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Abstract. Lattice-based signature and Identity-Based Encryption are
well-known cryptographic schemes, and having both efficient and provable
secure schemes in the standard model is still a challenging task in light
of the current NIST post-quantum competition. We address this problem
in this paper by mixing standard IBE scheme, à la ABB (EUROCRYPT
2010) on Ring-SIS/LWE assumptions with the efficient trapdoor of Peik-
ert and Micciancio (EUROCRYPT 2012) and we provide an efficient
implementation. Our IBE scheme is more efficient than the IBE scheme
of Ducas, Lyubashevsky and Prest based on NTRU assumption and is
based on more standard assumptions. We also describe and implement
the underlying signature scheme, which is provably secure in the standard
model and efficient.
Keywords. Lattice, Signature, IBE, Software implementation, Ring-
LWE/SIS.

1 Introduction

The concept of Identity Based Encryption (IBE) was defined by Shamir [Sha85].
It is considered as an alternative to the classical Public Key Encryption (PKE),
often requiring a dedicated infrastructure. Indeed, the public key related to a
person is simply its identity, such as her email address or her social security
number, and the associated private key is generated by a trusted authority using a
master public key. Thus, IBE hugely simplifies keys generation and distribution in
a multi-user system. The first IBE constructions appeared in [BF01,Coc01], and
were based respectively on bilinear maps and on quadratic residue assumptions.

Since the work of Shor in 1994 [Sho97], the hardness of such number theoretic
assumptions is extremely reduced when faced to a quantum computer. This has
motivated many research work attempting to achieve quantum security. The first
supposedly post-quantum IBE scheme, which was introduced in 2008 by Gentry,
Peikert and Vaikuntanathan [GPV08], was based on hard lattice problems and
followed by many improvements [CHKP10,ABB10,DLP14,Yam16]. Recently in
[GHPT17], the first IBE on a code problem in rank metric was proposed.

Lattice-based cryptography. Lattice-based cryptography starts with the work of
Ajtai [Ajt96], and uses hard problems on lattices as the foundation of secure
cryptographic constructions. A lattice is an infinite arrangement of regularly
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spaced points, and it can be generated as the set of all linear combinations
of m independent vectors in Rn, called a basis. One fundamental hard problem
on lattices is the Shortest Vector Problem (SVP): given some basis, find the
shortest non zero vector of the lattice. Lattice-based cryptography is based on
the assumption that this problem and its variants are hard problems even for an
approximation factor polynomial in the dimension of the lattice.

Lattice-based cryptographic constructions are mainly based on two well known
problems: the Small Integer Solution problem (SIS) and its Inhomogeneous
variant (ISIS) [Ajt96], and the Learning With Errors problem (LWE) introduced
by Regev [Reg05]. In particular, the ISIS problem consists in finding a short
vector x ∈ Zm such that Ax = u mod q, given an uniformly random matrix
A ∈ Zn×mq and some u ∈ Znq . The LWE problem consists in distinguishing

(A,bT = sTA + eT ) from (A,bT ) where e is a small error sampled from a
probability density function over Zm (often a discrete Gaussian distribution), and
A ∈ Zn×mq and b ∈ Zmq are uniformly chosen. Ajtai and Regev gave reductions
from worst-case lattice problems to the average case LWE and SIS problems.

Few years later, structured variants of the LWE and SIS problems were
proposed [Mic07,SSTX09], called Ring-SIS and Ring-LWE. These problems are
preferred in practice, since they enjoy smaller storage and faster operations. There
also exist reductions from worst-case ideal lattice problems to these structured
variants [LPR10,SSTX09,LM06,PR06]. These two problems can be used to con-
struct many basic cryptographic primitives such as PKE (adapting the schemes
from [Reg05,GPV08]) and signatures [Lyu12,DDLL13,DM14].

Lattice Trapdoors. To construct IBE or Attribute Based Encryption (ABE), we
can use trapdoors for the SIS problem. Initially described by Ajtai [Ajt96,Ajt99],
a trapdoor TA ∈ Zm×m for A ∈ Zn×mq is a short basis of vectors satisfying
TA ·A = 0 mod q, generated together with A. Given only A, it is hard to find
such a short basis but, with the knowledge of TA it is easy to invert the SIS
(and the ISIS) problem. Trapdoors constructions were improved by [AP09], and
then described for ideal lattices in [SSTX09].

Micciancio and Peikert [MP12] proposed a new construction allowing a faster
inversion of the ISIS problem, by reducing it to the inversion of a smaller problem
for some structured gadget matrix G ∈ Zn×lq . The matrix A ∈ Zn×mq is generated

with its associated short basis R ∈ Z(m−l)×l, as A = (A′ |HG −A′R) where

A′ ∈ Zn×(m−l)q is uniformly sampled, and H ∈ Zn×nq is an invertible element.
In [GM18], Micciancio and Genise improved the inversion of the ISIS problem in
the ring variant with an arbitrary modulus.

Lattice-based IBE. The first lattice-based IBE [GPV08] relies on the Dual-Regev
encryption scheme. In Dual-Regev, a public key consists in a vector u = Ax
mod q, for a short vector x ∈ Zm (which is the secret key). To build the IBE,
an identity can be mapped to a public key via a hash function H : {0, 1}∗ → Znq
modeled as a random oracle. The master secret key of the IBE is a short
trapdoor TA, that makes it possible to extract a secret key x associated to any id
by inverting Ax = H(id) mod q.
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This construction was later improved by removing the Random Oracle
Model (ROM) [CHKP10,ABB10]. In ABB, a publicly computable matrix Aid =

(A |F (id)) ∈ Zn×(m+m′)
q , is associated to an identity id, where F (·) is map-

ping identities to matrices in Zn×m′q . As a result, the secret key for an identity

id is a short vector x ∈ Zm+m′ , such that Aidx = u mod q. To find such
an x = (xT1 |xT2 )T , it is only required to sample a short x2 ∈ Zm′ , and to
use TA to invert the following ISIS problem: find a small x1 ∈ Zm such that
Ax1 = u− F (id)x2. In 2014, Ducas, Lyubashevsky and Prest [DLP14] gave an
NTRU variant of the GPV IBE scheme. In their work, the public key is built
using NTRU lattices, which improves the efficiency of the scheme.

Our contributions. In this paper, we provide the first software implementation
of a standard model IBE based on the hardness of Ring-SIS/LWE. Our main goal is
to show that IBE schemes can, and without sacrificing efficiency, guarantee better
security by being on the standard model and relying on a classical assumption on
lattice problems. We instantiate our implemented IBE scheme from the selective
secure IBE scheme described in [ABB10] as well as from the recent variant
of trapdoor described in [MP12,GM18]. We also describe and implement the
underlying signature scheme that achieve a selective notion of unforgeability based
on the hardness of Ring-SIS/LWE. We choose to implement these selective secure
schemes in the standard model due to their efficiency and also their simplicity
compared to other adaptive secure variants [ABB10,DM14]. Our constructions
work over polynomial rings Rq = Zq[x]/(xn + 1) with n a power of two and q a
prime modulus congruent to 1 mod 2n. This setting is wide-spread in ideal lattice
cryptography due to its efficiency thanks to the Number Theoretic Transform
(NTT) representation. Note that our complete implementation can be found at
https://github.com/lbibe/code.

We provide our implementation as a general-purpose thread-safe C++ library.
We take much care to write plain C++ and not to explicitly include highly
specialized instructions, such as AVX2 and NEON, in order to ensure portability
over several hardware architectures. Instead, we rely on the GCC 7.2 compiler to
make vectorization, and a set of optimization methods and multi-threading have
been introduced using a number of C++11 specific features. More importantly,
we design our code to be modular and provide three software layers, each of which
is of independent interest. The software layers are (1) the different Gaussian
sampling techniques based on [DP16,GM18], (2) the Gaussian sampling for
trapdoor lattice with arbitrary modulus using [MP12], and (3) the underlying
cryptographic constructions (both IBE and the related signature).

We experimentally evaluate the performance of these two constructions. To
our surprise, the obtained runtime is fast and even quite close to that of other
schemes built in the ROM or/and using different security assumptions. We
remind that our goal is not to provide the most efficient IBE or signature scheme,
but to show that “good” security properties can still be practical for many
scenarios. In Table 1 and Table 2, we provide a comparison with state-of-the-art
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Table 1: Timings for the different operations of IBE schemes: Setup (master key
generation), Extract (user private key generation), encryption and decryption.
Since Setup is performed only once, we provide the timing of only one single
operation. Extract can measure how many users the system can manage. As for
Encrypt/Decrypt, we give their throughput in KB per second.

Scheme (λ, n)
Setup Extract Encrypt Decrypt

(ms) (ms) (KB/s) (KB/s)

BF-128 [Fou13] (128,−) – 0.55 4.10 6.19

DLP-14 [MSO17] (80, 512) 4034 3.8 587 1405

This paper (80, 1024) 1.67 4.02 230 1042

Table 2: Timings for the different operations of signature schemes: KeyGen (key
generation), signature and verification. Since KeyGen is performed only once per
user, we provide the timing of only one single operation. As for Sign/Verify, we
give the timing as the number of sign/verify operations per second.

Scheme (λ, n)
KeyGen Sign Verify

(ms) (op/s) (op/s)

Falcon [FHK+18] (195, 768)a 53.48 202 2685

This paper (170, 1024) 0.96 540 21276

a corresponds to NIST Security Level 2, since Level 1 only achieves 114 bits of security

implementations of IBE and signature schemes. We note the security parameter
as λ (classical bit security in Tables 1-6) and the lattice dimension as n.

We obtain our results using dual-core Intel i7 2.6 GHz CPU with standard
CPU benchmarks. Concerning the IBE schemes, we notice that our Setup (master
key generation), compared to DLP-14, is (much) faster (we note that the DLP-14
Setup could now be improved using the recent results in Falcon [FHK+18]),
while decryption and Extract are of the same order of magnitude. However, our
encryption is twice slower. For the sake of completeness, we include the timings
of the paring-based IBE scheme of Boneh-Franklin. As for the signature scheme,
we compare our implementation with Falcon [FHK+18] that is the underlying
signature scheme of [DLP14]. In our timings, we did not consider the phase of
precomputations that we detail later in Section 5 (see Tables 5 and 6).

Related work. In [EBB13], the authors gave a software implementation of the
trapdoor of Micciancio and Peikert [MP12] in both matrix and ring variants.
They also included this trapdoor into the signature in the ROM of [GPV08].
Recently, in a concurrent work, a software implementation of the improvement
lattice trapdoor [MP12,GM18] is given in [GPR+17,DDP+17], with application
to respectively the GPV signature and the ABE scheme of [BGG+14].
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The only lattice based IBE given with an implementation we are aware of,
is the one of Ducas, Lyubashevsky and Prest [DLP14]. In [DLP14], the authors
gave a proof-of-concept implementation, recently improved by [MSO17]. This
IBE scheme is the IBE of [GPV08], working with structured NTRU lattices. The
Gram-Schmidt norm of a NTRU basis is quite small and efficiently computed,
then the Gaussian sampling using this basis outputs better quality vectors.

Conclusion and Open problems. Our main contribution is a software im-
plementation of a lattice-based IBE and signature scheme. Both constructions
are proven secure in the standard model under the hardness of Ring-SIS/LWE.
Our IBE is a ring-version of the selective ABE scheme, adapted using the MP12
trapdoor, we provide its underlying signature scheme and both security proofs.

We stress that our implementation has an efficiency comparable to NTRU
based schemes in the ROM, even if we thought at first that a scheme on the
standard model and based on Ring-SIS/LWE would be much less efficient. Then,
we find it interesting to observe that even with the constraint on the choice of
parameters and using a Gaussian sampling, those constructions, which are not
using NTRU lattices, can also be efficient.

There are several open questions which would be interesting to answer. First,
we choose to study the selective secure IBE scheme of ABB, and a signature
scheme which achieve a selective notion of unforgeability. Both schemes can
be improved to a better security by using the adaptive IBE scheme of ABB,
and by looking at the standard secure signature of [DM14]. We also discuss in
Section 2.5 the choice of the encoding hash function used in both schemes, which
could be improved using the recent results of [LS18]. Finally, we want to modify
NFLlib, which for now only allows us to use parameter q of size 30 or 62 bits.
As discussed in Section 5, using a parameter q in between would optimize our
choice of parameters. Note that using a Module variant, as in [DLL+17], could
also be a solution.

2 Preliminaries

Notations. Let D be a distribution over some finite set S, then x←↩ D means
that x is chosen from the distribution D and x←↩ U(S) denotes the sampling of
a uniformly random element x from S. We denote column vectors and matrices
in bold, respectively by bold lowercase (e.g. x) and bold uppercase (e.g. A).
The euclidean norm of the vector x is denoted by ‖x‖. The norm of a matrix
‖T‖ = maxi ‖ti‖ is the maximum norm of its column vectors.

Lattices. An m-dimensional full-rank lattice Λ is a discrete additive subgroup
of Rm. A lattice is the set of all integer combinations of some linearly independent
basis vectors, B = {b1, · · · ,bm} ∈ Rm×m, Λ(B) = {

∑m
i=1 zibi : zi ∈ Z}. For

n a power of two, the polynomial ring R = Z[x]/(xn + 1) is isomorphic to the

integer lattice Zn, a polynomial f =
∑n−1
i=0 fix

i in R corresponds to the integer
vector of its coefficients (f0, · · · , fn−1) in Zn. The norm of a polynomial ‖f‖ is
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the norm of its coefficients vector. For the rest of the paper we will work with
polynomials over R, or Rq = R/qR = Zq[x]/(xn + 1) where q is a prime such
that q = 1 mod 2n.

Gaussian distribution. The Gaussian function of center c ∈ Rn and width
parameter σ is defined as ρσ,c(x) = exp(−π ‖x−c‖

2

σ2 ), for all x ∈ Rn. We can extend
this definition to a positive definite covariance matrix Σ = BBT : ρ√Σ,c(x) =

exp
(
−π(x− c)TΣ−1(x− c)

)
. The discrete Gaussian distribution over a lattice Λ

is defined as DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ) where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x).

Tailcut. To tailcut less than 2−λ of a one-dimensional Gaussian, we use the fact
that Prx←↩DZ,σ [|x| > tσ] ≤ erfc

(
t/
√

2
)
, where erfc(x) = 1− 2

π

∫ x
0

exp−t
2

dt. For
example, t = 12 for λ = 100. Then, a vector x sampled in DZm,σ would have
small norm ‖x‖ ≤ tσ

√
m with overwhelming probability.

2.1 Cryptographic problems on lattices

Ring-SIS/Ring-LWE. We use ring variants of SIS and LWE, proposed by
[LM06,PR06] and [SSTX09,LPR10], and proven to be at least as hard as the
GapSVP/SIVP problems on ideal lattices.

Definition 1 (Ring-SISq,m,β). Given a = (a1, · · · , am)T ∈ Rmq a vector of m
uniformly random polynomials, find a non-zero vector of small polynomials x =
(x1, · · · , xm)T ∈ Rm such that aTx =

∑m
i=1 ai · xi = 0 mod q and 0 < ‖x‖ ≤ β.

Definition 2 (Decision Ring-LWEn,q,DR,σ). Given a = (a1, · · · , am)T ∈ Rmq
a vector of m uniformly random polynomials, and b = as+ e, where s←↩ U(Rq)
and e←↩ DRm,σ, distinguish (a,b = as+ e) from (a,b) drawn from the uniform
distribution over Rmq ×Rmq .

2.2 Dual-Regev Public Key Encryption

The Dual-Regev PKE, first described in [GPV08, Section 7.1], is the starting
point to build an IBE on lattices. We describe its ring variant, with parameters n,
m, and q integers and ζ, τ two real numbers.

– Key Generation: The secret key corresponds to a vector of small norm poly-
nomials x ∈ Rm, sampled from DRm,ζ . The public key contains a uniformly
random chosen vector of polynomials a←↩ U(Rmq ) and one more polynomial

u = aTx ∈ Rq.
– Encryption: The plaintext message consists in a binary polynomial M ∈ R2.

The ciphertext is composed of m+ 1 Ring-LWE samples: (b = as+ e, c =
u · s+ e′ + bq/2cM) ∈ Rmq ×Rq, where s is a uniformly chosen polynomial in
Rq, and e′, e follow a discrete Gaussian distribution respectively on R and
Rm of parameter τ . The ciphertext is then (b, c).

– Decryption: The recipient uses his private key x to compute: µ = c− bTx =
e′ − eTx + bq/2cM. To recover M , he looks at each coefficient of µ, if µi is
closer to 0 than to bq/2c, the message bit Mi = 0, otherwise Mi = 1.
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Security. The ring-variant of the Dual-Regev scheme is IND-CPA secure under
the hardness of Ring-LWEn,q,DR,τ [LPR13]. The correctness of the decryption
holds if the error term ‖e′ − eTx‖ is small enough, less than bq/4c.

2.3 Cryptographic definition of a signature

Signature. Let λ be the security parameter of the scheme, M and S denote
respectively the set of messages and the set of signatures. A signature scheme is
given by three probabilistic polynomial time algorithms:

KeyGen(1λ)→ (vk, sk). Takes as input the security parameter λ and outputs
a pair of keys, the verification key vk and the signing key sk.

Sign(1λ, sk,M) → ν. Takes as input the security parameter λ, the signing
key sk and a message M ∈M, and outputs a signature ν ∈ S.

Verify(1λ, vk,M, ν)→ {accept, reject}. Takes as input the security parame-
ter λ, the verification key vk, the message M and a signature ν and either accepts
or rejects.

Correctness. The signature is said correct if for all message M ∈M, (vk, sk)←
KeyGen(1λ) then Verify(1λ, vk,M, Sign(1λ, sk,M)) = accept with overwhelming
probability.

Security Game. We define here the selective unforgeability against chosen message
attack (SU-CMA). The game proceeds as follows:

Init: The adversary A chooses the challenge message M∗.
Setup: The challenger runs KeyGen(1λ) and gives the verification key vk to

the adversary A.
Queries: The adversary can make signing queries on messages M 6= M∗, and

the challenger answers by running ν ← Sign(1λ, sk,M).
Forgery: Eventually, A outputs ν∗ and wins if Verify(1λ, vk,M∗, ν∗) = accept.
The advantage of the adversary A playing the SU-CMA security game is

Adv(A)SU-CMA
SIG =

∣∣∣∣Pr
[
Verify(1λ, vk,M∗, ν∗) = accept

]
− 1

2

∣∣∣∣ .
A signature scheme is SU-CMA secure if, for all probabilistic polynomial time
adversary A, his advantage Adv(A)SU-CMA

SIG is negligible.

2.4 Cryptographic definition of an IBE scheme

Identity Based Encryption. Let λ be the security parameter of the scheme, an
Identity Based Encryption (IBE) is composed of four probabilistic polynomial
time algorithms:

Setup(1λ) → (mpk,msk). The first algorithm takes as input the security
parameter λ and outputs a master key pair composed of the master public key
mpk and the master secret key msk.
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Extract(1λ,mpk,msk, id)→ skid. Takes as input the security parameter λ, the
master key pair (mpk,msk) and an identity id ∈ ID, and outputs an individual
private key skid for the identity id.

Encrypt(1λ,mpk, id,M)→ C. Takes as input the security parameter λ, the
master public key mpk, an identity id ∈ ID, and a message M ∈M and outputs
a ciphertext C.

Decrypt(1λ,mpk, skid, C)→ {M,⊥}. Takes as input the security parameter
λ, the master public key mpk, a private key associated to the identity skid, and
a ciphertext C ∈ C and outputs a message M ∈ M or the symbol ⊥ if the
ciphertext is invalid.

Correctness. An IBE is said correct if for any message M ∈ M, and identity
id ∈ ID, (mpk,msk)← Setup(1λ) and skid ← Extract(1λ,mpk,msk, id) yields

Decrypt(1λ,mpk, skid,Encrypt(1
λ,mpk, id,M)) = M,

with overwhelming probability.

Security Game. We describe the ciphertext indistinguishability under a selective-
identity chosen-plaintext attack (IND-sID-CPA) as a game between an adversary
A and a challenger. The game proceeds as follows:

Init: The adversary A chooses the challenge identity id∗.

Setup: The challenger runs Setup(1λ), gives the master public key msk to A.

Queries 1: The adversary can make private-key extraction queries on identities
id 6= id∗, and the challenger answers by running skid ← Extract(1λ,mpk,msk, id).

Challenge: Adversary A outputs two plaintexts M0,M1 ∈M. The challenger
chooses a random bit b∗ ←↩ {0, 1} and, sets the challenge ciphertext to C∗ =
Encrypt(1λ,mpk, id∗,Mb∗). The challenge ciphertext C∗ is sent to A.

Queries 2: Adversary can make additionnal queries (answered as in Queries 1).

Guess: Eventually, A outputs a bit b and wins if b∗ = b.

The advantage of the adversary A playing the IND-sID-CPA security game above
is Adv(A)IND-sID-CPA

IBE =
∣∣Pr [b = b∗]− 1

2

∣∣ . An IBE scheme is IND-sID-CPA secure
if, for all PPT adversary A, his advantage Adv(A)IND-sID-CPA

IBE is negligible.

2.5 Hash functions

Our IBE and signature schemes use an encoding hash function H : Znq → Rq to
map identities in Znq to invertible elements in Rq. The security proof requires the
map H to satisfy an injectivity property: the difference of two elements has to be
invertible in Rq. Such hash functions have been called encoding with Full-Rank
Differences (FRD) in [ABB10] and they must satisfy the following properties:

1. for all distinct u, v ∈ Znq , the element H(u)−H(v) ∈ Rq is invertible; and

2. H is computable in polynomial time (in n log q).

8



Implementation of FRD Hash Functions. An invertible element of Rq in the
NTT domain corresponds to n non-zero integers of bit-size k. We implement our
encoding in a naive manner, by generating these n integers using an PRNG with
the identity id as a seed. In the literature, Ducas and Micciancio [DM14] chose
the ring Rq, with q a power of 3 because in such ring any polynomial of degree
less than n/2 with coefficients in {−1, 0, 1} is invertible. Recently, Lyubashevsky
and Seiler have proposed in [LS18] a way to construct such encoding using the
fact that small non-zero polynomials are invertible in cyclotomic rings. They also
use that xn + 1 splits modulo q, and perform half of the FFT recursion tree,
depending on the logarithm of the number of splittings, and at the end of the
FFT tree, for small degree polynomials, multiplications have to be performed
using naive or Karatsuba algorithm.

3 Trapdoors on lattices

The construction of our IBE scheme relies on a kind of trapdoors, introduced
by Ajtai [Ajt96,Ajt99], and then improved, in particular in [MP12,GM18]. We
define the trapdoor function

fA(x) = Ax mod q

which represents the Inhomogeneous SIS problem (i.e. find a short non-zero vector
x such that Ax = u mod q).

The trapdoor of Ajtai consists in a short basis TA ∈ Zm×m of the m-
dimensional integer lattice:

Λ⊥q (A) := {x ∈ Zm such that Ax = 0 mod q}.

Thanks to a sufficiently short basis TA, we can sample from a Gaussian distribu-
tion with a small parameter σ to obtain short vectors in Λ⊥q (A). Then, solve the
SIS, ISIS or LWE problems.

We use the ring version of a second notion of trapdoors (gadget based
trapdoors) introduced by [MP12], and recently improved by [GM18], which are
more efficient. In this construction, the matrix A is constructed by picking the
first part uniformly at random, and the second part is almost uniformly random
by including a structured gadget, to help the inversion of the SIS problem.

3.1 Gadget-based trapdoor construction

Gadget vector. We use the gadget vector g ∈ Rkq for which the inversion

of fgT (z) = gT z ∈ Rq is easy: it is a vector of constant polynomials, g =
(1, 2, 4, · · · , 2k−1)T ∈ Rkq with k = dlog2 qe. The lattice Λ⊥q (gT ) has a publicly
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known basis

Bq =



2 q0

−1 2 q1

−1
. . .

...
. . . 2 qk−2

−1 qk−1


∈ Rk×k, where q =

k−1∑
i=0

2iqi.

The quality of Bq can be seen as the norm of its Gram-Schmidt orthogonalization,

which satisfies ‖B̃q‖ ≤
√

5.

Trapdoor construction. The trapdoor construction is an almost uniformly random
vector of polynomials a ∈ Rmq starting from a uniformly random vector of

polynomials a′ ∈ Rm−kq (Alg. 3.1.1) that hides the structured vector g, together
with a trapdoor T that enables its owner to recover this structure when needed.

Definition 3 (g-trapdoor). Let a ∈ Rmq and g ∈ Rkq with k = dlog2 qe and
m > k. A g-trapdoor for a consists in a matrix of small polynomials T ∈
R(m−k)×k, following a discrete Gaussian distribution of parameter σ, such that
aT
(
T
Ik

)
= hgT for some invertible element h ∈ Rq. The polynomial h is called

the tag associated to T. The quality of the trapdoor is measured by its largest
singular value s1(T).

Algorithm 3.1.1 Algorithm TrapGen(q, σ,a′, h)

Input: q the ring modulus, σ a Gaussian parameter. Optional a′ ∈ Rm−kq and h ∈ Rq.
If no a, h is given as input, the algorithm chooses a′ ←↩ U

(
Rm−kq

)
and h = 1.

Output: a ∈ Rmq with its trapdoor T ∈ R(m−k)×k, of norm ‖T‖ ≤ tσ
√

(m− k)n
associated to the tag h.
T←↩ DR(m−k)×k,σ, a = (a′T

∣∣hg − a′TT)T ,
return (a,T).

3.2 Preimage Sampling

Peikert Sampler. To find x such that faT (x) = u, using this trapdoor, the
idea is to find a z satisfying fgT (z) = h−1 · (u− aTp) and following a discrete
Gaussian distribution of parameter α, where p is a perturbation vector with
covariance matrix Σp = ζ2Im − α2

(
T
Ik

)
( TT Ik ). Then, x = p +

(
T
Ik

)
z, has

covariance matrix Σx = Σp + α2
(
T
Ik

)
( TT Ik ) = ζ2Im and satisfies aTx =

aTp + aT
(
T
Ik

)
z = aTp + hgT z = aTp + h · h−1(u − aTp) = u. This idea is

summarized in Alg. 3.2.1 SamplePre.
It uses the two following algorithms:

10



Algorithm 3.2.1 Algorithm SamplePre(T,a, h, ζ, σ, α, u)

Input: a ∈ Rmq , with its trapdoor T ∈ R(m−k)×k associated to an invertible tag h ∈ Rq,
u ∈ Rq and ζ, σ and α three Gaussian parameters.

Output: x ∈ Rmq following a discrete Gaussian distribution of parameter ζ satisfying
aTx = u ∈ Rq.
p← SampleP(q, ζ, α,T), v ← h−1 · (u− aTp),
z← SamplePolyG(σ, v), x← p +

(
T
Ik

)
z,

return x.

– SamplePolyG(σ, v)→ z, takes as input a Gaussian parameter σ and a target
v ∈ Rq, outputs z←↩ DΛ⊥q (gT ),α,v, with α =

√
5σ,

– SampleP(q, ζ, α,T) → p, takes as input the ring modulus q, ζ and α two
Gaussian parameters and T←↩ DR(m−k)×k,σ, outputs p←↩ D

Rm,
√
Σp

, where

Σp = ζ2Im − α2
(
T
Ik

)
( TT Ik ) with ζ > s1(T)α.

4 Identity-based encryption

4.1 Identity-based encryption on lattices

The first IBE scheme on lattices was described in [GPV08], on the random oracle
model. The master public key is a uniformly random matrix A ∈ Zn×mq and its
associated trapdoor TA ∈ Zm×m is the master secret key. A secret key associated
to an identity id ∈ {0, 1}∗ is a short vector x ∈ Zm which satisfies Ax = H(id)
mod q where H : {0, 1}∗ → Znq is a hash function modeled as a random oracle.
The encryption and decryption correspond to the Dual-Regev PKE with public
key (A,H(id)) and private key x.

In [CHKP10], the authors introduced a way to delegate a basis, i.e. a way to
extend a basis: given a matrix A ∈ Zn×mq , and its associated trapdoor TA, they

find a way to construct a trapdoor TA′′ for a matrix A′′ = (A |A′) ∈ Zn×(m+m′)
q .

They use this idea to describe the first hierarchical identity-based encryption (in
the random oracle model), and also to construct an IBE selective secure in the
standard model. They described an IBE selectively secure in the standard model,
where the matrix Aid is constructed as

Aid = (A |A(id1)
1 | · · · |A(idl)

l ) ∈ Zn×m(l+1)
q ,

depending on the bits id1, · · · , idl of the identity id ∈ {0, 1}l. The matrices (A
(b)
i )

have to be public, as well as an uniformly random vector u ∈ Znq . By extending
TA, we get a trapdoor for TAid

and a secret key on this scheme is a short vector
x ∈ Zm(l+1) satisfying Aidx = u mod q. To encrypt and decrypt in the IBE
scheme, we use (A,u) and x as public and private keys of the Dual-Regev scheme.

The IBE constructions in [ABB10] improve the IBE construction of [CHKP10]

by reducing the size of the matrix Aid from Zn×m(l+1)
q to Zn×2mq . We associate

11



each identity id ∈ ID to a publicly computable matrix

Aid = (A |F (id)) ∈ Zn×2mq ,

where F (·) is a function mapping identities to matrices in Zn×mq , which can be
instantiated as:

– F (id) = B +H(id)C, in the selective secure construction, where H : ID →
Zn×nq is an encoding with Full-Rank Differences and B,C ∈ Zn×mq are two
uniform public matrices,

– F (id) = B +
∑l
i=1 idiAi, in the adaptive secure construction, where we need

l + 1 random matrices B,A1, · · · ,Al in the master public key. The adaptive
security is a stronger notion of security where the adversary is allowed to
make private key queries of its choice after receiving the master public key.
At the end of this first queries phase, he output a target identity id∗, with
the restriction that he did not ask a private key query for id∗ during the
previous phase.

4.2 Intuition

Our IBE construction is a ring-version of the selective IBE of [ABB10], adapted
to use the gadget-based trapdoor of Micciancio and Peikert [MP12] (also adapted
to rings, described in Section 3). We use the same encoding with Full-Rank Dif-
ferences H to map identities to invertible elements in Rq (defined in Section 2.5).

The master public key consists in a uniformly random polynomial u ∈ Rq
and a pseudo-random vector of polynomials a ∈ Rmq . The master secret key is a

g-trapdoor T ∈ R(m−k)×k for a with associated tag set to zero:

a = (a′T | − a′TT)T .

Then, thanks to a, we can compute a publicly computable vector associated
to an identity id:

aid = aT + (0 |H(id)g)T

= (a′T |H(id)g − a′TT)T .

where H is encoding with with Full-Rank Differences defined in Section 2.5.
The secret key associated to an identity id is a short vector x ∈ Rm, computed

thanks to the algorithm SamplePre, which satisfies aTidx = u ∈ Rq. We also use
the Dual-Regev encryption scheme to encrypt (using aid) and decrypt (using x).

4.3 Our construction

The parameters of the scheme are n, m, q, k, and q integers, and σ, α, γ, τ ,
and ζ are real numbers, and chosen as described in Section 4.4.

1. Setup(1n)→ (mpk,msk):

12



(a) Compute a ∈ Rmq associated to its trapdoor T ∈ R(m−k)×k, (a,T) ←
TrapGen(q, σ, h = 0), i.e. a = (a′T | − a′TT)T ,

(b) Sample a uniformly random polynomial u←↩ U(Rq),

(c) Output mpk = (a, u) ∈ Rm+1
q and msk = T ∈ R(m−k)×k.

2. Extract(mpk = (a, u),msk = T, id ∈ ID)→ skid:
(a) Compute the tag hid = H(id),

(b) Compute aid = aT + (0 |hidg)T = (a′T
∣∣hidg − a′TT)T ,

(c) Sample a short x← SamplePre (T,aid, hid, ζ, σ, α, u), such that aTidx = u,

(d) Output skid = x ∈ Rm.
3. Encrypt(mpk = (a, u), id,M ∈ R2)→ C:

(a) Compute the tag hid, and aid like above,

(b) Sample s←↩ U(Rq), e0 ←↩ DRm−k,τ , e1 ←↩ DRk,γ , and e′ ←↩ DR,τ ,

(c) Compute b = aids+ (eT0 | eT1 )T ∈ Rmq , and c = u · s+ e′ + bq/2cM ∈ Rq,
(d) Output C = (b, c) ∈ Rm+1

q .

4. Decrypt(skid = x, C = (b, c))→M :
(a) Compute res = c− bTx = e′ − (eT0 | eT1 )x + bq/2cM ∈ Rq,
(b) For each resi, if it is closer to bq/2c than to 0, Mi = 1, otherwise Mi = 0.

Correctness. Let x = (xT0 |xT1 )T with x0 ∈ Rm−kq and x1 ∈ Rkq . To decrypt a

ciphertext, we need the error term e′ − (eT0 | eT1 )(xT0 |xT1 )T = e′ − eT0 x0 − eT1 x1 to
be bounded by bq/4c (see Section 4.4 on the choice of the parameters).

Theorem 1. Our IBE construction with parameters n, m, q, k, σ, α, γ, τ and ζ
chosen as below is IND-sID-CPA secure in the standard model under the hardness
of Ring-LWEn,q,DR,τ .

Proof. To prove the IND-sID-CPA security of the IBE scheme described above,
we use a sequence of games starting from the original IND-sID-CPA game
(Section 2.4). In the final game, the adversary has no information left about
the initial message and hence has advantage zero. To ensure that the adversary
has a negligible advantage in winning the IND-sID-CPA game, we show that a
probabilistic polynomial time adversary cannot distinguish between games.

Game 0. The original IND-sID-CPA game between an adversary A and an
IND-sID-CPA challenger.

Game 1. In the Game 0, the master public key of the scheme is mpk = (a, u),
with a generated thanks to TrapGen(q, σ, h = 0) with an associated trapdoor T
(i.e. a = (a′T | − a′TT)T ), and u is a uniform polynomial in Rq.

In Game 1, we change the generation of the public vector a by adding infor-
mation about the challenge identity id∗ targeted by A. The public parameter a is
now generated thanks to TrapGen(q, σ,a′,−hid∗), i.e. a = (a′T | −hid∗g−a′TT)T ,
where the first part a′ ∈ Rm−kq is chosen from the uniform distribution. For the

second part, a′TT =
(∑m−k

i=1 aiti,1, · · · ,
∑m−k
i=1 aiti,k

)
, is either computationally
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or statistically indistinguishable from the uniform distribution depending on the
trapdoor instantiation we choose.

For the computational instantiation, we set m− k = 2, and a′ = (1, a) with
a←↩ U(Rq) and obtain a public vector

a = (1, a | −(a · t2,1 + t1,1), · · · ,−(a · t2,k + t1,k) ) .

To ensure such a looks uniform, we use the Ring-LWE assumption in its normal
form: where the secret and the error follow the same distribution.

The adversary A issues private key queries on identities id 6= id∗, and the
challenger has to answer to these queries. To do that, he computes

aid = aT + (0 |hidg)

= (a′T | (hid − hid∗)g − a′TT)T ,

and use SamplePre(T,aid, hid−hid∗ , ζ, σ, α, u) to compute a private key associated
to id: x ∈ Rm satisfying aTidx = u, because hid − hid∗ is invertible. Note that for
id = id∗, aid = (a′T | − a′TT)T , and B can no longer answer private key queries.

Game 2. In the last game, we change how the challenge ciphertext is build. The
ciphertext C∗ is now chosen uniformly in Rmq × Rq. The last step is to show
that Game 1 and Game 2 are computationally indistinguishable for A by doing
a reduction from the Ring-LWE problem. Suppose that A has non-negligible
advantage in distinguishing these two games. Then a simulator B can use A to
solve the Ring-LWE problem with non-negligible advantage (Section 2.1).

The simulator B receives m− k + 1 samples (ai, bi)0≤i≤m−k as an instance
of the decisional Ring-LWE problem. The simulator also receives the challenge
identity id∗ from the adversary A. Let a′ = (a1, · · · , am−k)T ∈ Rm−kq and

b′ = (b1, · · · , bm−k)T ∈ Rmq . The simulator runs TrapGen(q, σ,a′,−hid∗), because
a′ is following a uniform distribution thanks to the Ring-LWE assumption, and
gets back a = (a′T | − hid∗g − a′TT)T , as in Game 1. Next, B sets u = a0 and
sends (a, u) to A as the master public key of the scheme. The adversary A issues
private key queries, and B answer to these queries like in Game 1.

Then the attacker A sends two messages M0,M1 to B. B generates a random
bit b∗, and generates the challenge ciphertext C∗ = (b∗, c∗) as follows:

b∗ = (b′T | − b′TT + êT )T , c∗ = b0 + bq/2cMb∗ ,

where ê←↩ DRk,µ for some µ real.

– If the Ring-LWE samples are drawn from the Ring-LWE distribution, we
have b′ = a′s+ e and b0 = a0 · s+ e0, for some s ∈ Rq, e←↩ DRm−k,τ and
e0 ←↩ DR,τ . By substitution,

b∗ = (b′T | − b′TT + êT )T )T

= ((a′s+ e)T | − (a′s+ e)TT + êT )T )T

= aTid∗s+ (eT | − eTT + êT )T )T
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and c∗ = b0 + bq/2cMb∗ = a0 · s+ e0 + bq/2cMb∗ .

For fixed e, the error term −eTT + êT is indistinguishable from a sample
drawn from the distribution DRk,γ with γ2 = (σ‖e0‖)2+µ2, for µ well chosen.
Then the challenge ciphertext, (b∗, c∗) follows the same distribution as in
the IBE of Game 2.

– If the Ring-LWE samples are uniformly random samples, the ciphertext
challenge also looks uniform. Then, the challenge ciphertext C∗ is always a
uniform element in Rmq ×Rq At the end, the adversary A outputs a guess b.

If b = b∗ with overwhelming probability, the simulator concludes that the Ring-
LWE instance was drawn from the Ring-LWE distribution, otherwise B concludes
that the Ring-LWE distribution was drawn from the uniform distribution. ut

4.4 Parameter choices

In our construction, the modulus q is chosen to be a prime of size 14, 30 or
62 bits (implementation purpose of NFLlib [AMBG+16]). We use the compu-
tational instantiation of the trapdoor with m − k = 2, and a′ corresponds to
two polynomials, the first sets to one and the second to a uniform polynomial
a←↩ U(Rq), as suggested in [EBB13]. We obtain a public vector, associated to
tag h: a = (1, a |h · g1 − (a · t2,1 + t1,1), · · · , h · gk − (a · t2,k + t1,k) ).

– The Gaussian parameter σ for the trapdoor sampling is σ >
√

(ln (2n/ε) /π)
[MP12] where n is the maximum length of the ring polynomials, and ε is the
desired bound on the statistical error introduced by each randomized-rounding
operation. This parameter is also chosen to ensure that the Ring-LWE instance
of parameters n, q and σ is hard.

– The Gaussian parameter α used for the G-sampling [MP12] is α =
√

5σ.

– By [GM18], the parameter ζ satisfies ζ > s1 (T)α. The spectral norm of T
is a subgaussian random matrix of parameter σ [MP12, Lemma 2.9]. There
exists a universal constant C (∼ 1/

√
2π), such that for any t′ ≥ 0, we have

s1 (T) ≤ Cσ(
√
kn+

√
2n+t′) except with probability at most 2 exp

(
−π(t′)2

)
.

Then, we get ζ >
√

5Cσ2(
√
kn+

√
2n+ t′).

– Finally, to choose the Gaussian parameters γ, τ for the Dual-Regev encryption,
we need ‖e′ − eT0 x0 − eT1 x1‖ < bq/4c, which thanks to Section 2 gives:

‖e′ − eT0 x0 − eT1 x1‖ ≤ tτ
√
n+ 2t2τζn+ t2γζkn < bq/4c.

– Moreover, γ needs to satisfy γ =
√
σ2‖e0‖2 + µ2 so that the security proof

holds. We can have an idea of the norm of e0 by using the Section 2,

γ2 = σ2‖e0‖2 + µ2 ≤ σ2(tτ
√

2n)2 + µ2,

we choose µ = tστ
√

2n, and then γ = 2tστ
√
n.
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Table 3: Parameters set for our IBE construction.

n k σ LWEσ ζ γ τ LWEτ λ

512 50 3.3 241 1935.7 4493.2 3.3 241 40

1024 51 5 280 6360.5 14747.7 5 280 80

2048 62 6.7 2197 16898.5 64541.9 6.7 2198 195

Parameters set. We combine all the conditions to obtain the following set
of parameters, used in our implementation. Remark: The bit security of the
underlying Ring-SIS instance does not appear here because it dominates the bit
security of the Ring-LWE instances.

4.5 Underlying signature scheme

Behind the IBE scheme above, there is an underlying natural signature scheme.
The key generation in both scheme consists in creating a public vector a ∈ Rmq
together with its trapdoor T ∈ R(m−k)×k. The signature of a message corresponds
to the secret key associated to an identity in the IBE scheme. A signature x of a
message M is a solution of aTMx = 0 mod q. To check if x is a valid signature
for some message M , we have to check that x is a non trivial solution to the
Ring-SIS instance above (x 6= 0, aTMx = 0 mod q and ‖x‖ ≤ tζ

√
nm).

Construction. The parameters of the scheme are n, m, q, k, and q integers,
and σ, α, and ζ are reals. Let H : Znq → Rq be a FRD map.

1. KeyGen(1n)→ (vk, sk):

(a) Compute a ∈ Rmq associated to its trapdoor T ∈ R(m−k)×k, (a,T) ←
TrapGen(q, σ, h = 0), i.e. a = (a′T | − a′TT)T ,

(b) Output vk = a ∈ Rmq and sk = (a,T) ∈ Rmq ×R(m−k)×k.

2. Sign(sk = (a,T),M ∈ R2)→ ν:

(a) Compute the tag hM = H(M),

(b) Compute aM = aT + (0 |hMg)T = (a′T
∣∣hMg − a′TT)T ,

(c) Sample a short x← SamplePre (T,aM , hM , ζ, σ, α, 0), with aTMx = 0,

(d) Output ν = x ∈ Rm.

3. Verify(vk = a,M, ν = x)→ {accept, reject}:
(a) Compute the tag hM and aM like above,

(b) Accept if, and only if, aTMx = 0 mod q and 0 < ‖x‖ ≤ tζ
√
mn.

Correctness. Thanks to Section 2, with high probability the norm of a signature
outputted by SamplePre is bounded by tζ

√
nm, because it is an integer vector of

size nm and of Gaussian parameter ζ.
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Theorem 2. Our signature construction with parameters n, m, q, k, σ, α, and ζ
chosen as below is SU-CMA (Selective Unforgeability against Chosen Message
Attack) secure in the standard model under the hardness of Ring-SISq,m−k,β with

β = (1 + tσ
√

(m− k)n)tζ
√
mn.

Proof. Let A be an adversary attacking the signature scheme above through an
SU-CMA attack. We build a simulator B attacking the Ring-SIS problem.

Init. The simulator B receives m − k uniformly random and independent
samples from Rq, a′ = (a1, · · · , am−k)T ∈ Rm−kq as an Ring-SIS instance,
and the challenge message M∗ from the adversary A. The simulator runs
TrapGen(q, σ,a′,−hM∗), and gets back a = (a′T | − hM∗g − a′TT)T together
with T←↩ DR(m−k)×k,σ. Next, B sends vk = a ∈ Rmq to A.

Signing queries. The adversary A issues signing queries on messages M 6= M∗,
and B has to answer to these queries. To do that, he computes aM = aT +
(0 |hMg) = (a′T | (hM−hM∗)g−a′TT)T , and then he can use SamplePre(T,aM , hM−
hM∗ , ζ, σ, α, 0) to find a signature x ∈ Rm satisfying aTMx = 0 mod q.

Forgery. Eventually, A outputs a forgery ν∗ for M∗, satisfying aTM∗ν
∗ = 0

mod q, which gives a′T (Im−k | −T)ν∗︸ ︷︷ ︸
z

= 0 mod q.

The norm of ‖T‖ ≤ tσ
√

(m− k)n because each of its columns is a Gaussian
vector of size k and of parameter σ. Then, the vector z is a solution of the Ring-SIS
instance of norm ‖z‖ = (Im−k | −T)ν∗ ≤ β = (1 + tσ

√
(m− k)n) · tζ

√
mn. ut

Parameters choices. The parameters n, m, q, k, q, σ, α, and ζ follow the
same conditions detailed above for the IBE scheme. Moreover, we need to
look at the underlying Ring-SIS instance of size m − k = 2 and of norm β =
(1 + tσ

√
2n)tζ

√
mn which corresponds to a SIS instance of size n times bigger.

The two following conditions β ≥
√

2nqn/2n =
√

2nq and q ≥ β
√
nω(log n) ensure

that the SIS problem has a solution and that is hard.
To get an idea of the security achieved by a SIS instance, we follow the general

framework of [APS15,CN11]. To ensure that the shortest vector outputted by
BKZ is a solution of our SIS instance of norm β = (1 + tσ

√
2n)tζ

√
mn, the root

Hermite factor δ need to satisfy β
qn/2n

= β√
q = δ2n. To achieve this Root Hermite

factor, we need to run BKZ with block size at least b. The estimated cost of

running BKZ with block size b, a number of rounds of N = (2n)2

b2 log(2n) and on

dimension 2n is cost(BKZb,N ) ≈ (2n)3

b2 log(2n) · cost(SVP oracle).

Parameters set. We now combine all those conditions to obtain the following
set of parameters. Remark: We can also instantiate this scheme such that the
public key is statistically close to uniform by using a Regularity Lemma ([SS11,
Theorem 3.1]), but in this case, m− k is slightly larger and σ is much larger.
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Table 4: Parameters set for our signature scheme.

n k σ LWEσ ζ δ b SIS λ

512 30 4.2 264 2529.3 1.011380 62 274 60

1024 24 5.8 2378 6143.8 1.008012 132 2156 140

1024 30 6.3 2246 8023.6 1.007348 154 2184 170

5 Implementation

5.1 General Description

Our implementation was carried out in plain C++11 as a general-purpose library.
We now discuss the different principles followed during the design of our code:

Cutting-edge compiler. We have always used the latest version available of the
GCC compiler to build our binary. Our final timings have been produced using
the GCC 7.2 compiler that allows us to perform various optimization and code
sanitization that do not exist in older versions.

Thread-Safety. Lattice-based constructions are known to be highly paralleliz-
able. Therefore, we build our library so that it could be simultaneously called
from concurrent threads. To this end, we only use the <thread> model of C++11,
and not OpenMP or OpenCL, in order to keep the design as simple as possible.

Portability. Modern processors often come with a combination of advanced
hardware instructions: SSE 4.1, AVX, AVX2, AVX512+flavors and NEON. These
instructions allow developers to boost the performance of their applications.
Many developers tend to explicitly include such instructions inside their code
to gain in efficiency. However, we do not use this method, since it limits the
portability of the code. Instead, we rely on the compiler to insert them depend-
ing on the required optimization level and the targeted machine using its own
auto-vectorization techniques. Thus, our code can be easily compiled for INTEL
and ARM processors without any modification.

Dedicated polynomial ring library. We avoid the use of generic number the-
ory libraries, such as NTL and FLINT, in our implementation. Instead, we
preferred to use NFLlib library [AMBG+16] which offers fast implementations of
arithmetic operations over the ring. However, NFLlib has a primary drawback: it
does not allow developers to natively choose a prime modulus q of size between 30
bits and 62 bits. This has resulted in performance penalty on our implementation
when q can be of size 50 bits, since we had to use 62 bits.

Double-precision float. Our implementation does not depend on multi-precision
floating-point arithmetic. Instead, all floating-point computations are performed
using double-precision arithmetic, as in [GM18].
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Modularity. We designed our code to be composed of three software layers.
In what follows, we describe these layers and discuss some technical choices
concerning our implementation.

5.2 Software Layers

Gaussian Preimage Sampling. This layer implements the Peikert Gaussian sam-
pler. As mentioned in section 3.2, this consists of combining two stages: an
off-line (target independent) stage SampleP generating perturbation vectors, and
an on-line (target dependent) stage SamplePolyG generating samples from a par-
ticular lattice. We note that this layer does not regard the actual implementation
of SampleP and SamplePolyG. We also note that we never include the runtime
execution of SampleP in our timings for any operation that does need preimage
sampling. Indeed, we suppose that the trusted party, or the signer, periodically
calls SampleP and stores the resulted outputs. Below, we provide more details
about the runtime of this off-line operation.

SampleP and SamplePolyG. This layer implements the recent techniques de-
scribed in [GM18] and [DP16] for Gaussian sampling. We note that SamplePolyG
just calls SampleG (Figure 2 in [GM18]) n times to build k polynomials in Rq.
For instance, when n = 1024 and k = 30 bits, SamplePolyG calls the underlying
sampler 1024 times, and then builds 30 polynomials in their NTT. This n times
sampling constitutes the main bottleneck of our Extract/Sign algorithms. As for
SampleP, we use the Fourier representation in the finite field as well as the FFT’s
butterfly transformation to speed up all the required multiplication/inversion.
To this end, we implement our C++ Cooley-Tukey FFT and optimize it using
template class recursion (a template class that recursively uses its own definition).

IBE and Signature. Here, we implement the described signature and IBE schemes
using mainly our Gaussian Preimage Sampling and NFLlib to perform arithmetic
operations. For the IBE scheme, we build two classes in order to simulate the
different roles: the trusted party that generates the master keys and capable
of extracting users private keys, and a user that is able to encrypt using the
identity of another user as well as to decrypt using its own private key. This
abstraction allows us to easily set up our test benchmark with one trusted party
and several users. We note that we do not include the timings of the instantiation
of the different objects, since it is done only once during the setup of the entire
environment, and more importantly, it concerns memory allocations and some
initial computations that could be performed otherwise.

5.3 Experimental results

Our timings have been obtained on an Intel i7-5600 2.6 GHz CPU. Clock cycles
were measured with the high resolution clock class of C++11. Results are provided
in Table 5 (resp. Table 6) for the IBE (resp. signature) scheme.
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We underline that we obtained our results using the security parameters
in Table 3 and 4 except for k. Indeed, NFLlib limits the choice of k, then we
use k = 30 if it is smaller or equal to 30, and k = 62 otherwise. We note that
modifying NFLlib to take into account arbitrary moduli is possible, but here, we
did not and thus provide upper bounds to our implementations. This explains our
similar results when signing for two different levels of security (with n = 1024).
Our timings show that performance is still practical for many scenarios. We also
notice that timings are almost just multiplied by 2 for twice security.

Table 5: Timings in ms for the different operations of the IBE scheme:
Setup, PreCompute, Extract, Encrypt and Decrypt.

(λ, n) Setup PreCompute Extract Encrypt Decrypt

(40, 512) 0.93 1.32 2.27 0.45 0.0625

(80, 1024) 1.67 3.125 4.02 1.0 0.12

(195, 2048) 3.125 6.67 8.19 2.44 0.94

Table 6: Timings in ms for the different operations of the Signature scheme:
KeyGen, PreCompute, Sign and Verify.

(λ, n) KeyGen PreCompute Sign Verify

(60, 512) 0.52 1.05 1.12 0.025

(140, 1024) 0.91 3.44 2.0 0.043

(170, 1024) 0.96 3.92 1.85 0.047

Comparison with related work. Now, we provide more insight about the Tables 1
and 2 in the introduction, as well as Table 7 presented below.
IBE Scheme. The closest work to our implemented IBE is the one presented
in [DLP14] and re-implemented in [MSO17]. Indeed, both requires Gaussian

Table 7: Timings for the different proposals of the NIST competition. Refer to
Table 2 for the notations.

Scheme (λ, n)
KeyGen Sign Verify

(ms) (op/s) (op/s)

Dilithium [DLL+17] (128, 768a) 0.08 2263 10660

qTesla [BAA+18] (128, 1024) 0.88 1267 5938

Falcon [FHK+18] (195, 768)b 53.48 202 2685

DRS [PSDS18] (128, 1024) 380 50 6

This paper (140, 1024) 0.91 498 23000

a based on Module-LWE/SIS with a ring of size 256
b corresponds to 172 bits of quantum security
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sampling to extract users’ private keys, and our encryption/decryption algorithms
are very similar. However, DLP14 relies on NTRU lattices, which allow them
to tremendously reduce the size of users keys, and therefore the number of
the required Gaussian sampling (only one), while we need n calls to SampleG.
Our implementation is then slower for the Extract and Encrypt operations,
nevertheless, due to our efficient implementation of [GM18], the difference is
quite small. However, our Setup is much faster. We recall that the trusted party
generates the private key for each user only once. Therefore, this operation is
less critical than the encryption/decryption.
Signature Scheme. We compare our implementation with the lattice-based
signature proposals of the NIST competition1. We compiled and ran the Reference
Implementation of each scheme that corresponds to the NIST Security Level 1,
namely 128 quantum bit security. Because of some run-time errors, we did not
include the timing for pqNTRUsign. We are aware of how different these schemes
are in their design and their choice of security parameters. We emphasize that
our evaluation study is not complete, especially that we did not implement the
secure hash function (as discussed in Section 2.5) that might slow down our
signature scheme. However, our results allow us to consider our performance
compared to highly optimized signature schemes. As for signature, our imple-
mentation performs three to four times slower than Dilithium and qTesla, while
it outperforms DRS. But our verification is much faster than other schemes, this
asymmetry could be useful in case signatures are produced by powerful machines
(e.g. a server) and to be verified by constrained devices. These results confirm
that our approach remains interesting for both security and performance.

Storage requirements. Here, we give an estimation of the storage requirements of
our implementation for the different entities. We note that, in the IBE scheme,
the trusted party requires the Gaussian Sampler, while the user requires it for
the signature scheme. Our estimations are directly based on the different fields
of our classes, which reflects the modular structure of our implementation. We
note that the precomputed values take much space, and therefore a trade-off
between the number of precomputations and the allocated storage must be found.
A direct conclusion can be drawn from our Table 8: lattice-based constructions
are not yet ready for constrained devices since, for instance when n = 512 and
k = 30, the public key is of size 61.875 KB, which is quite big for some systems.
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Post-Quantum-Cryptography/Round-1-Submissions
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Table 8: Storage Requirements in Bits
(a) Trusted Party

Public Key nk2 + 3nk

Private Key 2nk

(b) Cipher/Signature

Cipher 3nk + nk2

Signature 2nk + nk2

(c) User

Public Key 3nk + nk2

Private Key 2nk + nk2

(d) Gaussian Sampler

SampleP 384n

SampleG 192n

Precomputations 2kn+ nk2
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B. Sunar. Implementation and evaluation of a lattice-based key-policy
ABE scheme. Cryptology ePrint Archive, Report 2017/601, 2017.

DLL+17. L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehle. CRYSTALS – dilithium: Digital signatures from module lattices.
Cryptology ePrint Archive, Report 2017/633, 2017.

DLP14. L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryp-
tion over NTRU lattices. In Proc. of ASIACRYPT 2014, volume 8874,
page 22. Springer, 2014.

DM14. L. Ducas and D. Micciancio. Improved short lattice signatures in the
standard model. In International Cryptology Conference, pages 335–352.
Springer, 2014.

DP16. L. Ducas and T. Prest. Fast fourier orthogonalization. ISSAC ’16, pages
191–198. ACM, 2016.

EBB13. R. El Bansarkhani and J. Buchmann. Improvement and efficient implemen-
tation of a lattice-based signature scheme. In SAC, pages 48–67. Springer,
2013.

FHK+18. P. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier
lattice-based compact signatures over ntru, January 2018.

Fou13. E. Fouotsa. Calcul des couplages et arithmetique des courbes elliptiques
pour la cryptographie. PhD thesis, 2013.

GHPT17. P. Gaborit, A. Hauteville, D. H. Phan, and J.-P Tillich. Identity-based
encryption from codes with rank metric. Cryptology ePrint Archive, Report
2017/514, 2017. http://eprint.iacr.org/2017/514.

GM18. N. Genise and D. Micciancio. Faster gaussian sampling for trapdoor lattices
with arbitrary modulus. In EUROCRYPT 2018, 2018. In Press.

GPR+17. K. Doruk Gür, Y. Polyakov, K. Rohloff, G. W. Ryan, and E. Savaş.
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