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Abstract

In this paper, we introduce a new family of distributions based on the T-X trans-
formation, the inverse exponential distribution, the odds function and the Lehmann
type II distribution. We investigate its general mathematical properties, including mo-
ments, moment generating function, quantile function, entropies and order statistics.
A statistical model is constructed from a special case of the family using the Bur III
distribution (also known as exponentiated Lomax distribution) as baseline. The esti-
mation of the parameters are performed by the maximum likelihood method and the
least square method. Finally, we illustrate its importance by means of two applications
to real life data sets.
Keywords: T-X transformation, Inverse exponential distribution, Maximum likelihood
estimation.
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1. Introduction

In recent years, numerous methods have been introduced to increase the flexible
properties of classic probability distributions. One of the most famous of them is the
so called T-X transformation introduced by Alzaatreh et al. (2013). The related T-
X family of distributions is characterized by a cumulative distribution function (cdf)
described below. Let (a, b) ∈ R2 with a < b, p(t) is a probability density function
(pdf) with support [a, b], G(x) a cdf and W (x) a function such that W [G(x)] satisfies
the three following conditions : i) W [G(x)] ∈ [a, b], ii) W [G(x)] is differentiable and
monotonically non-decreasing, iii) W [G(x)] → a when x → −∞ and W [G(x)] → b
when x→ +∞. Then the cdf of the T-X family is given by

F (x) =

∫ W [G(x)]

a

p(t)dt, x ∈ R. (1)

Among the numerous members of the T-X family, all involving new configurations
for p(t), W (x) and g(x), there are the Exp-G (Kw-G type 2) family by Cordeiro et
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al. (2013), the Weibull-X family by Alzaatreh et al. (2013), the Gamma-X family by
Alzaatreh et al. (2014), the Exponentiated T-X family by Alzaghal et al. (2013), the
Weibull-G family by Bourguignon et al. (2014), the Logistic-G family by Torabi and
Montazari (2014), The T-Burr family by Nasir et al. (2017), the Ofr family by Haq and
Elgarhy (2018) and the TIIGE family by Hamedani et al. (2018). All these families
demonstrate nice theoretical and practical properties, offering new solutions in terms
of statistical models for the practitioners.

Let us now present and motivate the considered distribution in this paper. Adopting
the notations related the cdf of the T-X family given by (1), we consider for p(t) the
pdf of the inverse exponential distribution defined by

p(t) =
λ

t2
e−

λ
t , t ∈ (0,+∞),

(observe that it is also a special case of the Frêchet distribution), implying that a = 0
and b = +∞, and the function W (x) given by

W (x) =
1

(1− x)θ
− 1.

By taking any cdf G(x), one can observe that W [G(x)] satisfies the three required
conditions, i.e. i), ii) and iii). Note that W [G(x)] can be written as the odds function of
a cdf G∗(x) belonging to the Lehmann type II distribution with cdf G(x) and parameter

θ, i.e. W [G(x)] = G∗(x)
1−G∗(x)

, with G∗(x) = 1−[1−G(x)]θ. Further details on the Lehmann

type II distribution can be found in Gupta et al. (1998). Another point of view is to
view W (x) as the quantile function of the Lomax distribution with parameters α = 1

θ

and β = 1, i.e. with cdf H(x) = 1− (1 + x)−
1
θ . With the presented functions, the cdf

F (x) given by (1) becomes

F (x) =

∫ W [G(x)]

0

λ

t2
e−

λ
t dt =

[
e−

λ
t

]W [G(x)]

0
= e−

λ
W [G(x)] = e

−λ [1−G(x)]θ

1−[1−G(x)]θ . (2)

For the purpose of this paper, we call the related family of distributions the TIIGIE
family (for Type II Generalized Inverse Exponential). The pdf of the general Frêchet
distribution for p(t) has ever been considered in Haq and Elgarhy (2018) but with a
completely different function W (x). On the other side, the considered function W (x)
has ever been considered (as a quantile function) in Nasir et al. (2017) but with a
completely different pdf p(t). To the best of our knowledge, the TIIGIE family is new
in the literature. This paper deals with a complete mathematical and practical studies
of this family, with discussions. We first present the expressions of the crucial functions
related to the family, then obtain useful expansions of the pdf, cdf and hrf, a general
expression for the quantile function, probability weighted, ordinary and incomplete
moments, generating function, entropies and order statistics, with moments. Practical
investigations are done for special cases, showing that the TIIGIE family is a quite flex-
ible family of distributions to fit real data from several fields. To be more specific, from
Figures 1, 2, and 3 presented in a next section, we can see that the possible pdf shapes
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of TIIGIE family are J shape, reverse J shape, right skewed, left skewed and symmetri-
cal. This means that the TIIGIE family can show suitable fit to those data sets, whose
histograms are similar to the TIIGIE family pdfs shapes. Further, the TIIGIE family
exhibits monotone [increasing (IFR) and decreasing (DFR)], non-monotone [bathtub
(BT) and upside-down bathtub (UBT)] and decreasing-increasing-decreasing (DID)
hrf shapes to cope with all types of lifetime data sets. This potentiality is illustrated
with applications to two real life data sets, by considering the Bur III distribution as
baseline and the maximum likelihood method for the estimations of the parameters.

The rest of the paper is organized as follows. Section 2 studies some immediate
properties of the functions characterizing the TIIGIE family. Some special cases with
plots are presented in Section 3. A comprehensive account of some of its mathematical
properties is proposed in Section 4. Section 5.1 provides the necessary to the estimation
of the unknown parameters with the maximum likelihood method and the least square
method, with a short simulation study. Applications to two real life data sets are given
in Section 6.

2. On the crucial functions of the TIIGIE family

2.1. Some expressions

We now give the general expressions of the reliability function (rf), the pdf and the
hrf of the TIIGIE family. The rf is given by

R(x) = 1− F (x) = 1− e−λ
[1−G(x)]θ

1−[1−G(x)]θ , x ∈ R.

Let us now denote by g(x) the pdf related to G(x). By the derivation of F (x), the pdf
is given by

f(x) =
λθg(x)[1−G(x)]θ−1

(1− [1−G(x)]θ)2
e
−λ [1−G(x)]θ

1−[1−G(x)]θ , x ∈ R. (3)

The hrf is given by

h(x) =
f(x)

R(x)
=

λθg(x)[1−G(x)]θ−1

(1− [1−G(x)]θ)2
[
1− e−λ

[1−G(x)]θ

1−[1−G(x)]θ

]e−λ [1−G(x)]θ

1−[1−G(x)]θ , x ∈ R.

2.2. Shapes of the pdf and hrf

The shapes of the pdf and the hrf of the TIIGIE family can be described analytically.
As usual, the critical points of the pdf f(x) are the roots of the equation given by
∂
∂x

ln(f(x)) = 0 with

∂

∂x
ln(f(x)) =

g′(x)

g(x)
− (θ − 1)

g(x)

1−G(x)
− 2θ

[1−G(x)]θ−1g(x)

1− [1−G(x)]θ
+ λθ

[1−G(x)]θ−1g(x)

(1− [1−G(x)]θ)2
.

This equation can have more than one root. If x∗ is a root of this equation, then it
corresponds to a local maximum if ∂2

∂x2
ln(f(x∗)) < 0, a local minimum if ∂2

∂x2
ln(f(x∗)) >

0 and a point of inflection if ∂2

∂x2
ln(f(x∗)) = 0.

3



In a similar way, the critical points of the hrf h(x) are the roots of the equation
given by ∂

∂x
ln(h(x)) = 0 with

∂

∂x
ln(h(x)) =

g′(x)

g(x)
− (θ − 1)

g(x)

1−G(x)
− 2θ

[1−G(x)]θ−1g(x)

1− [1−G(x)]θ
+ λθ

[1−G(x)]θ−1g(x)

(1− [1−G(x)]θ)2

+
λθg(x)[1−G(x)]θ−1

(1− [1−G(x)]θ)2
[
1− e−λ

[1−G(x)]θ

1−[1−G(x)]θ

]e−λ [1−G(x)]θ

1−[1−G(x)]θ .

Again, this equation can have more than one root. If x∗ is a root of this equation,
then it corresponds to a local maximum if ∂2

∂x2
ln(h(x∗)) < 0, a local minimum if

∂2

∂x2
ln(h(x∗)) > 0 and a point of inflection if ∂2

∂x2
ln(h(x∗)) = 0.

2.3. Asymptotic results

In order to show the effect of the parameters on tails distributions, we now study
the asymptotic properties of F (x), f(x) and h(x). First of all, let us remark that
W (y) ∼ θy when y → 0 and W (y) ∼ 1

(1−y)θ when y → 1. Therefore

F (x) ∼ e−
λ

θG(x) , G(x)→ 0, F (x) ∼ e−λ[1−G(x)]θ , x→ +∞.

Similarly, we have

f(x) ∼ λθg(x)

(1− [1−G(x)]θ)2
e−

λ
θG(x) , G(x)→ 0

and
f(x) ∼ λθg(x)[1−G(x)]θ−1, x→ +∞.

Concerning the hrf, the following asymptotic results hold :

h(x) ∼ λθg(x)

(1− [1−G(x)]θ)2
e−

λ
θG(x) , G(x)→ 0

and

h(x) ∼ θ
g(x)

1−G(x)
, x→ +∞.

We observe that, when x tends to +∞, the hrf h(x) is proportional to the hrf related
to G(x) ; the constant of proportionality is given by θ.

2.4. Linear representation

Let h > 0. We now provide useful linear representations for several functions,
including [F (x)]h f(x). It follows from the formula of exponential power series that

F (x) =
+∞∑
k=0

1

k!
(−1)kλk[1−G(x)]θk(1− [1−G(x)]θ)−k.
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The generalized binomial series gives

(1− [1−G(x)]θ)−k =
+∞∑
`=0

(
−k
`

)
(−1)`[1−G(x)]θ`

and

[1−G(x)]θ(k+`) =
+∞∑
m=0

(
θ(k + `)

m

)
(−1)m[G(x)]m.

Combining these equalities, we obtain the following series expansion:

F (x) =
+∞∑
m=0

amΠm(x),

where am = (−1)m
+∞∑
k=0

+∞∑̀
=0

(−1)k+` 1
k!
λk
(−k
`

)(
θ(k+`)
m

)
and Πm(x) = [G(x)]m is the cdf of

the well-known Exp-G distribution with power m and Π0(x) = 1 (see Nadarajah and
Kotz (2006)). By derivation of F (x), f(x) can be expressed as

f(x) =
+∞∑
m=0

am+1πm+1(x), (4)

where am+1 = (−1)m+1
+∞∑
k=0

+∞∑̀
=0

(−1)k+` 1
k!
λk
(−k
`

)(
θ(k+`)
m+1

)
and πm+1(x) = (m+1) [G(x)]m g(x)

is the pdf of the Exp-G distribution with power m + 1. Now let us observe that
[F (x)]hf(x) = 1

h+1
f∗(x), where f∗(x) denotes a pdf of the TIIGIE with parameter

(h+ 1)λ instead of λ. Then, by analogy with (4), we can write

[F (x)]hf(x) =
+∞∑
m=0

bm,hπm+1(x), (5)

with bm,h = (−1)m+1
+∞∑
k=0

+∞∑̀
=0

(−1)k+` 1
k!
λk(h+ 1)k−1

(−k
`

)(
θ(k+`)
m+1

)
.

The series expansion (5) can be used to derive most of the mathematical properties
of the TIIGIE family. This is developed in Section 4.

3. Some special cases

Among the numerous possible distributions arising from the TIIGIE family, we now
present three special cases using classics distributions as baselines.

3.1. TIIGIE-Uniform distribution

We define the TIIGIE-U distribution with parameters (α, λ, θ) the TIIGIE family
with the uniform distribution on the interval [0, α] as baseline distribution, i.e. with
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Figure 1: Plots for pdfs and hrfs of the TIIGIE-U distribution.

cdf G(x) = x/α, x ∈ [0, α], G(x) = 1, x > α and g(x) = 1/α, x ∈ [0, α]. The pdf of
the TIIGIE-U distribution is given by

f(x) =
λθ[1− x/α]θ−1

α(1− [1− x/α]θ)2
e
−λ [1−x/α]θ

1−[1−x/α]θ , x ∈ [0, α].

The associated hrf is given by

h(x) =
λθ[1− x/α]θ−1

α(1− [1− x/α]θ)2
[
1− e−λ

[1−x/α]θ
1−[1−x/α]θ

]e−λ [1−x/α]θ

1−[1−x/α]θ , x ∈ [0, α].

Plots of the pdf and hrf of the TIIGIE-U distribution for some parameter values are
displayed in Figure 1.

3.2. TIIGIE-Weibull distribution

We define the TIIGIE-W distribution with parameters (λ, θ, α, β) the TIIGIE family
with the Weibull distribution with parameters (α, β) as baseline distribution, i.e. with
cdf G(x) = 1 − e−αx

β
and g(x) = αβxβ−1e−αxβ, x > 0. The pdf of the TIIGIE-W

distribution is given by

f(x) =
λθαβxβ−1e−αxβe−α(θ−1)x

β

(1− e−αθxβ)2
e
−λ e−αθx

β

1−e−αθxβ , x > 0.

The associated hrf is given by

h(x) =
λθαβxβ−1e−αxβe−α(θ−1)x

β

(1− e−αθxβ)2

[
1− e

−λ e−αθxβ

1−e−αθxβ

]e−λ e−αθx
β

1−e−αθxβ , x > 0.

Plots of the pdf and hrf of the TIIGIE-W distribution for some parameter values are
displayed in Figure 2.
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Figure 2: Plots for pdfs and hrfs of the TIIGIE-W distribution.

3.3. TIIGIE-Burr III distribution

We define the TIIGIE-BIII distribution with parameters (λ, θ, c, k) the TIIGIE
family with the Burr III distribution, also known as exponentiated Lomax distribution,
with parameters (c, k) as baseline distribution, i.e. with cdf G(x) = (1 + x−c)−k and
g(x) = ckx−c−1(1 + x−c)−k−1, x > 0. The pdf of the TIIGIE-BIII distribution is given
by

f(x) =
λθckx−c−1(1 + x−c)−k−1[1− (1 + x−c)−k]θ−1

(1− [1− (1 + x−c)−k]θ)2
e
−λ [1−(1+x−c)−k]θ

1−[1−(1+x−c)−k]θ , x > 0.

The associated hrf is given by

h(x) =
λθckx−c−1(1 + x−c)−k−1[1− (1 + x−c)−k]θ−1

(1− [1− (1 + x−c)−k]θ)2
[
1− e−λ

[1−(1+x−c)−k]θ
1−[1−(1+x−c)−k]θ

]e−λ [1−(1+x−c)−k]θ

1−[1−(1+x−c)−k]θ , x > 0.

Plots of the pdf and hrf of the TIIGIE-BIII distribution for some parameter values are
displayed in Figure 3. We observe shapes of different natures for the functions, which
motivates us to used it as statistical model in a next section.

4. Mathematical properties

We now investigate some mathematical properties of the TIIGIE family. We denote
by X a random variable having the cdf F (x) (and the pdf f(x)) and by Y a random
variable having the cdf G(x) (and the pdf g(x)).

4.1. Quantile function

The quantile function of X is given by

xp = G−1

[
1−

(
ln(p)

ln(p)− λ

) 1
θ

]
, p ∈ (0, 1].
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Figure 3: Plots for pdfs and hrfs of the TIIGIE-BIII distribution.

In particular, the median is given by x1/2 = G−1
[
1−

(
ln(2)

ln(2)+λ

) 1
θ

]
. We can also use

xp to define well-known quantile measures, as the Bowley skewness based on quartiles
and the Moors kurtosis based on octiles, respectively defined by

B =
x3/4 + x1/4 − 2x1/2

x3/4 − x1/4
, M =

x7/8 − x5/8 + x3/8 − x1/8
x6/8 − x2/8

.

Further details can be found in Kenney and Keeping (1962) and Moors (1988).
Finally, if U is a random variable having the uniform distribution on the interval

(0, 1), then the random variable X = xU has the cdf F (x).

4.2. Probability weighted moments

Let (r, h) ∈ (0,+∞)2. The (r, h)-th probability weighted moments of X and Y are
respectively defined by

τr,h = E
(
Xr [F (X)]h

)
=

∫ +∞

−∞
xr [F (x)]h f(x)dx, τ ∗r,h = E

(
Y r [G(Y )]h

)
.

Using the series expansion given by (5), we obtain

τr,h =
+∞∑
m=0

bm,h

∫ +∞

−∞
xrπm+1(x)dx =

+∞∑
m=0

cm,hτ
∗
r,m, (6)

where cm,h = (m + 1)bm,h. The term τ ∗r,m can be computed numerically by using the

quantile function QG(u) = G−1(u) as τ ∗r,m =
∫ 1

0
[QG(u)]r umdu.
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4.3. Moments

The r-th ordinary moment of X is defined by µ′r = E (Xr) =
∫ +∞
−∞ xrf(x)dx. Using

(4), we can express µ′r as

µ′r =
+∞∑
m=0

am+1

∫ +∞

−∞
xrπm+1(x)dx.

The integral terms can be computed numerically by noticing that
∫ +∞
−∞ xrπm+1(x)dx =

(m + 1)
∫ 1

0
[QG(u)]r umdu. Alternatively, using (6), one can notice that µ′r = τr,0 =

+∞∑
m=0

cm,0τ
∗
r,m. The mean of X is obtained by taking r = 1.

Let r be an integer. The r-th central moments of X can be expressed as µr =

E[(X − µ′1)r] =
r∑

k=0

(
r
k

)
(−1)k(µ′1)

kµ′r−k and the r-th cumulants of X can be obtained

via the equation : κr = µ′r−
r−1∑
k=1

(
r−1
k−1

)
κkµ

′
r−k with κ1 = µ′1. The skewness of X is given

by γ1 = κ3/κ
3/2
2 and the kurtosis of X is given by γ2 = κ4/κ

2
2.

4.4. Moment generating function

The moment generating function ofX is given byMX(t) = E
(
etX
)

=
∫ +∞
−∞ etxf(x)dx.

Using (4), we can express MX(t) as

MX(t) =
+∞∑
m=0

am+1

∫ +∞

−∞
etxπm+1(x)dx.

The integral terms can be computed numerically by noticing that
∫ +∞
−∞ etxπm+1(x)dx =

(m+ 1)
∫ 1

0
etQG(u)umdu. An alternative expression using (6) is given by

MX(t) = E
(
etX
)

=
+∞∑
r=0

tr

r!
µ′r =

+∞∑
r=0

+∞∑
m=0

tr

r!
cm,0τ

∗
r,m.

4.5. Incomplete moments

The r-th incomplete moment ofX is defined bymr(t) = E
(
Xr1{X≤t}

)
=
∫ t
−∞ x

rf(x)dx.
Using (4), we can express mr(t) as

mr(t) =
+∞∑
m=0

am+1

∫ t

−∞
xrπm+1(x)dx.

Again, the integral terms can be expressed as
∫ t
−∞ x

rπm+1(x)dx = (m+1)
∫ G(t)

0
[QG(u)]r umdu.

The incomplete moments of X are useful tools in the definitions of several important
quantities. Among them, let us mention the Lorenz curve, the Bonferroni curve, the
mean deviation about the mean, the mean deviation about the median, the residual
life function and the reversed residual life function.
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4.6. Entropies
The Rényi entropy of X is defined by

Iδ(X) =
1

1− δ
log

[∫ +∞

−∞
[f(x)]δ dx

]
,

with δ > 0 and δ 6= 1. It follows from (3) that

[f(x)]δ =
λδθδ [g(x)]δ [1−G(x)](θ−1)δ

(1− [1−G(x)]θ)2δ
e
−λδ [1−G(x)]θ

1−[1−G(x)]θ .

Using the exponential series expansion, we can write

e
−λδ [1−G(x)]θ

1−[1−G(x)]θ =
+∞∑
k=0

1

k!
(−1)kλkδk[1−G(x)]θk(1− [1−G(x)]θ)−k.

Therefore

[f(x)]δ = λδθδ [g(x)]δ
+∞∑
k=0

1

k!
(−1)kλkδk[1−G(x)]θ(k+δ)−δ(1− [1−G(x)]θ)−(k+2δ).

The generalized binomial series gives

(1− [1−G(x)]θ)−(k+2δ) =
+∞∑
`=0

(
−(k + 2δ)

`

)
(−1)`[1−G(x)]θ`

and

[1−G(x)]θ(k+`+δ)−δ =
+∞∑
m=0

(
θ(k + `+ δ)− δ

m

)
(−1)m[G(x)]m.

Combining these equalities, we obtain the following series expansion:

[f(x)]δ = λδθδ
+∞∑
m=0

dm,δ[G(x)]m [g(x)]δ ,

where dm,δ = (−1)m
+∞∑
k=0

+∞∑̀
=0

(−1)k+` 1
k!
λkδk

(−(k+2δ)
`

)(
θ(k+`+δ)−δ

m

)
. Therefore the Rényi en-

tropy of TIIGIE family is given by

Iδ(X) =
1

1− δ

[
δ log(λ) + δ log(θ) + log

[
+∞∑
m=0

dm,δ

∫ +∞

−∞
[G(x)]m [g(x)]δ dx

]]
.

The integrals terms can be evaluated numerically for a given G(x).
The δ-entropy is defined by

Hδ(X) =
1

δ − 1
log

[
1−

∫ +∞

−∞
[f(x)]δ dx

]
,

with δ > 0 and δ 6= 1. So we have

Hδ(X) =
1

δ − 1
log

[
1− λδθδ

+∞∑
m=0

dm,δ

∫ +∞

−∞
[G(x)]m [g(x)]δ dx

]
.

Finally, the Shannon entropy of X is defined by S(X) = E(− log[f(X)]). It is in fact
a particular case of the Rényi entropy when δ tends to 1+.
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4.7. Order statistics

Order statistics are fundamental in many areas of statistical theory and practice.
Let X1, . . . , Xn be a random sample from the TIIGIE family. The pdf of the ith order
statistic, say Xi:n, is given by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
[F (x)]j+i−1 f(x).

Using the series expansion (5), we have

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

) +∞∑
m=0

bm,j+i−1πm+1(x).

The r-th ordinary moment of Xi:n is defined by µ′i:n,r = E (Xr
i:n). It follows from the

above series expansion, the definition of the probability weighted moments of Y and
(6) that

µ′i:n,r =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
τr,j+i−1

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

) +∞∑
m=0

cm,j+i−1τ
∗
r,m,

(with cm,j+i−1 = (m+ 1)bm,j+i−1).

5. Estimation inference

5.1. Maximum likelihood estimation (MLE)

Let x1, . . . , xn be n observed values from the TIIGIE family and ξ = (λ, θ, ξ∗) be
the vector of unknown parameters, ξ∗ denoting the vector of parameters related to the
distribution characterized by the cdf G(x). The log likelihood function is given by

`(ξ) = n log(λ) + n log(θ) +
n∑
i=1

log(g(xi)) + (θ − 1)
n∑
i=1

log(1−G(xi))

− 2
n∑
i=1

log(1− [1−G(xi)]
θ)− λ

n∑
i=1

[1−G(xi)]
θ

1− [1−G(xi)]θ
.

The maximum likelihood estimators of the parameters are obtained by maximizing the
log likelihood function. They can be obtained by solving the non-linear equations :
∂
∂λ
`(ξ) = 0, ∂

∂θ
`(ξ) = 0 and ∂

∂ξ∗
`(ξ) = 0 with

∂

∂λ
`(ξ) =

n

λ
−

n∑
i=1

[1−G(xi)]
θ

1− [1−G(xi)]θ
.
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∂

∂θ
`(ξ) =

n

θ
+

n∑
i=1

log(1−G(xi)) + 2
n∑
i=1

[1−G(xi)]
θ log(1−G(xi))

1− [1−G(xi)]θ

− λ

n∑
i=1

[1−G(xi)]
θ log(1−G(xi))

(1− [1−G(xi)]θ)2
.

Let us set gξ∗(xi) = ∂
∂ξ∗
g(xi) and Gξ∗(xi) = ∂

∂ξ∗
G(xi). Then we have

∂

∂ξ∗
`(ξ) =

n∑
i=1

gξ∗(xi)

g(xi)
− (θ − 1)

n∑
i=1

Gξ∗(xi)

1−G(xi)

− 2θ
n∑
i=1

[1−G(xi)]
θ−1Gξ∗(xi)

1− [1−G(xi)]θ
+ λθ

n∑
i=1

[1−G(xi)]
θ−1Gξ∗(xi)

(1− [1−G(xi)]θ)2
.

They can be solved using the Newton method or fixed point iteration methods. As
usual, for determining related mathematical quantities as the variance co-variance ma-
trix and the confidence interval for parameters, we need the information matrix which
can be generated by the taking the expectation of the second order derivative.

5.2. Least square method (LSE)

Adopting the notations above, let x(1), . . . , x(n) be x1, . . . , xn in increasing order.
Least square estimates are obtained by minimizing the following function

S(ξ) =
n∑
i=1

[
F (x(i))−

i

n+ 1

]2
=

n∑
i=1

[
e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ − i

n+ 1

]2
.

Minimizing S(Θ) with respect to λ, θ and ξ, we have following system of non linear
equations:

∂S(ξ)

∂λ
= −2

n∑
i=1

[
e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ − i

n+ 1

]
[1−G(x(i))]

θ

1− [1−G(x(i))]θ
e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ

= 0,

∂S(ξ)

∂θ
= −2λ

n∑
i=1

[
e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ − i

n+ 1

]
[1−G(x(i))]

θ log(1−G(x(i)))(
1− [1−G(x(i))]θ

)2 e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ

= 0,

∂S(ξ)

∂ξ∗
= 2λθ

n∑
i=1

[
e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ − i

n+ 1

]
[1−G(x(i))]

θ−1Gξ∗(x(i))

(1− [1−G(x(i))]θ)2
e
−λ

[1−G(x(i))]
θ

1−[1−G(x(i))]
θ

= 0.

This system of non-linear equations can be solved numerically by any software to
obtained the estimates.
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5.3. A simulation study

In order to assess the performance of the maximum likelihood and least square
methods for estimating the parameters, a small simulation is carried out. For such
purposes, a TIIGIE-BIII distribution is considered using Monte Carlo simulations.
The process is carried out as follow:

• The number of Monte Carlo replications was made 1000 times each with sample
sizes n = 30, 50, 100 and 300.

• Initial values for the parameters are selected as given in Tables 1, 2, 3 and 4,

• The formula for the mean squared error (MSE) of the estimate λ̂ of λ is given by

1

1000

1000∑
i=1

(λ̂− λ)2.

• The third step is also repeated for the other parameters.

These numerical results show that the considered estimation methods perform quite
well in estimating the model parameters of the TIIGIE-BIII distribution.

Table 1: Estimates and MSEs of TIIGIE-BIII distribution for ML and LS estimate, Set 1 : (λ, θ, c, k) =
(0.5, 0.5, 0.5, 0.5) and Set 2 : (λ, θ, c, k) = (0.5, 0.5, 0.5, 1.5).

Set 1 Set 2
MLE LSE MLE LSE

n Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs
30 0.5215 0.0100 0.499743 0.000236 0.5124 0.0092 0.499918 0.000233

0.5242 0.0224 0.500959 0.000412 0.5350 0.0355 0.500669 0.000411
0.5415 0.0277 0.497127 0.000047 0.5275 0.0161 0.498370 0.000189
0.5411 0.0224 0.498763 0.000255 1.5844 0.1707 1.496670 0.002238

50 0.5148 0.0061 0.500492 0.000138 0.5064 0.0052 0.499829 0.000139
0.5127 0.0104 0.499697 0.000241 0.5228 0.0119 0.500617 0.000246
0.5262 0.0140 0.498323 0.000025 0.5181 0.0084 0.499235 0.000114
0.5274 0.0130 0.499869 0.000147 1.5530 0.1020 1.497740 0.001352

100 0.5055 0.0026 0.500618 0.000067 0.5080 0.0027 0.499670 0.000070
0.5074 0.0045 0.499349 0.000114 0.5044 0.0043 0.500584 0.000120
0.5122 0.0063 0.499296 0.000011 0.5050 0.0033 0.499720 0.000056
0.5111 0.0055 0.500341 0.000071 1.5414 0.0500 1.497980 0.000680

300 0.5024 0.0008 0.499964 0.000023 0.5001 0.0009 0.499920 0.000023
0.5009 0.0012 0.500108 0.000039 0.5044 0.0015 0.500166 0.000039
0.5015 0.0018 0.499727 3.473×10−6 0.5016 0.0012 0.499932 0.000019
0.5028 0.0016 0.499873 0.000024 1.5030 0.0163 1.499490 0.000218

13



Table 2: Estimates and MSEs of TIIGIE-BIII distribution for ML and LS estimate, Set 3 : (λ, θ, c, k) =
(0.5, 0.5, 1.5, 0.5) and Set 4 : (λ, θ, c, k) = (0.5, 0.5, 1.5, 1.5).

Set 3 Set 4
MLE LSE MLE LSE

n Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs
30 0.5166 0.0100 0.499328 0.000216 0.5191 0.0098 0.499299 0.000226

0.5348 0.0284 0.501433 0.000386 0.5306 0.0275 0.501402 0.000407
1.6011 0.2175 1.491430 0.000429 1.5585 0.1327 1.496130 0.001638
0.5328 0.0209 0.498370 0.000235 1.6076 0.1921 1.494550 0.002219

50 0.5142 0.0059 0.499610 0.000132 0.5104 0.0053 0.498955 0.000141
0.5127 0.0110 0.500805 0.000231 0.5147 0.0101 0.501748 0.000250
1.5575 0.1177 1.494350 0.000232 1.5342 0.0698 1.499930 0.001049
0.5231 0.0128 0.498973 0.000143 1.5615 0.1043 1.495020 0.001354

100 0.5054 0.0025 0.499889 0.000068 0.5045 0.0027 0.499892 0.000068
0.5078 0.0046 0.500354 0.000118 0.5097 0.0049 0.500294 0.000118
1.5368 0.0539 1.497690 0.000103 1.5260 0.0321 1.498750 0.000511
0.5114 0.0054 0.499619 0.000073 1.5319 0.0503 1.498760 0.000656

300 0.5023 0.0009 0.499811 0.000024 0.5032 0.0009 0.499748 0.000024
0.5017 0.0014 0.500324 0.000042 0.5008 0.0015 0.500384 0.000041
1.5125 0.0179 1.499100 0.000036 1.5031 0.0104 1.500160 0.000176
0.5045 0.0019 0.499715 0.000026 1.5150 0.0158 1.498920 0.000225

Table 3: Estimates and MSEs of TIIGIE-BIII distribution for ML and LS estimate, Set 5 : (λ, θ, c, k) =
(0.5, 1.5, 0.5, 0.5) and Set 6 : (λ, θ, c, k) = (0.5, 1.5, 0.5, 1.5).

Set 5 Set 6
MLE LSE MLE LSE

n Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs
30 0.5162 0.0100 0.499505 0.000225 0.5159 0.0095 0.499355 0.000222

1.6094 0.2849 1.503770 0.003637 1.5969 0.2164 1.504000 0.003528
0.6297 0.2824 0.497733 0.000628 0.5453 0.0336 0.496525 0.000062
0.6335 0.2289 0.498864 0.000837 1.8424 2.1402 1.495190 0.007483

50 0.5125 0.0055 0.499409 0.000143 0.5108 0.0058 0.500272 0.000138
1.5424 0.0925 1.503630 0.002285 1.5519 0.0955 1.500110 0.002137
0.5787 0.0698 0.498205 0.000400 0.5294 0.0189 0.498372 0.000034
0.5766 0.0642 0.498779 0.000532 1.7171 0.6178 1.501180 0.004643

100 0.5038 0.0024 0.499805 0.000070 0.5021 0.0026 0.499853 0.000069
1.5289 0.0410 1.501350 0.001082 1.5385 0.0472 1.501100 0.001083
0.5297 0.0192 0.499253 0.000196 0.5108 0.0078 0.499046 0.000016
0.5278 0.0181 0.499578 0.000262 1.5693 0.1732 1.498960 0.002344

300 0.5016 0.0008 0.499653 0.000023 0.5018 0.0009 0.500171 0.000024
1.5071 0.0123 1.501500 0.000365 1.5107 0.0128 1.499460 0.000367
0.5083 0.0050 0.499227 0.000066 0.5085 0.0025 0.499678 5.62 ×10−6

0.5088 0.0051 0.499285 0.000088 1.5337 0.0471 1.500840 0.000811
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Table 4: Estimates and MSEs of TIIGIE-BIII distribution for ML and LS estimate, Set 7 : (λ, θ, c, k) =
(0.5, 1.5, 1.5, 0.5) and Set 8 : (λ, θ, c, k) = (0.5, 1.5, 1.5, 1.5).

Set 7 Set 8
MLE LSE MLE LSE

n Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs
30 0.5197 0.0097 0.499755 0.000229 0.5208 0.0103 0.500157 0.000217

1.5799 0.2044 1.502770 0.003680 1.6034 0.2964 1.500630 0.003419
1.8957 1.5805 1.494160 0.005612 1.6689 0.3168 1.489960 0.000540
0.6350 0.1871 0.499309 0.000847 2.0019 4.9282 1.499610 0.007306

50 0.5137 0.0056 0.499456 0.000136 0.5114 0.0052 0.500055 0.000142
1.5459 0.1737 1.503070 0.002183 1.5446 0.0993 1.500940 0.002226
1.7327 0.5926 1.494290 0.003449 1.5943 0.1666 1.494680 0.000317
0.5781 0.0631 0.498780 0.000505 1.7021 0.4618 1.499980 0.004812

100 0.5037 0.0027 0.499946 0.000072 0.5038 0.0028 0.500301 0.000068
1.5292 0.0435 1.500770 0.001135 1.5313 0.0476 1.499270 0.001043
1.5764 0.1836 1.498230 0.001807 1.5378 0.0762 1.497370 0.000143
0.5266 0.0214 0.499813 0.000270 1.5874 0.2076 1.501440 0.002286

300 0.5010 0.0008 0.499997 0.000021 0.5022 0.0008 0.500050 0.000022
1.5111 0.0127 1.500170 0.000328 1.5039 0.0111 1.499910 0.000344
1.5270 0.0486 1.499550 0.000540 1.5148 0.0214 1.498900 0.000045
0.5088 0.0054 0.499972 0.000080 1.5310 0.0420 1.500120 0.000747
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6. Applications

In this section, we prove empirically the flexibility of the TIIGIE-BIII distribu-
tions by means of three real data sets. The TIIGIE-BIII distribution will be compared
with some competitive models listed in Table 5. The pdfs of these models are given in
Appendix. We consider the −̂̀(where ̂̀the maximized log-likelihood), AIC (Akaike in-
formation criterion), BIC (Bayesian information criterion), CVM (Cramér-Von Mises),
AD (Anderson-Darling) and KS (Kolmogorov Smirnov with its p-value (PV)) statistics
to compare the fitted distributions. The results in this section are obtained using the
R PROGRAM.

Table 5: The competitive models of the TIIGIE-BIII distribution.

Distribution Author(s)

Type II General Exponential-Lomax (TIIGE-Lx) Hamedani et al. (2018)
Odd Frèchet-Lomax (OFr-Lx) Haq and Elgarhy (2018)
Weubull Lomax (WLx) Tahir et aL (2015)
Kumaraswamy Lomax (KwLx) Lemonte and Cordeiro (2013)
Beta Lomax (BLx) Lemonte and Cordeiro (2013)
Exponentiated Lomax (ELx) Abdul-Moniem and Abdel-Hameed (2012)

Data set 1 : Mead (2016) used actual taxes data set. The data consists of the
monthly actual taxes revenue in Egypt from January 2006 to November 2010. The dis-
tribution is highly skewed to the right. The actual taxes revenue data (in 1000 million
Egyptian pounds) are: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6,
18.5,5.1,6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2,21.9,16.7,
21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7,8.6,12.5, 10.3, 11.2,
6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.
Data set 2 : The data contain Failure stresses of bundles of 1000 impregnated carbon
fibers Length 20 mm from Crowder et al. (1991).
2.526, 2.546, 2.628, 2.628, 2.669, 2.669, 2.71, 2.731, 2.731, 2.731, 2.752, 2.752, 2.793,
2.834, 2.834, 2.854, 2.875, 2.875, 2.895, 2.916, 2.916, 2.957, 2.977, 2.998, 3.06, 3.06,
3.06, 3.08.

Table 6: Goodness-of-fit measures for data set 1.

Model −̂̀ AIC BIC CVM AD KS PV
TIIGIE-BIII 187.0751 383.1501 391.4603 0.0370 0.2396 0.0564 0.9919

TIIGE-Lx 198.7821 405.5642 413.8743 0.3228 2.0627 0.1419 0.1857

OFr-Lx 190.0885 385.1771 398.4097 0.0401 0.2487 0.0609 0.9809

WLx 193.9537 395.9074 404.2175 0.2105 1.3182 0.1282 0.2866

KwLx 187.9425 383.8849 392.1951 0.0413 0.2641 0.0658 0.9800

BLx 188.3614 384.7228 393.0329 0.0436 0.2627 0.0628 0.9738

ELx 189.9118 384.8235 391.9961 0.0422 0.2575 0.0674 0.9510
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Table 7: MLEs and SEs (in parentheses) for data set 1.

Model Estimates
TIIGIE-BIII 1.3035 16.0723 0.5361 11.3254

(λ, θ, c, k) (0.3901) (2.8563) (0.2819) (0.0610)

TIIGE-Lx 0.1892 0.0083 1.4577 10.3473

(λ, α, a, b) (0.0155) (0.0032) (0.0128) (0.0225)

OFr-Lx 1.6698 66.9329 5.2782

(θ, α, β) (0.2798) (9.3477) (0.1088)

WLx 0.1782 1.9231 17.3346 3.7849

(α, β, a, b) (0.0916) (2.7434) (3.2247) (1.4321)

KwLx 83.5491 129.4375 51.6285 0.2297

(α, β, a, b) (2.8877) (3.3168) (16.1895) (0.0347)

BLx 9.6404 5.6777 29.3087 0.6645

(α, β, a, b) (0.9320) (2.6266) (0.3286) (0.4529)

ELx 3.2130 4.2546 41.9873

(α, β, a) (1.4229) (6.5601) (0.6488)

Tables 6 and 8 provide the values of goodness-of-fit measures for the TIIGIE-BIII
model and other fitted models, whereas the MLEs and their corresponding standard
errors (SEs) (in parentheses) are listed in Tables 7 and 9, respectively. The plots of
the fitted model is shown in Figures 4 and 5. These plots and Tables 6 and 8 indicate
that the TIIGIE-BIII model yields the best fit to the others competitive models.

Table 8: Goodness-of-fit measures for data set 2.

Model −̂̀ AIC BIC CVM AD KS PV
TIIGIE-BIII -12.5338 -16.8677 -11.9389 0.0333 0.2513 0.0911 0.9642

TIIGE-Lx -10.5754 -13.1508 -7.8219 0.0516 0.3876 0.1310 0.7226

OFr-Lx -10.6272 -15.2544 -11.2577 0.0650 0.4817 0.1189 0.8231

WLx -11.8302 -15.6604 -10.3316 0.0597 0.4468 0.1281, 0.7478

KwLx -12.0054 -16.0809 -11.3521 0.0408 0.3142 0.1241 0.7816

BLx -12.4135 -16.8270 -11.4982 0.0398 0.2633 0.0999 0.9426

ELx -10.9943 -15.9886 -11.9920 0.0575 0.4291 0.1144 0.8567
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Table 9: MLEs and SEs (in parentheses) for data set 2.

Model Estimates
TIIGIE-BIII 2.2471 15.0705 1.6547 41.7735

(λ, θ, c, k) (0.0852) (0.5356) (0.8421) (6.7835)

TIIGE-Lx 40.0767 40.0138 25.0314 15.1712

(λ, α, a, b) (0.4884) (0.4900) (5.1094) (0.0391)

OFr-Lx 14.2219 27.2773 7.2345

(θ, α, β) (3.2679) (0.8324) (2.02942)

WLx 0.8702 2.7291 15.8424 20.9831

(α, β, a, b) (0.1116) (1.4434) (0.0287) (1.9301)

KwLx 92.56841 67.6157 145.5810 77.3110

(α, β, a, b) (1.3827) (2.9101) (1.9805) (5.0347)

BLx 87.7305 39.5196 8.0644 155.9390

(α, β, a, b) (0.4855) (1.9286) (1.8289) (2.1959)

ELx 288.9114 129.9128 145.7873

(α, β, a) (12.9229) (8.5911) (6.9498)
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Figure 4: PP, QQ, epdf and ecdf plots of the TIIGIE-BIII distribution for data set 1.
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Figure 5: PP, QQ, epdf and ecdf plots of the TIIGIE-BIII distribution for data set 2.
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Appendix

The pdfs of the statistical models used in Section 6 are presented below.

• The pdf of the ELx distribution introduced by Abdul-Moniem and Abdel-Hameed
(2012) is given by

f(x) =
aα

β

[
1 +

x

β

]−(α+1)
{

1−
[
1 +

x

β

]−α}a−1

, x > 0.

• The pdf of the BLx distribution introduced by Lemonte and Cordeiro (2013) is
given by

f(x) =
α

βB(a, b)

[
1 +

x

β

]−(αb+1)
{

1−
[
1 +

x

β

]−α}a−1

, x > 0,

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx.

• The pdf of the KwLx distribution introduced by Lemonte and Cordeiro (2013) is
given by

f(x) =
abα

β

[
1 +

x

β

]−(α+1)
{

1−
[
1 +

x

β

]−α}a−1

×[
1−

{
1−

[
1 +

x

β

]−α}a]b−1
, x > 0.

• The pdf of the TIIGE-Lx distribution introduced by Hamedani et al. (2018) is
given by

f(x) = λα
a

b

(
1 +

x

b

)−(a+1) (
1 +

x

b

)a(α+1)

eλ{1−(1+x
b )
aα}, x > 0.

• The pdf of the OFr-Lx distribution introduced by Haq and Elgarhy (2018) is
given by

f(x) =
αθ[1 + (x/β)]−(αθ+1)

β [1− [1 + (x/β)]−α]θ+1
e
−
{

[1+(x/β)]−α

1−[1+(x/β)]−α

}θ
, x > 0.

• The pdf of the WLx distribution introduced by Tahir et aL (2015) is given by

f(x) =
abα

β

[
1 +

x

β

]bα−1{
1−

[
1 +

x

β

]−α}b−1

e−a{[1+
x
β ]
α
−1}b , x > 0.
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