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ABSTRACT

The method of k-means cluster analysis is applied to U.S. wintertime daily 850-hPa winds across the

Northeast. The resulting weather patterns are analyzed in terms of duration, station, gridded precipitation,

storm tracks, and climate teleconnections. Five distinct weather patterns are identified.Weather type (WT) 1

is characterized by a ridge over the western Atlantic and positive precipitation anomalies as far north as the

Great Lakes; WT2, by a trough along the eastern United States and positive precipitation anomalies into

southern New England; WT3, by a trough over the western Atlantic and negative precipitation anomalies

along much of the U.S. East Coast; WT4, by a trough east of Newfoundland and negative precipitation

anomalies along parts of the U.S. East Coast; andWT5, by a broad, shallow trough over southeastern Canada

and negative precipitation anomalies over the entire U.S. East Coast. WT5 andWT1 are the most persistent,

while WT2 typically progresses quickly to WT3 and then to WT4. Based on mean station precipitation in the

northeastern United States, most precipitation occurs in WT2 and WT3, with the least in WT1 and WT4.

Extreme precipitation occurs most frequently in WT2. Storm tracks show that WT2 and WT3 are associated

with coastal storms, while WT2 is also associated with Great Lakes storms. Teleconnections are linked with a

change inWT frequency bymore than a factor of 2 in several cases: for the North Atlantic Oscillation (NAO)

in WT1 and WT4 and for the Pacific–North American (PNA) pattern in WT1 and WT3.

1. Introduction

Weather type (WT) analysis is a way to objectively

and compactly describe the climatology of main weather

patterns for a region. It can be used as a basis for

understanding a broad scale of relationships such as flow

patterns and the influence of teleconnections on those

patterns, as well as the progression from one weather

pattern to another. A common method of isolating

weather patterns involves the k-means clustering tech-

nique (Diday and Simon 1976; Ghil andRobertson 2002).

The goal of this paper is to objectively determine the

primary daily circulation patterns over the northeastern

United States during winter, and to examine their links

to known teleconnections, synoptic regimes, and pre-

cipitation. We use k-means clustering to determine

these patterns, which, given the daily time scale, we refer

to as ‘‘weather types.’’ The k-means technique has
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previously been shown to be useful in isolating circula-

tion patterns (Lana and Fernandez-Mills 1994; Sheridan

2002; Stahl et al. 2006; Coleman and Rogers 2007a,b;

Boé and Terray 2008), although it has not yet been ap-

plied to the northeastern United States. Objectively

defined WTs are useful in a range of applications, in-

cluding providing a context for dynamical analysis

(Straus et al. 2007; Moron et al. 2010; Qian et al. 2010),

serving as the basis for downscaling (Conway and Jones

1998; Moron et al. 2008; Demuzere et al. 2009), examin-

ing weather-relevant trends and projections (Riddle et al.

2013), and providing a basis for evaluating climatemodels

(Perez et al. 2014). Persistence and/or transitioning of

weather types can also be used in subseasonal to seasonal

climate variability and predictability studies, linking

weather and climate (Coleman and Rogers 2007a).

Here, we use WTs to better understand the link be-

tween synoptic patterns in the U.S. Northeast and the

larger-scale circulation. Extratropical storms play a

significant role in generating these synoptic patterns;

although Northeast storms have been analyzed in a

number of contexts (e.g., Stuart and Grumm 2006;

Notaro et al. 2006; Archambault et al. 2010), a WT

analysis, which provides an objective categorization and

considers all days, has not yet been done. We use the

WTs to identify patterns that are most likely to generate

extreme precipitation, and we analyze the persistence

and transitioning between theWTs to better understand

the bridge between synoptic-scale and large-scale in-

fluences. The link between the WTs and large-scale

circulation regimes is explored by investigating the re-

lationship of each WT to several important climate

teleconnections: the North Atlantic Oscillation (NAO),

Arctic Oscillation (AO), Pacific–North American (PNA)

pattern, and El Niño–Southern Oscillation (ENSO). A

brief summary of the teleconnections and their links to

Northeast weather follows.

The NAO pattern (Barnston and Livezey 1987) is

based on out-of-phase variations of sea level pressure

(SLP) or 500-hPa geopotential height anomalies be-

tween subpolar low pressure located over Greenland or

Iceland and subtropical Azores high pressure between

358 and 408N. The positive (negative) phase occurs when

lower (higher) than normal heights and pressure occur

in the North Atlantic and higher (lower) than normal

heights and pressure occur over the central North At-

lantic, eastern United States, and western Europe. The

pressure and height anomalies influence the location

and orientation of the North Atlantic jet stream, which

in turn influences storm-track locations over the North

Atlantic basin. Jones andDavis (1995) demonstrated that a

negative NAO increases the frequency of nor’easters.

Archambault et al. (2010) showed that a transition from

positive to negative NAO may be associated with the

occurrence of storms, and Serreze et al. (1997) noted

that there are a greater number of storms coincident

with Icelandic low pressure systems.

The daily AO pattern is based on the projection of

daily 1000-hPa height anomalies poleward of 208N onto

the leading empirical orthogonal function (EOF) mode

of 1000-hPa monthly mean height anomalies. The pos-

itive (negative) phase occurs when lower (higher) than

normal pressure occurs in the polar region and above

(below)-normal pressure occurs around latitude 458N,

resulting in a stronger (weaker) polar vortex. In the

positive (negative) phase, storm tracks are shifted north

(south) as the jet stream moves northward (southward)

and becomes stronger (weaker) (Rohli and Vega 2008).

The PNA pattern (Barnston and Livezey 1987) is

based on 500-hPa height anomalies over the North Pa-

cific and North America and is related to the variability

in strength and location of the East Asian jet stream. In

the positive (negative) phase, a stronger (weaker) East

Asian jet stream exit region is shifted eastward (west-

ward) in relation to eastern Asia. In the northeastern

United States, the positive (negative) PNA phase is re-

lated to lower (higher) height anomalies. Leathers et al.

(1991) found that there is a correlation between the

PNA and Northeast temperature and some correlation

between the PNA and Northeast precipitation. Notaro

et al. (2006) also found a connection between Northeast

precipitation and the PNA. However, Bradbury et al.

(2002) found no discernable connection between the

PNA and Northeast wintertime precipitation, temper-

ature, and snowfall.

ENSO is a mode of coupled variability between Pa-

cific trade winds and ocean temperature (Rasmusson

and Carpenter 1982) that has global weather impacts

(e.g., Ropelewski and Halpert 1987). The warm phase

(El Niño) features a more eastward extension of warm

waters toward the eastern Pacific, along with a stronger

than normal subtropical jet due to an eastward shift of

subtropical high pressure (Eichler and Higgins 2006),

whereas the cold phase (La Niña) features a stronger

than normal upwelling of cold waters in the eastern

Pacific (Rohli and Vega 2008). The resulting warm

(in warm phase) or cold (in cold phase) water tem-

perature anomalies just southwest of the U.S. West

Coast can affect downstream large-scale atmospheric

flow. However, there has been some disagreement as to

the overall effects of ENSO on the northeasternUnited

States. Several studies have suggested no clear link

to New England climate (Ropelewski and Halpert

1986; Kahya and Dracup 1993; Piechota and Dracup

1996), while others have suggested that El Niño is

linked to more East Coast storms (Hirsch et al. 2001),
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more heavy snow (Patten et al. 2003), more Gulf of

Mexico cyclones, and fewer Alberta clippers (Kunkel

and Angel 1999). La Niña has been linked to low

pressure systems over central western Canada (Rogers

1984; Trenberth and Caron 2000; Bradbury et al. 2003)

andmore storm tracks in theMidwest and St. Lawrence

regions (Kunkel and Angel 1999). Great Lakes ice

cover also appears to be affected, with the largest

ice cover occurring in neutral ENSO years (Bai

et al. 2010).

The remainder of this paper is organized as follows. In

section 2, we describe the data used and the k-means

clustering method that generates the wintertime WTs

for the northeastern United States. In section 3, we de-

scribe each resulting WT pattern in terms of 850-hPa

winds and gridded precipitation, analyze the tendency of

each pattern to persist or transition to other patterns,

and evaluate the WTs in terms of their relationship to

station precipitation and extreme precipitation, storm

tracks, and teleconnections. In section 4, we summarize

and discuss the results.

2. Data and methods

a. Data

The National Aeronautics and Space Administration

(NASA) Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA; Rienecker et al.

2011; NASA 2014) daily 850-hPa zonal u and meridional

y component winds for December–February (DJF) dur-

ing 1981–2010 are used as input to the k-means clustering

algorithm. The region used for analysis is bounded by

308–508N latitude and 608–908W longitude (Fig. 1a). The

winds are standardized by removing the long-term DJF

mean and dividing by the standard deviation, and the

resulting dataset is then reduced through EOF analysis to

retain 75% of the total variance before running the

k-means analysis. The EOF compression reduces the

degrees of freedom to make the problem more compu-

tationally efficient. Standardization of the data before

EOF analysis allows small-scale variability in the wind

fields to be on an equal footing with large-scale circu-

lation variability. The 850-hPa level was chosen since it

is above themountainous regions in theNortheast but as

close to the ground as possible to be able to resolve low

pressure systems. To validate the representativeness of

the 850-hPa winds, we also performed k-means cluster-

ing separately onMERRAdailymean sea level pressure

(MSLP) and 500-hPa geopotential heights, as well as

on a combination of these three variables.

Gridded precipitation data are from the Precipitation

Estimation from Remotely Sensed Information Using

Artificial Neural Networks–Climate Data Record

(PERSIANN-CDR; Ashouri et al. 2015; NCDC 2015).

PERSIANN-CDR is extracted from gridded satellite

(GridSat-B1) infrared data using artificial neural net-

works and bias corrected using monthly GPCP 2.58 3
2.58 precipitation. The final product is available at

0.258 3 0.258 daily resolution from 1983 to near present,

and provides a long-term consistent dataset.

In addition to gridded data, station precipitation from

the National Climatic Data Center (NCDC) U.S. His-

torical Climatology Network (USHCN; Easterling et al.

1999) is used. This set includes high-quality daily data

from U.S. Cooperative Observer Program stations and

several National Weather Service first-order stations.

Northeast stations missing less than 1% of the daily

precipitation data for the period of 1980–2010 are used

in the analysis (Fig. 1b).

Storm-track data (T. Eichler 2012, unpublished man-

uscript) are based on a modification of the Serreze

(1995) and Serreze et al. (1997) scheme that uses

FIG. 1.Maps showing the (a) boundaries of the Northeast region used to subsetMERRA850-hPawinds for input

to the k-means clustering algorithm, and (b) locations of the USHCN stations used for precipitation analysis and

storm-track analysis.
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6-hourly National Centers for Environmental Prediction

(NCEP)–U.S. Department of Energy (DOE) AMIP-II

reanalysis (Kanamitsu et al. 2002) sea level pressure to

identify cyclone centers. The data are interpolated

onto a 250km 3 250km version of the National Snow

and Ice Data Center (NSIDC) Equal-Area Scalable

Earth Grid (EASE-Grid; Armstrong and Brodzik 1995).

Storm tracks for the period of 1980–2008 are used.

The teleconnection indices used include the daily

NAO, PNA, and the AO indices from the Climate

Prediction Center (CPC; ftp://ftp.cpc.ncep.noaa.gov/

cwlinks), and the seasonal Niño-3.4 index (Reynolds

et al. 2002) also from theCPC (http://www.cpc.ncep.noaa.

gov/data/indices).

b. The k-means clustering method

The k-means clustering algorithm follows that ofDiday

and Simon (1976). The procedure of k-means clustering

seeks to find a partitioning of data into a predetermined

number of clusters k that minimizes the function W:

W(P)5 �
N

j51
�
x2Cj

d2(X,Y
j
), (1)

where P represents a particular partitioning of the data

into a set of k clusters C1, C2, . . . , Ck; Yj is the centroid of

cluster Cj; d(X, Yj) is the Euclidean distance between

pointsX in Cj and the centroid Yj; andW(P) signifies the

intracluster sum of variance for a particular partitioning.

The global minimum of the functionW(P) represents the

partition that achieves the best separation of the data

points into the k clusters. The process of finding the

minimum W(P) is iterative, and is accelerated by choos-

ing initial centroids from a small subset of the data first.

The classifiability index (CI; Michelangeli et al. 1995)

is used to determine the minimum number of clusters k

required to achieve adequate separation of the data. The

CI depends on the anomaly correlation coefficients

(ACC) between partition clusters. The ACC between

two partition clusters Pi and Qj is defined as shown:
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where 1# i, j# k,P 6¼Q, and pn and qn are the centroids

of clusters in the partitionsPi andQj, respectively.When

the two partitioned clusters are identical, the ACC is 1.

As inMoron et al. (2010), an ‘‘ACC score’’ is assigned to

each cluster Pi: this is the maximum ACC between Pi

and each clusterQj in partitionsQ 6¼ P, where j5 1, . . . ,

k, averaged over all Q partitions. Given N partitions,

there are then N 3 k ACC scores. The CI for a par-

titioning into k clusters is then defined as the average

of the ACC scores, and the individual partition with

the maximum ACC score represents the best separa-

tion of the data into the k clusters. To determine the

minimum number of clusters required to achieve ad-

equate separation of the data, CI is calculated for

several values of k. For each value of k, the k-means

algorithm is also run numerous times using random

red noise generated from the data, in order to create a

range of CI values attributable to chance. The opti-

mum number of clusters is the minimum k with a CI

above 90% of CI values due to random red noise

(Michelangeli et al. 1995).

In this study, k is varied from 2 to 10 clusters for each

of 100 different partitions created from randomly cho-

sen initial seeds. The CI increases as the number of

partitions becomes large; however, using more parti-

tions slows the computation speed for each cluster.

Here, 100 partitions is deemed acceptable to achieve

stable CI values. Figure 2a shows the CIs that result from

k-means clustering of 2–10 clusters. The gray shading

indicates the bottom 90% of CIs for random red noise

generated from the data. Based on the CI value in re-

lation to those due to red noise, the 850-hPa winds can

be reasonably separated into k 5 5 distinct clusters, or

patterns.

3. Results

a. Weather types

The k-means clustering algorithm is applied to

MERRA daily 850-hPa u- and y-component winds for

DJF 1981–2010 (standardized and reduced through

EOF analysis to retain 75% of variance) within the re-

gion specified in Fig. 1a. The data are separated into five

clusters (based on the relative CI value from Fig. 2a),

with each day assigned to a single cluster. Each cluster

represents a pattern, or weather type. The relative fre-

quency of each WT is shown in Fig. 2b. Each WT com-

prises ;15%–25% of the DJF days, with WT2 (14%)

having the least number of days and WT5 (26%) having

the greatest number of days. The relative frequency of

WTs per month (not shown) is similar to that for the

entire DJF period, with the exception of slightly more
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WT1 days in December and slightly more WT4 days in

February.

TheWTs are shown in Figs. 3 and 4.WT composites of

DJF 850-hPa winds and PERSIANN-CDR gridded

precipitation are shown in Figs. 3a–e, and the DJF 30-yr

mean is shown in Fig. 3f. In WT1, a trough is present

over the central United States with a ridge located just

off the East Coast (‘‘coastal ridge’’ type). The Northeast

experiences little precipitation and light southwest

winds, while stronger southwest winds transport moisture

FIG. 3. MERRA850-hPa winds for DJF 1981–2010 (vectors) and PERSIANN-CDR precipitation for DJF 1983–2010

(shaded; mmday21) for (a) WT1, (b) WT2, (c) WT3, (d) WT4, (e) WT5, and (f) the 30-yr DJF mean.

FIG. 2. Results of k-means clustering applied toMERRA850-hPawinds forDJF 1981–2010. The figure shows the

(a) CI for various numbers of clusters (blue solid line) and the one-sided 90% confidence interval of the CI due to

random noise (gray shading), suggesting 5 as the optimal number of clusters; and (b) percent of days assigned to

each cluster or WT, representing the ‘‘background frequency’’ of the WTs.
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from the Gulf of Mexico to the southeastern United

States, generating light to moderate precipitation. WT2

exhibits a large trough between the Midwest and East

Coast with a ridge to the west (‘‘coastal land trough’’

type). This WT generates the highest amount of pre-

cipitation in the eastern United States, including the

Northeast, due to a low-level jet just offshore carrying

moisture from the southern United States and the Gulf

Stream. WT3 experiences dominant northwest flow and

light precipitation over the eastern United States.

However, a trough located offshore (‘‘coastal ocean

trough’’ type) generates significant precipitation in the

western Atlantic. In WT4, a ridge exists over the south-

easternUnited States and a trough exists offshore (‘‘mid–

Atlantic Ocean trough’’ type), resulting in northwest

winds and little precipitation over the Northeast. South-

west winds bring precipitation into the southern United

States as for WT1, but a weaker 850-hPa low-level jet

keeps the precipitation farther south. WT5 exhibits a

zonal flow with confluence in the mid-Atlantic region of

the United States (‘‘zonal flow’’ type). The Northeast

experiences little precipitation under the northwesterly

winds, while the southeastern United States experiences

light precipitation in weak southwest winds. The DJF

mean is similar to WT5, with predominant westerlies,

confluent flow through the mid-Atlantic, light pre-

cipitation to the north, and heavier precipitation to the

south. This is not surprising since it represents both the

canceling effects of out-of-phase synoptic systems in

WT1–WT4 as well as the frequent zonal flow WT5

pattern.

A complementary view of the WTs can be seen using

composites of anomalous (long-term daily mean re-

moved) 850-hPa winds and precipitation (Fig. 4). In

addition, the standard deviations of the u- and y-wind

components are shown in Fig. 5. WT1 has high pressure

just off the southern New England coast, and strong

southerly flow into the eastern United States. The

highest positive precipitation and wind anomalies occur

over the Midwest. WT2 has low pressure over the

Midwest, which leads to anomalously strong southerly

flow into the Northeast. The warm moist air associated

with this anomalously strong low-level southerly flow

likely contributes to the heavy precipitation in this WT.

On the other hand, WT3 depicts low pressure off the

coast of New Jersey, with anomalously strong easterly

winds along the New England coast, leading to the

possibility of strong moisture advection due to the

FIG. 4. MERRA 850-hPa wind

anomalies for DJF 1981–2010

(vectors) and PERSIANN-CDR

precipitation anomalies for DJF

1983–2010 (shaded; mmday21) for

(a)WT1, (b)WT2, (c)WT3, (d)WT4,

and (e) WT5.
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anomalously high precipitation offshore. The anoma-

lously strong northerly flow inland indicates cold air

flowing into the region, which combined with the mois-

ture advection can indicate a strong winter storm.

However, WT3 has negatively anomalous precipitation

amounts all along the East Coast, indicating that this

pattern likely represents 850-hPa low pressure systems

outside of the ‘‘benchmark’’ (408N, 708W), which is

FIG. 5. MERRA 850-hPa wind anomalies (vectors) and u-wind standard deviations (shaded)

for DJF 1981–2010 for (a) WT1, (b) WT2, (c) WT3, (d) WT4, and (e) WT5. MERRA 850-hPa

wind anomalies (vectors) and y-wind standard deviations (shaded) for DJF 1981–2010 for

(f) WT1, (g) WT2, (h) WT3, (i) WT4, and (j) WT5.
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often used by forecasters as an important location for

the track of Northeast snowstorms. In WT4, a high

pressure system north of the Great Lakes allows for

anomalously strong cold air advection, with little mois-

ture, over the Northeast. WT5 has anomalously low

precipitation across the entire eastern United States as a

result of the strong westerly low-level jet. The cooling

and drying northwesterly flow into the northern plains

may set the stage for a cold front moving through the

Northeast.

The reproducibility and robustness of these five WTs

and how well they represent the three-dimensional cir-

culation in the Northeast is a key question. We have

assessed this both by varying the domain and time pe-

riod used in the k-means results, and by considering

other synoptic fields and levels.

We increased and decreased the domain by 18N and

18W and found no difference in our results (the five

patterns remained essentially the same, with each pat-

tern retaining over 90% of the same dates). However,

when we increased the domain size by 48 to the north

and 108 to the west, we found that k-means clustering

suggests a sixth pattern that draws dates from WT1 and

WT4. This pattern features a high pressure system off

the Florida coast and a low pressure system to the west

of the Great Lakes that forces moist southwesterly flow

toward the Great Lakes (similar to WT1) but results in

northwesterly flow over the Northeast (similar toWT4).

Not surprisingly, increasing the domain size results in

more complex solutions. Here, we have chosen to retain

the original domain and the associated set of five pat-

terns, since our primary goal is to explore WTs for the

Northeast, and there is strong robustness for minor

changes in domain size. The temporal dependence of the

k-means solution was tested by randomly choosing 75%

of the daily data before recalculating theWTs.We found

that the final WTs do not change appreciably when the

time period is changed.

We have also investigated using other MERRA fields

for the typing analysis, since circulation at a single level

may not capture the full spectrum of synoptic- and

larger-scale dynamics for this region. We individually

ran k-means clustering using 500-hPa geopotential

heights and usingMSLP. The former resulted in a trivial

two-pattern solution of a Northeast trough inWT1 and a

Northeast ridge in the other WT2, while the latter five-

pattern solution was very similar to that for 850-hPa

winds (but without a significant CI). We also ran a

multivariate k-means clustering using 500-hPa geo-

potential heights, MSLP, and 850-hPa winds—for this

the five-pattern solution was also very similar to that

for the 850-hPa winds alone, but without a signifi-

cant CI value. A six-pattern solution suggested by CI

significance is similar to our solution using a much larger

domain; however, the other objective measures for op-

timum k suggested only three or four patterns.We chose

to continue to use 850-hPa winds as they produced the

most robust (all objective measures of k in agreement)

and statistically most significant classification of the

winter weather types in the northeastern United States.

Another important question for a k-means solution is

how similar each day assigned to a cluster is to the

cluster centroid, since the essence of the k-means clus-

tering is to maximize the intertype differences but

minimize difference within each WT. We performed

correlation and covariance calculations for the individ-

ual u- and y-wind components to each WT, and found

that WT1 and WT3 are well correlated with both wind

components, while WT4 is well correlated with the

y-wind component. WT2 and WT5 are the least corre-

lated. For WT5, this is not surprising since it encom-

passes the largest number of dates, and likely includes

many patterns that are not immediately identifiable as

being associated with distinct synoptic circulations.

b. WT progression and persistence

In addition to identifying WTs, it is useful to un-

derstand how often a particular WT transitions to each

of the other WTs (Coleman and Rogers 2007b). We

define ‘‘progression’’ as the percentage of time that a

particular WT transitions on the following day to a dif-

ferent WT and ‘‘persistence’’ as the percentage of time

that a particular WT remains on the following day in the

same WT. Figure 6 shows the progression and persis-

tence of each WT. The 95% confidence interval of the

WT distribution on following days is determined by

randomly sampling a number of days in the 30-yr re-

cord equal to each WT count, calculating the distribu-

tion of the following day WTs for each sample, and

repeating the process 1000 times. The percentages that

are higher (lower) than the top 97.5% (bottom 2.5%)

indicate a transition to a weather type that is more

(less) likely than that due to chance, and is shown as

green (yellow) bars. Figure 7 shows the likelihood

(expressed as percent of times) that a WT persists or

transitions. WT1 is most likely to persist as WT1 or

progress to WT2; WT2 is most likely to progress to

WT3; WT3 is most likely to persist as WT3 or progress

to WT4; and WT4 is most likely to persist as WT4 or

progress to WT1. WT5 shows a high propensity for

recurrence (nearly 40% of the time) but can also

progress to WT1 (25% of the time). Although not sig-

nificant, WT1 and WT2 may also progress to WT5.

WT3 and WT4 rarely progress to WT5.

Although WTs do persist, they generally do not per-

sist in the same weather pattern for long. The duration
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for each WT is shown in Fig. 8. Only 15%–35% of DJF

days persist in the sameWT for 2 ormore days. Only 5%

of DJF days persist in the same WT for 3 or more days.

The mean duration for each WT ranges from 1.17 days

for WT2 to 1.58 days for WT5, and there is very little

seasonal variation in duration. Consecutive WT5 days

may be due to an 850-hPa low pressure system in

southeastern Canada that is associated with a strong

low-level jet that brings cold northwesterly air into the

United States and results in a stalled low pressure sys-

tem. ConsecutiveWT1 days may be due to a stalled high

pressure system/ridge near the region, similar to a Ber-

muda high, that allows warm air to enter the region from

the southeastern United States. The quick progression

from WT2 to WT4 likely reflects troughs moving from

the southeastern United States to southeast of New

Brunswick.

c. Precipitation

To further characterize the precipitation associated

with the WTs, daily precipitation and extreme pre-

cipitation are examined using station data. Daily pre-

cipitation data from 35 USHCN stations are used to

calculate the number of days of precipitation (pre-

cipitation over 0.254mm, or 0.01 in.), daily intensity on

precipitation days, and total precipitation as in Agel

et al. (2015). Total precipitation depends on both pre-

cipitation days and intensity. Extreme precipitation

(defined as the top 1% of daily intensity on days with

precipitation) is also evaluated at each station and the

mean number of days of extreme precipitation, daily

intensity on extreme precipitation days, and total ex-

treme precipitation for each WT are calculated. The

DJF means are shown in Table 1. Based on the station

data, most precipitation days occur in WTs 2, 3, and 5.

The intensity of precipitation is highest in WT2,

FIG. 7. Graphical representation of WT progression and persis-

tence. The solid arrows indicate transition frequencies that are

significantly higher than the background frequency (indicating

a ‘‘preferred’’ progression or persistence that is likely not due to

chance). Dashed arrows indicate transition frequencies that are not

significantly different from the background frequency. Transitions

that occur less frequently than that due to chance are not shown.

The number atop each arrow indicates the percent of times the

transition occurs. The background frequency of each WT is in-

dicated in the blue squares.

FIG. 6. Progression and persistence of each WT, shown as fre-

quency of WTs on days following (a) WT1, (b) WT2, (c) WT3,

(d) WT4, and (e) WT5 days. The 95% confidence interval of the

distribution of all WTs (background frequency) is shown with gray

shading. Frequencies significantly greater than the background

frequency are shown as green bars; frequencies significantly less

than the background frequency are shown with yellow bars (in-

dicating a ‘‘preferred’’ progression or persistence that is likely not

due to chance).
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followed by WT3. Most extreme precipitation occurs in

WT2 andWT3, with no extreme precipitation associated

with WT4 and very few extreme precipitation days as-

signed to WT1 and WT5. Extreme precipitation in-

tensity is also highest inWT2 andWT3. From the table it

is clear that the number of precipitation days and pre-

cipitation intensity differ between WTs, but what is not

clear from the table is whether precipitation is more or

less likely to occur in any particular WT (i.e., if the rel-

ative frequency of precipitation days differs from the

‘‘background frequency’’ of WTs).

We use a Monte Carlo technique to determine

whether station precipitation days, intensity, and totals

for each WT are different than would be expected by

that due to chance (the background frequency of the

WTs). The WTs are randomly shuffled among the DJF

days, preserving the inherent WT frequency, and the

precipitation results are recalculated. This process is

repeated 1000 times, providing a range of results due to

chance. The results are shown in Fig. 9. Gray bars

represent the 95% confidence interval of random

WT assignment, while green (yellow) bars represent

precipitation days, intensity, and totals more (less) likely

due to chance.

Figure 9 shows that although precipitation can occur

in any WT, precipitation is more likely to occur during

WT2 and WT3 days (which are associated with synoptic

storm features) and less likely to occur during WT1 and

WT4 days (which are associated with ridges of high

pressure over the Northeast or Midwest) than would be

expected due to chance. These results are consistent

with the gridded precipitation anomalies shown in Fig. 4.

The majority of extreme precipitation days occur

in WT2.

d. Storm tracks

Because synoptic storm features appear to play a large

role in defining the WTs, it is useful to look at storm

tracks for each WT. The storm-track density for each

WT is plotted in Fig. 10, where the density is the cu-

mulative count of 6-hourly storm center locations for

days assigned to each WT. WT2 shows high storm-track

density over the Great Lakes and Ohio Valley region

with another weaker area along a coastal track. This

storm track through the Great Lakes and Ohio Valley

region coupled with the highly positive low-level me-

ridional wind anomalies over the east shows that the

strongest low-level wind anomalies occur in the warm

sector of low pressure systems, as Booth et al. (2015)

have also noted. WT3 shows a high density of coastal

tracks similar to a nor’easter path. The track locations

are consistent with the trough locations in Fig. 3. WT1

and WT4 show little storm activity over the Northeast,

which is consistent with the ridging in Fig. 3. WT3 has

high storm-track density both outside and inside of the

408N, 708W benchmark. When storms take a track out-

side of the benchmark, the precipitation shield usually

does not reach New England, as cold and drier air

pushes into the region from the northwest behind the

low pressure system (a cold air outbreak). On the other

hand, when storm tracks are closer to the coast, it allows

precipitation and moisture to move inland and the cold

air mixes with precipitation to create snow or at least

TABLE 1. Mean precipitation characteristics at 35 USHCN stations for DJF 1981–2010.

Category WT1 WT2 WT3 WT4 WT5

WT days 19.8 13.0 15.6 18.8 22.8

Precipitation days 5.8 8.9 8.9 4.4 9.3

Probability of precipitation (%) 29.3 68.5 57.1 23.4 40.8

Precipitation intensity (mmday21) 4.3 10.4 6.5 2.8 4.3

Precipitation total (mm) 24.8 93.1 57.8 12.1 40.0

Extreme precipitation days 0.006 0.071 0.034 0.000 0.004

Extreme precipitation intensity (mmday21) 40.9 57.0 65.4 — 45.1

Extreme precipitation total (mm) 0.25 4.07 2.2 — 0.18

FIG. 8.WT persistence, expressed as a percent of totalWT days, for

durations of 1–6 days.
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more wintry precipitation. WT5 has light storm-track

density in the Northeast with higher density in far

northern New England and eastern Canada. Since WT5

has a moderate number of precipitation days and rela-

tively low precipitation intensity, this may indicate that

precipitation in thisWT is related to lake-effect snow, as

well as general instability due to shortwave activity as-

sociated with the northern low.

Storm tracks on extreme precipitation days within

eachWT are also considered (Fig. 11). To be considered

an extreme precipitation day, at least one station on that

day must experience precipitation in the top 1% of wet

days in the 30-yr station record. The vast majority of

extreme precipitation days occurs inWT2 andWT3; not

surprisingly, these are associated with high densities of

storm tracks. As with all precipitation days, extreme

precipitation in WT2 appears to be related to storms

near the Great Lakes region as well as coastal storms,

while extreme precipitation in WT3 appears to be re-

lated to coastal storm paths.

e. Teleconnections

Our analysis for the teleconnections was performed

by taking the daily phase of NAO, PNA, and AO, and

the monthly phase of ENSO, as well as the WT assigned

to each day, and determining the relative frequency of

WTs for each teleconnection phase. In Fig. 12, the per-

cent occurrence of theWTs during positive, neutral, and

negative phases is compared to the WT ‘‘background’’

frequency. The WT background frequency used for

NAO, PNA, and AO results is calculated using a Monte

Carlo technique, in which WTs are randomly shuffled

among the DJF days, preserving the inherent WT fre-

quency, and the WT frequency during positive, neutral,

and negative days is calculated using the randomized

data. The process is repeated 1000 times, providing a

range of background frequency distributions of theWTs

for each teleconnection phase. Departures outside the

95% confidence interval of the background frequency

are shaded green for positive results (more likely to

occur than by chance) and yellow for negative results

(less likely to occur than by chance).

During the positive phase of the NAO (NAO . 1),

the likelihood of WT1 increases while the likelihood of

WT2, WT3, and WT4 decreases. During the neutral

phase of the NAO (21 # NAO # 1), the likelihood of

WT1 decreases slightly, while the likelihood of WT2

increases slightly. During the negative phase of the

NAO (NAO , 21), the likelihood of WT1 decreases,

while the likelihood of WT4 increases. WT5 has no

statistically significant changes in frequency for any

phase of the NAO. NAO has the strongest link to WT1

FIG. 9. Station precipitation characteristics of the WTs. (a) The number of precipitation days (expressed as

a percent of all precipitation days) for each WT. The frequency is a mean of station precipitation days. The 95%

confidence interval of the background frequency is shown with gray shading. Frequencies significantly greater than

the background frequency are shown as green bars; frequencies significantly less than the background frequency are

shown as yellow bars (indicating a distribution that is likely not due to chance). (b) The mean daily precipitation

intensity (mmday21) for eachWT. (c) Themean total precipitation (%) for eachWT. The 95% confidence interval

of precipitation intensity and total precipitation (gray shading) indicates the intensity range given random distri-

bution of the WTs. (d)–(f) Precipitation days, intensity, and totals for extreme precipitation, defined as the top 1%

of precipitation daily intensity. Precipitation data from 35 USHCN stations for DJF 1981–2010.
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and WT4, resulting in a twofold difference in frequency

of days depending on phase. This link may be related to

the warm southerly flow in WT1 versus the cooler

northerly flow in WT4 because the positive (negative)

NAO has warmer (cooler) surface temperatures in the

easternUnited States. ForWT4, the strong northerly flow

brings cooler temperatures over the East Coast, which

occurs more often in the negative phase of the NAO.

During the positive phase of the AO (AO . 1), the

likelihood of WT1 and WT5 increases while the likeli-

hood of WT3 and WT4 decreases. During the neutral

phase of the AO (21#AO# 1), the likelihood of WT1

increases while the likelihood ofWT5 slightly decreases.

During the negative AO phase (AO , 21), the likeli-

hood of WT3 andWT4 increases while the likelihood of

WT1 and WT5 decreases (opposite for positive AO,

although the result for WT5 is not statistically signifi-

cant). WT2 has no statistically significant changes in

frequency for any phase of the AO. Like the NAO, the

AO phase nearly doubles or halves the frequency of

WT1 and WT4.

During the positive phase of the PNA (PNA. 1), the

likelihood of WT1 decreases, while the likelihood of

WT3 increases. During the neutral phase of the PNA

(21 # PNA # 1), the likelihood of WT3 slightly de-

creases. During the negative phase of the PNA

(PNA,21), the likelihood of WT1 increases while the

likelihood of WT3 decreases (opposite for positive

PNA). There are no statistically significant deviations

from background frequency for WT2, WT4, and WT5

during any phase of PNA. The PNA has the strongest

link to WT1 and WT3, resulting in a twofold difference

in frequency of days depending on phase. The positive

PNA phase may be reflected inWT3 by the strong storm

and cool temperatures along the East Coast, whereas

the negative PNA phase may be reflected inWT1 by the

warm temperatures and high pressure along the East

Coast. In addition, the meridional flow anomalies hint at

wave patterns in both of those WTs.

During the warm phase of ENSO (Niño-3.4 . 1), the

likelihood of WT3 increases, while the likelihood of

WT5 decreases. During the cold phase of ENSO (Niño-
3.4 , 21), the likelihood of WT3 slightly decreases. No

statistically significant deviations from WT background

frequencies are evident for the neutral phase of ENSO.

For all the preceding results, it should be noted that

while we have defined positive and negative phases of

various teleconnections as greater than or less than 1,

FIG. 10. Storm-track density of WTs for DJF 1981–

2008. The density is a cumulative count of storm center

locations (based on 6-hourly track locations); units are

storm centers per grid point multiplied by 4 (the number

of times a day that a storm center is plotted).
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our results are also statistically robust for defining phases

as greater than or less than 0.5.

4. Summary and discussion

In this study, we apply k-means cluster analysis to

wintertime daily 850-hPa winds in the Northeast using

MERRA data from 1981 to 2010. Using this technique,

five distinct WTs are identified. Each WT is considered

in terms of mean and anomalous 850-hPa winds and

gridded precipitation, and the transitioning and persis-

tence of each WT are analyzed. Each WT is then ex-

amined for links to station precipitation and extreme

precipitation, storm tracks, and teleconnections.

WT1 is characterized by a ridge just off the U.S. East

Coast and positive precipitation anomalies as far north

as the Great Lakes. A second pattern (WT2) features a

trough along the eastern United States and positive

precipitation anomalies into southern New England. In

the third pattern (WT3), a trough resides over the

western Atlantic and negative precipitation anomalies

occur along much of the U.S. East Coast. WT4 is char-

acterized by a trough east of Newfoundland and nega-

tive precipitation anomalies along parts of the U.S. East

Coast. The fifth and final pattern (WT5) features a

broad, shallow trough over southeastern Canada and

negative precipitation anomalies over the entire U.S.

East Coast. The relative frequency of each WT ranges

from ;15% to 25% of the DJF days, with WT2 (14%)

having the least number of days, andWT5 (26%) having

the greatest number of days.

Anomalously negative zonal winds (strong easterlies)

at 850 hPa have been associated with heavy rainfall and

East Coast winter storms (Stuart and Grumm 2006).

WT3 shows the strongest negative zonal wind anomalies

over the Northeast. Although not the 3–5 standard de-

viations below normal that Stuart and Grumm (2006)

found for their case studies, the strongly anomalous

easterly winds in WT3 do nevertheless suggest strong

winter storms (one possible reason for our smaller

standard deviations could be compositing). However,

the lack of precipitation over the region may be the re-

sult of a mix of the storm itself passing just outside of the

408N, 708W benchmark and dry northwesterly air cut-

ting off precipitation.

In terms of transitioning from one WT to another,

WT1 (ridging in the Northeast) tends to persist or

transition to WT5 (zonal flow) or WT2 (eastern United

FIG. 11. Storm-track density of WTs for DJF 1981–

2008 days with extreme station precipitation (top 1% of

daily precipitation intensity from USHCN). The density

is a cumulative count of storm center locations (based on

6-hourly track locations); units are storm centers per

grid point multiplied by 4 (the number of times a day

that a storm center is plotted).
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States trough). WT2 tends to transition to WT3 (coastal

trough), which then tends to persist or transition toWT4

(western Atlantic trough). WT5 is the most persistent

pattern, possibly due to a cutoff upper-level low over

Canada. WT5 is also likely to transition to WT1. While

the progression from WT1 to WT2 to WT3 to WT4 and

then back toWT1 could be considered a typical synoptic

storm path through the region, WT1 is actually more

likely to persist than transition to WT2. However, once

the transition toWT2 occurs, WT2 quickly transitions to

WT3, consistent with the movement of wintertime syn-

optic storms. Figure 13 summarizes these results by

combining the large-scale and anomalous flow from

Figs. 3 and 4 and the favored transitions of theWTs from

Fig. 7. Overall, an eastward movement of the trough can

be observed along with a phase transition from 2PNA

to1PNA and1NAO to2NAO.When considering the

longevity of our WTs, other studies have shown regimes

that last for a longer period of time (e.g., Archambault

et al. 2010), whereas ourWTs typically change on a time

scale of 1–3 days. This may arise because we have de-

rived the WTs from the lower-level 850-hPa winds in a

smaller region.

Teleconnections also can play a role in wintertime

weather over the northeastern United States. To un-

derstand that role, the frequency of each WT during the

various phases of the NAO, AO, PNA, and ENSO are

evaluated. WT1, with northwesterly flow and little pre-

cipitation, is more likely to occur during the positive

phase of the NAO, the neutral or positive phase of the

AO, and the negative phase of the PNA. WT2 (eastern

U.S. trough) is more likely to occur during the neutral

phase of the NAO. WT3 and WT4 (troughs located just

offshore or farther to the east over the Atlantic) are

more likely to occur during the negative phase of the

AO. In addition, WT3 is more likely to occur during the

positive phase of the PNA, while WT4 is more likely to

occur during the negative phase of the NAO.WT5, with

FIG. 12. WT frequency during various phases of (a) NAO, (b) AO, (c) PNA, and (d) ENSO. For each WT, the

three bars represent the positive, neutral, and negative phases of the teleconnection pattern. The 95% confidence

interval of theWT background frequency (the distribution of WTs in each phase due to chance) is shown with gray

shading. Frequencies significantly greater than the background frequency are shown as green bars; frequencies

significantly less than the background frequency are shown with yellow bars (indicating a distribution that is likely

not due to chance). The number of positive, neutral, and negative phases for each index is indicated.
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zonal flow and light precipitation, is more likely to occur

during the positive phase of the AO. ENSO shows little

effect on the WTs, except for WT3, which is more likely

to occur during the warm phase of ENSO. Overall,

NAO has a strong link to WT1 and WT4, which tend to

be low-precipitation patterns in the Northeast. PNA

has a strong link to WT1 (low precipitation) and WT3

(nonextreme precipitation). It also appears that the

PNA, NAO, and AO all have closer links to the WTs

as a whole than ENSO does, which echoes previous re-

search (Huntington et al. 2004).

Bradbury et al. (2002) and Notaro et al. (2006) noted

that the PNA helped to identify the meridional waviness

of a pattern, but disagreed on how much impact the

PNA had on the overall pattern as a result of not being

able to completely resolve the east–west shift of the East

Coast pressure trough (Bradbury et al. 2002). However,

Notaro et al. (2006) did show that the PNA is associated

with a slight southeastward shift of the jet stream and,

as a result, the storm track. This shift in storm track can

be seen in the storm-track composites (Fig. 10). WT1,

which may occur more often in negative PNA phase

patterns, has a storm track more northwestward than

that of WT3, which may occur more often in positive

PNA phase patterns. We can also consider the singular

and combined influence of the teleconnections by per-

forming logistic regression using the indices as pre-

dictors of the occurrence of the WTs. Calculation of the

cross-validated deviance from the regression results

confirms that ENSO has little overall influence over the

WTs, while AO shows the greatest influence, followed

closely by NAOand PNA, and the combinedNAO/PNA

FIG. 13. Summary of WT characteristics from k-means clustering: WT1: coastal ridge type; WT2: coastal land

trough type; WT3: coastal ocean trough type; WT4: Mid–Atlantic Ocean trough type; and WT5: zonal flow type.

Each panel shows the dominant large-scale circulation, areas of anomalous low and high pressure, and preferred

transitions to other WTs.
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has greater skill than any single teleconnection or any

other combination of two teleconnections at predicting

daily WTs, particularly for WT1 and WT3.

Table 2 summarizes each of these results, showing the

links to the various teleconnection phases, the correla-

tion to higher or lower amounts of precipitation, and the

location of storm tracks for each WT. Note that the

precipitation variation in the table is only the contribu-

tion from that WT, not the variation of total seasonal

precipitation (which is the combined contribution of all

WTs). Although each of these teleconnection patterns

can be considered separately, we may gain more insight

by considering their features together and looking at

phase transitions. In Archambault et al. (2010), it was

demonstrated that precipitation occurs more often

during a 6-month period of November–April in the

northeastern United States, with an evolution from a

more zonal to amplified wavy flow. Similarly, in this

study, we find transitions from WT1 to WT4 may be

associated with a shift from positive NAO to negative

NAO, and consequently from more zonal to more am-

plified flow, and an associated increase in precipitation

in WT2. Both Notaro et al. (2006), whose study con-

sidered only December, and Archambault et al. (2010)

found that positive PNA and negative NAO coupled

together create the least amount of precipitation, and

that a negative PNA coupled with a positive NAO cre-

ated the greatest amount of precipitation. Their results,

however, differ from ours (in which the December–

February period is considered) for the Northeast in

terms of precipitation. In those studies, different time

periods and different geographical locations (we do not

include stations in Pennsylvania, for example) were used

to calculate the averaged total precipitation. Therefore,

the discrepancy may come from spatial heterogeneity

and subseasonal variability of the underlying data. The

spatial heterogeneity in precipitation anomalies in the

northeastern United States is evident in WT1 and WT3

(Fig. 4). For example, WT1 has greater chance of

occurrence in 2PNA/1NAO, but the precipitation

pattern shows opposite signs of anomalies between the

western and eastern part of the domain (Fig. 4a).

Therefore, different areas used for averaging precipita-

tion may produce opposite signs of results in precipita-

tion anomalies. If we focus on other related aspects of

the WTs, our results are consistent with the previous

studies. For instance, more coastal storms (WT3) occur

during 1PNA/2NAO phases.

When we compare our WTs to Ning and Bradley

(2014), who proposed three EOFs to describe the vari-

ability of wintertime (December–March) precipitation

anomalies, the closest match is our WT3 to their EOF3

in terms of teleconnections. However, their respective

precipitation anomalies are quite different with EOF3

having above-normal precipitation anomalies along the

East Coast andWT3 having below-normal precipitation

anomalies in the same location. A reason for this could

be because of the extra influence of the positive Pacific

decadal oscillation (PDO) in EOF3, which increases

precipitation totals and is not considered in our study, as

well as our differing definitions of wintertime. However,

we do show a slight increase in station precipitation

(especially along the immediate coast) in WT3, consis-

tent with their results. The negative anomalies for the

overall region may be related to enhanced stability and

subsidence along the East Coast combined with lower

moisture content (Notaro et al. 2006), especially since

WT3 may be more likely with positive PNA.

Comparison of our results with previous studies

(Notaro et al. 2006; Archambault et al. 2008, 2010) in-

dicates that the impact of large-scale teleconnection

patterns on regional climate in the northeastern United

States is not spatially homogeneous. These results also

show that analyses carried out for different time periods

can produce different results, indicating subseasonal

variability of the WTs. This kind of subseasonal vari-

ability of the WTs, as well as spatial heterogeneity of

precipitation anomalies, warrants further investigation.
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