we achieved better classification accuracy than that of
using the entire spectrum. Moreover, we also analysed on the
number of optimal bands to be added in individual spectral
cubes by connecting this step with the data augmentation
process. Since different wavelength groups capture different
underlying material information, we choose the size of the
band groups by testing on a various group of bands and
measuring the corresponding accuracies. We discovered that
the optimal number of bands should be 25 for Indian Pines
and Pavia University, and 20 for Griffith-USGS. Table VI
shows the relative comparison between these two settings of
using spectral cubes for the initial classification by 3D-CNN.
The analysis of choosing the optimal number of bands for
respective datasets is given in Fig. 6 where the maximum
bands denote all the bands used for representing the spectral
cube.

2) Effect of Data Augmentation: We tested our method by
considering few number of training samples and then used data
augmentation to avoid the problem of overfitting. During the
experiments, we chose different numbers of training samples
and augmented the size accordingly. We observed that in-
creasing the numbers of training samples with augmented data
obtained from different band groups had evidently improved

12

Fig. 5. (a) Ground truth; (b) 3D CNN-based classification; (c) Difference map with ground truth; (d) Segmentation by deep CRF with deconvolution; and
(e) Difference map after final segmentation.

TABLE VI
EFFECT OF FEWER SPECTRAL CUBES

Dataset Accuracy (%) with
Whole Spectral Cube

Accuracy (%) with
Smaller Spectral Cubes

Indian Pines 96.80 ± 1.01 99.20 ± 0.09
Pavia University 97.80 ± 1.05 99.69 ± 0.03
Griffith-USGS 79.65 ± 0.65 84.98 ± 0.86

the overall performance of our algorithm. Moreover, we also
tested other methods with the same experimental settings and
noticed the improved performance achieved by those as well.
Figs. 7, 8 and 9 show the effect of various number of training
samples which were used in data augmentation in the over-
all classification accuracy computed from different spectral
cubes for all three datasets respectively. We also reported the
overall accuracies obtained by our proposed method with and
without augmenting data in Table VII for all three datasets
experimented. The accuracy increased significantly by data

Fig. 6. Classification results of different numbers of bands in spectral cubes.

augmentation. For instance, the accuracy improved by almost
35% when only 3 samples were used for training the CNNs. It
is quite evident from this analysis that the data augmentation
had eventually contributed in improving the performance of
the CNNs when limited training data are available.

13

TABLE VII
EFFECT OF DATA AUGMENTATION ON OVERALL ACCURACIES (%) FOR ALL THREE DATASETS

Number of
Training Samples

per Class

Indian Pines Pavia University Griffith-USGS
Without

Data Augmentation
With

Data Augmentation
Without

Data Augmentation
With

Data Augmentation
Without

Data Augmentation
With

Data Augmentation
3 19.91 57.89 13.66 39.55 14.25 37.95
5 27.57 70.34 22.58 58.44 18.30 54.21
7 30.63 80.91 29.95 73.65 25.81 64.93
9 35.28 86.60 37.05 83.12 30.05 71.16
11 39.05 90.48 41.15 92.45 33.80 78.35
13 43.85 96.87 43.75 97.41 39.44 82.38
15 47.90 98.89 46.65 99.12 43.25 86.25

Fig. 7. Overall accuracies with different numbers of training samples per
class for Indian Pines data.

Fig. 8. Overall accuracies with different numbers of training samples per
class for Pavia University data.

3) Effect of Depth in CNNs: An important observation can
be made from the results reported earlier in terms of the depth
of the networks. Undoubtedly, depth helps in improving the
classification accuracy but adding too many layers introduces
the curse of overfitting and may also downgrade the accuracy
as well. It is widely accepted that minimizing both training and
validation losses are important in a well trained network. If the
training loss is small and the validation loss is large, it means
that the network is overfitted and will not generalize well for
the testing samples. Therefore, we optimized the CNNs using
trial and error approach and determined the number of nodes
in the hidden layers, learning rate, kernel size and number

Fig. 9. Overall accuracies with different numbers of training samples per
class for Griffith-USGS data.

Fig. 10. Training and validation losses for Indian Pines data

of convolution layers. During the experiments, we started
with a small number of convolution layers and gradually
increase it. At the same time, we monitored the training
and validation losses as these are varying with the changing
number of layers. The effect of depth of the convolution layers
for the classification stage of our algorithm is illustrated in
Figs. 10, 11 and12 for the three datasets experimented.

4) Influence of depth in Kernels: The spectral depth of
kernels also plays an important role in the final segmentation
performance. Small receptive fields of convolution kernels
generally result in better performance because in this way
it is possible to learn finer details from the input. During
our experiments, we varied the spectral depths of the kernels
between three to nine. Fig. 13 shows that 5 × 5 × B is an
optimal size for all the three datasets. We found that a larger
size kernel such as 9 × 9 × B ignored and skipped some

14

Fig. 11. Training and validation losses for Pavia University data

Fig. 12. Training and validation losses for Griffith-USGS data

essential details in the images. On the other hand, a smaller
size kernel such as 3 × 3 × B provided overly detailed local
information and therefore, created confusions in classification
eventually. Hence, the determination of an optimal size of the
kernel is important in finding the most discriminative features
for classification.

5) Influence of ReLU: Compared to sigmoid functions,
ReLU obtains better performance in terms of both complexity
and accuracy [43] (shown in Table VIII). According to our
experiments, we found out that with ReLU, we achieved
convergence faster than sigmoid function. For Griffith-USGS,
CNN with ReLU reaches convergence almost two times faster
than the same network with sigmoid. Performance was also
consistently better for the other two datasets with ReLU.
Furthermore, the models with ReLU can lead to lower training
error at the end of training.

H. Analysis of Computation Cost

Here, we calculate the computational cost of segmenting
an image with our trained model. The total cost combines
the computational complexities for (1) generating an initial
classification obtained by CNN and (2) segmenting to refine
the performance by deep CRF. Generally, the convolution
operations impose a significant time constraint on the time
complexity of CNN which is computed in terms of the number
of convolution layers, number and size of kernels and size
of the intermediate feature maps [44]. The generated feature
map by CNN is formulated as a CRF graph in which the
voxels are represented as individual nodes. Therefore, the time
complexity of CRF is computed in terms of the number of

Fig. 13. Effect of spectral depth in convolution kernels

TABLE VIII
EFFECT OF RELU

Dataset Accuracy (%) Runtime (in minutes)
Sigmoid ReLU Sigmoid ReLU

Indian Pines 98.15 99.41 57 36
Pavia University 99.04 99.79 77 49
Griffith-USGS 85.97 89.13 912 512

edges between the nodes as well as the size of the label set,
which is quadratic in general. However, the use of highly
efficient approximations for high-dimensional filtering during
the message passing of mean field inference algorithm reduced
the time complexity to linear in the number of labels and in
the number of edges in the CRF model [34]. Hence, the total
time complexity of our algorithm is given by:

O

(
D∑
l=1

Kl−1.R
2
l .Kl.d

2
l

)
+O(N.Y) (15)

Here, l is the current convolutional layer, D is the number of
convolutional layers, Kl is the number of kernels in the l-th
layer, Kl−1 is also known as the number of input channels in
the l-th layer, Rl is the spatial size of the kernel and dl is the
spatial size of the intermediate feature maps. N is the number
of edges in the CRF graph formulated from the initial CNN
and Y is the size of the label set.

We compared the testing time for all methods included
in the experiments. Since the baseline methods used in our
experiments were implemented on CPU, therefore, for a fair
comparison, we also chose to run our algorithm on CPU in-
stead of GPU that is widely used for deep learning approaches.
All methods were implemented in Matlab and few C modules,
and run on a desktop computer with Intel Core i5-4570 @
3.2GHz 8G memory, with a Windows 7 system.

The results are shown in Table IX. The testing stage of the
deep learning algorithms are very fast and are close to the
time required by other baseline methods. This is an important
property for real applications as the model training can be
undertaken offline but the application of the trained model on
new data has higher efficiency requirements.

VII. CONCLUSION

We presented an efficient CRF-CNN based deep learning
algorithm for segmenting hyperspectral images. To utilize the
full strength of deep models for complex computer vision

15

TABLE IX
RUNNING TIME COMPARISON (MEASURED IN MINUTES)

Methods Dataset Testing Time
Indian Pines 0.63

Pavia University 0.91MPM-LBP-AL [41]
Griffith-USGS 0.93
Indian Pines 0.58

Pavia University 0.88MLRsubMLL [10]
Griffith-USGS 0.91
Indian Pines 0.77

Pavia University 1.14WHED [14]
Griffith-USGS 1.15
Indian Pines 0.91

Pavia University 1.123D-CNN-LR [20]
Griffith-USGS 1.09
Indian Pines 0.79

Pavia University 1.05Proposed Method
Griffith-USGS 1.08

tasks, we constructed a powerful spatial-spectral representation
of hyperspectral data. We applied 3D-CNN in a range of
more effective spectral-spatial representative band groups to
extract initial features. To further facilitate the segmentation
task, we integrated CRF with CNN into a common framework
in which the parameters of CRF are calculated using CNN,
therefore making it a deep CRF. The initial prediction results
coming from this CRF-CNN architecture was further improved
by using a deconvolution block inside of the CRF pairwise
potential calculations. Moreover, to overcome the problem of
over-fitting, we employed data augmentation techniques and
increased the size of training samples for training the CNNs.
This effectively improved the overall performance of our deep
network to a significant extent.

In summary, to achieve the improvement of the hyper-
spectral image segmentation performance, we proposed an
architecture containing several important efficient stages that
not only optimized the calculations of such computationally
expensive task but also improved the initial prediction results
obtained by the initial CNN algorithm. With this method,
we can fully exploit the usefulness of CRF in the context
of segmentation by integrating it completely inside of a deep
learning algorithm. We further evaluated the usefulness of our
method by comparing it with several state-of-the-art methods
and achieved promising results.

REFERENCES

[1] D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal
Processing Magazine, vol. 19, no. 1, pp. 17–28, 2002.

[2] J. Richards, Remote Sensing Digital Image Analysis: An Introduction,
Springer Berlin Heidelberg, NJ, USA, 5th edition, 2013.

[3] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyper-
spectral image classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 43, no. 6, pp. 1351–1362, 2005.

[4] M. Fauvel, Y. Tarabalka, J. Benediktsson, J. Chanussot, and J. Tilton,
“Advances in spectral-spatial classification of hyperspectral images,”
Proceedings of the IEEE, vol. 101, no. 3, pp. 652–675, 2013.

[5] P. Ghamisi, M. Mura, and J. Benediktsson, “A survey on spectral-spatial
classification techniques based on attribute profiles,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2335–2353, 2015.

[6] C. Deng, S. Li, F. Bian, and Y. Yang, Remote Sensing Image Segmen-
tation Based on Mean Shift Algorithm with Adaptive Bandwidth, pp.
179–185, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[7] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, “SVM and
MRF-based method for accurate classification of hyperspectral images,”
IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 736–
740, 2010.

[8] Y. Zhao, L. Zhang, P. Li, and B. Huang, “Classification of high
spatial resolution imagery using improved Gaussian Markov random-
field-based texture features,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 5, pp. 1458–1468, 2007.

[9] O. Eches, J. Benediktsson, N. Dobigeon, and J. Tourneret, “Adaptive
Markov random fields for joint unmixing and segmentation of hyper-
spectral images,” IEEE Transactions on Image Processing, vol. 22, no.
1, pp. 5–16, 2013.

[10] J. Li, J. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspectral
image segmentation using subspace multinomial logistic regression and
Markov random fields,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 50, no. 3, pp. 809–823, 2012.

[11] J. Li, J. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral
image segmentation using multinomial logistic regression with active
learning,” IEEE Transactions on Geoscience and Remote Sensing, vol.
48, no. 11, pp. 4085–4098, 2010.

[12] J. Yuan, D. Wang, and R. Li, “Remote sensing image segmentation
by combining spectral and texture features,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 1, pp. 16–24, 2014.

[13] D. Gills and J. Bowles, “Hyperspectral image segmentation using
spatial-spectral graphs,” in Algorithms and Technologies for Multispec-
tral, Hyperspectral, and Ultraspectral Imagery XVIII, 2012, vol. 8390,
pp. 83901Q–1–83901Q–11.

[14] Y. Tarabalka, J. Chanussot, and J. Benediktsson, “Segmentation and
classification of hyperspectral images using watershed transformation,”
Pattern Recognition, vol. 43, no. 7, pp. 2367–2379, 2010.

[15] K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. Benediktsson,
“Spectral-spatial classification of hyperspectral data based on a stochas-
tic minimum spanning forest approach,” IEEE Transactions on Image
Processing, vol. 21, no. 4, pp. 2008–2021, 2012.

[16] N. Kruger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater,
A. Rodriguez-Sanchez, and L. Wiskott, “Deep hierarchies in the
primate visual cortex: What can we learn for computer vision?,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no.
8, pp. 1847–1871, 2013.

[17] Y. Chen, X. Zhao, and X. Jia, “Spectral-spatial classification of
hyperspectral data based on deep belief network,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 8, no. 6, pp. 2381–2392, 2015.

[18] H. Lee and H. Kwon, “Going deeper with contextual CNN for hyper-
spectral image classification,” IEEE Transactions on Image Processing,
vol. 26, no. 10, pp. 4843–4855, 2017.

[19] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[20] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction
and classification of hyperspectral images based on convolutional neural
networks,” IEEE Transactions on Geoscience and Remote Sensing, vol.
54, no. 10, pp. 6232–6251, 2016.

[21] Shiqi Yu, Sen Jia, and Chunyan Xu, “Convolutional neural networks
for hyperspectral image classification,” Neurocomputing, vol. 219, pp.
88 – 98, 2017.

[22] W. Zhao and S. Du, “Spectral-spatial feature extraction for hyper-
spectral image classification: A dimension reduction and deep learning
approach,” IEEE Transactions on Geoscience and Remote Sensing, vol.
54, no. 8, pp. 4544–4554, 2016.

[23] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification
using deep pixel-pair features,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 2, pp. 844–853, 2017.

[24] S. C. Douglas, “A novel endmember, fractional abundance, and contrast
model for hyperspectral imagery,” in 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2013, pp. 2164–2168.

[25] A. Kirillov, D. Schlesinger, S. Zheng, B. Savchynskyy, P. Torr, and
C. Rother, “Joint training of generic CNN-CRF models with stochastic
optimization,” in 13th Asian Conference on Computer Vision, 2016, pp.
221–236.

[26] X. Chu, W. Ouyang, H. Li, and X. Wang, “Structured feature learning for
pose estimation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4715–4723.

[27] X. Chu, W. Ouyang, H. Li, and X. Wang, “CRF-CNN: Modeling
structured information in human pose estimation,” in Advances in Neural
Information Processing Systems, 2016, pp. 316–324.

16

[28] P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, “End-to-
end training of hybrid CNN-CRF models for stereo,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 2339–2348.

[29] F. Liu, G. Lin, and C. Shen, “CRF learning with CNN features for
image segmentation,” Pattern Recognition, vol. 48, no. 10, pp. 2983–
2992, 2015.

[30] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected CRFs,” in Proceedings of the International Conference on
Learning Representations, 2015.

[31] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr, “Conditional random fields as recurrent neural
networks,” in Proceedings of the 2015 IEEE International Conference
on Computer Vision, 2015, pp. 1529–1537.

[32] M. Zeiler, G. Taylor, and R. Fergus, “Adaptive deconvolutional networks
for mid and high level feature learning,” in Proceedings of the 2011
International Conference on Computer Vision, 2011, pp. 2018–2025.

[33] G. Lin, C. Shen, A. Hengel, and I. Reid, “Efficient piecewise training
of deep structured models for semantic segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 3194–3203.

[34] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
CRFs with gaussian edge potentials,” in Advances in Neural Information
Processing Systems, pp. 109–117. 2011.

[35] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing
data: A technical tutorial on the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40, 2016.

[36] Y. Li, H. Zhang, and Q. Shen, “Spectral spatial classification of
hyperspectral imagery with 3D convolutional neural network,” Remote
Sensing, vol. 9, no. 1, 2017.

[37] A. Kolesnikov, M. Guillaumin, V. Ferrari, and C. H. Lampert, “Closed-
form training of conditional random fields for large scale image segmen-
tation,” in Proceedings of the 13th European Conference on Computer
Vision), 2014, pp. 550–565.

[38] C. Sutton and A. McCallum, “Piecewise training for undirected
models,” in Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2005, pp. 568–575.

[39] “Fast line-of-sight atmospheric analysis of hypercubes (FLAASH),”
https://www.harrisgeospatial.com/docs/FLAASH.html.

[40] P. Kaiser, J. Wegner, A. Lucchi, M. Jaggi, T. Hofmann, and K. Schindler,
“Learning aerial image segmentation from online maps,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 55, no. 11, pp. 6054–6068,
2017.

[41] J. Li, J. Bioucas-Dias, and A. Plaza, “Spectral-spatial classification of
hyperspectral data using loopy belief propagation and active learning,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2,
pp. 844–856, 2013.

[42] J. Li, P. Marpu, A. Plaza, J. Bioucas-Dias, and J. Benediktsson, “Gen-
eralized composite kernel framework for hyperspectral image classifica-
tion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51,
no. 9, pp. 4816–4829, 2013.

[43] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems,
2012, pp. 1097–1105.

[44] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 5353–5360.

	I Introduction
	II 3D CNN for Hyperspectral Feature Representation
	II-A Addition of Virtual Samples

	III Constructing Deep CRFs For Segmentation
	III-A Unary potential functions
	III-B Pairwise potential functions
	III-C Mean-field Inference

	IV Prediction
	IV-A Prediction refinement with deconvolution network
	IV-A1 Unpooling
	IV-A2 Deconvolution

	V CRF Training
	VI Experimental Results
	VI-A Hyperspectral Image Datasets
	VI-A1 Indian Pines
	VI-A2 Pavia University
	VI-A3 A New Dataset

	VI-B Construction of the new dataset
	VI-C Pre-processing
	VI-D Manual Labelling
	VI-E Design of the CNNs
	VI-F Results and Comparisons
	VI-G Performance Analysis and Parameter Settings
	VI-G1 Effect of Few Spectral Bands
	VI-G2 Effect of Data Augmentation
	VI-G3 Effect of Depth in CNNs
	VI-G4 Influence of depth in Kernels
	VI-G5 Influence of ReLU

	VI-H Analysis of Computation Cost

	VII Conclusion
	References

