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Abstract 

 

A molecular simulation approach has been used to model simple fluid adsorption in 

heterogeneous tubular pores mimicking mesoporous materials like MCM-41 or porous 

silicon, allowing to determine the amount adsorbed  as a function of the chemical potential 

. A hysteresis loop is observed in adsorption / desorption cycles, which is closely connected 

to the appearance of many metastable states. The density of these metastable states is studied 

in the - plane. Experimentally, the accessible metastable states are those that can be 

attained by -path, i.e. a series of increasing or decreasing  steps. One could also imagine 

using a quench from high temperature. Although the total density of metastable states is not 

directly accessible to experiments, it is of primary theoretical importance to understand the 
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structure of metastable states in the hysteresis as determined experimentally. The disorder 

associated to the porous material realizations is accurately taken into account, and a 

systematic system-size analysis is also performed in order to study the thermodynamic limit. 

It is shown that the quenched complexity is the relevant quantity to understand the hysteresis 

structure in the thermodynamic limit. It clearly exhibits a distinctive behavior depending on 

the distribution of heterogeneities characterizing the disorder in the pore. Some analogies can 

be found with the situation where an out-of-equilibrium transition appears, but careful 

examination of the data suggests another interpretation. 

 

 

I Introduction 

 

Despite its apparent simplicity, adsorption of fluids in regular mesoporous solids is still 

challenging. Many experimental efforts have been made to produce such solids presenting 

almost perfectly cylindrical and non-interconnected mesopores, like MCM-41,1,2 and porous 

silicon.3 Due to their importance for application and fundamental studies, they have been 

widely characterized, and many experimental efforts have produced accurate measurements of 

adsorption/desorption hysteresis in such materials for a large variety of fluids.4-9 Extensive 

theoretical work has provided deep understanding of many issues, but some points remain 

unclear even for the above mentioned regular mesopores.10  

 

One of the puzzling behaviors is the appearance of large hysteresis in regular mesopores even 

when they are closed at one end.7,11 Wallacher and collaborators8 have performed extensive 

studies showing that the pores of porous silicon most probably present an intrinsic disorder 

which is more efficient to produce hysteresis than the enforced modulation of the pore size 
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during the material production. Other authors arrived at the same conclusion that the inner 

surfaces of MCM-41 or porous silicon most probably exhibit some roughness and 

irregularity.8,12-18  

 

The quenched or frozen disorder, originating in the irregular structure of the solid or the solid-

fluid interaction, has been shown to explain the hysteresis in the case of gas adsorption in 3-

dimensional structures like aerogels.19-21 It was however not yet clear if such disorder could 

explain hysteresis in non-interconnected mesopores like MCM-41 or porous silicon (1-

dimensional pore structure). To answer the question, we focused on a molecular approach to 

catch the main features of fluid adsorption. We introduced a simplified model of surface 

heterogeneities based on preliminary studies showing that the modulation of the fluid/wall 

interaction has strong consequences on fluid adsorption in simple pore geometry, while purely 

geometric deformation of the pore without changing the intensity of the fluid/wall potential 

has minor effects.22-25 Note that a constriction in a pore is generally associated to both a 

geometric deformation and a modulation of the fluid/wall interaction (the smaller the diameter 

of the constriction, the larger the local fluid/wall interaction), and thus plays an important role 

in gas adsorption or meniscus displacement.26,27 Simple models of inhomogeneous linear 

pores could then be built by modulating the fluid/wall potential along the cylindrical pore 

axis. Molecular simulations in the grand canonical ensemble allowed to study the cases of few 

heterogeneities, or domains as introduced by Everett.28 New metastable states where shown to 

be stabilized by the most attractive portions of the pore, and complex coexistence diagrams of 

the various metastable states were proposed.29 The complexity is growing faster than the 

number of domains, and the time-scale of the simulation did not allow extensive studies on 

larger systems. A multiscale approach could however be introduced because it is possible to 

study each domain of a tubular pore if one knows the fluid state in the two neighboring 
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domains (the pores are non-interconnected, and thus present a 1D chain structure). This 

approach allowed to study pores of micrometric length, presenting few hundred domains, 

much beyond computer capabilities for a brute force molecular simulation. It is emphasized 

that this approach completely differs from pore network approaches where simple rules are 

postulated for filling and emptying (pore blocking etc.).30 Within this approach it has been 

shown that the presence of disorder in tubular pores induces the appearance of a large 

hysteresis in adsorption/desorption cycles, very similar to what is experimentally observed in 

disordered materials like aerogel or Vycor.31 This behavior arises in each pore, as a 

consequence of disorder, and does not require any connection between pores. Naumov and 

co-workers arrived at similar conclusions in a simplified lattice gas approach.32 The effect of 

an additional disorder between pores (like a pore size distribution) has also been considered 

and shown to be negligible when the pores already present an intrinsic disorder.33  

 

The main scanning curves obtained in the grand canonical ensemble, i.e. desorption or 

adsorption branches started from any given point of the main hysteresis loop, are qualitatively 

comparable to experimental data: they reveal the presence of a large number of metastable 

states which densely fill up the whole hysteresis since all scanning curves are continuous and 

can be close parallel for slightly different initial filling of the porous material. Studying these 

curves constitutes a preliminary exploration of the underlying organization of the metastable 

states which might contain some information on the mesoporous solid structure. However, 

only few metastable states can be attained by first scanning curves,34 and a good 

understanding of hysteresis requires a more systematic search for all metastable states. Such 

studies are generally extremely difficult, especially if one wants to infer conclusions in the 

thermodynamic limit, i.e. the experimental situation. Such questions have been slightly more 
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studied in other fields like hysteresis in magnetic materials, but recent works have shown that 

their relevance to adsorption hysteresis cannot be underestimated.35,36 

 

As shown in previous papers, the fluid may be in essentially two states in each domain. This 

allows a systematic study of all possible states of the confined fluid, at least for small enough 

systems. An algorithm (given below) determines which states are metastable and their 

location in the - plane (chemical potential versus amount adsorbed). However, due to the 

exponential increase of the number of possible states with the number of domains, the study is 

limited to quite small systems with typically less than 35 domains. Two issues need then to be 

addressed: 1) the results actually strongly depend on the particular distribution of 

heterogeneities in the porous material. One thus has to somehow perform an average over 

disorder, i.e. over many possible pore samples or “realizations”. 2) the thermodynamic limit 

of infinitely long pore has to be discussed. These issues cannot be addressed rigorously in our 

numerical approach, except when exact calculations are possible (used as benchmark). 

Reasonable approximations allow however to determine appropriate methods to perform 

average over disorder, and a systematic finite size analysis allows to infer trends for the 

thermodynamic limit. Note that in a typical MCM-41, pores are several micrometers long, 

corresponding to approximately 102-103 domains. The thermodynamic limit might thus not be 

the only relevant case. In this first study of the metastable state structure we focus on their 

density distribution inside the hysteresis loop, and the associated complexity, i.e. the 

logarithm of the density normalized to the system size. Two examples are studied, one with 

usual continuous adsorption/desorption isotherms, and one exhibiting a sharp jump during 

adsorption. They are shown to present important differences in their distribution of metastable 

states, suggesting the existence of an underlying transition.  

 



 6 

The paper is organized as follows: In section II, we introduce the pore model, the algorithms 

used to determine the isotherms and metastable states, and briefly introduce general results 

regarding disordered systems, in particular the annealed and quenched averages, where the 

variables associated to the source of disorder, originating in the pore irregularities in our case, 

are either free to fluctuate or frozen. In section III we present the isotherms and all metastable 

states for various pore samples. The distributions of the number of metastable sates over 

disorder realizations and for a given chemical potential are shown and discussed. The 

quenched complexity is shown to appear as self-averaging. In section IV and V we properly 

define and calculate, in finite size, the annealed and quenched complexities as a function of 

the chemical potential , and as a function of  and the amount adsorbed . Finally, in section 

VI, the case of a porous material exhibiting a sharp jump during adsorption is studied. We 

finally conclude by comparing the two systems and the qualitative differences observed for 

the quenched complexity. 

 

 

II Model and methods 

 

Our model is designed to catch the main features of simple fluid adsorption in heterogeneous 

tubular pores like MCM-41 or oxidized porous silicon. The pores, of diameter around 3 nm, 

are supposed to be made of pure silica. The interactions are supposed to follow the Lennard-

Jones potential. The parameters are those for argon-argon and argon-oxygen species to 

describe fluid-fluid and fluid-silica interactions.31 All thermodynamic quantities are reduced 

using fluid-fluid interaction parameters. Heterogeneities are introduced by modulation of the 

fluid/wall interaction along the pore axis, within +/- 30%. The modulation factor, denoted h, 

is the ratio between the local fluid/wall interaction intensity to its reference value. For 
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instance, h = 0.85 means that the interaction is 15 percent lower. It is chosen to be a step 

function along the pore axis. Each step corresponds to a domain as defined by Everett28 of 

approximately 7 nm. The values of the steps are uncorrelated and follow a Gaussian 

distribution centered on 1.0 and half-width 0.2 in the interval [0.7; 1.3]. Interactions being 

short range, typically less than a domain length, the fluid properties in a given domain are 

entirely determined by the fluid configurations in the two neighboring domains. Since fluid-

fluid correlations decrease very rapidly, the relevant quantity in the neighboring domains is, 

on average, the fluid density. This is entirely determined by the chemical potential , except if 

the adsorbed fluid may exist in several states. This is precisely the case for a fluid confined in 

a tubular domain, which, for some values of , may be in the gaslike (G) or liquidlike (L) 

state, corresponding respectively to fluid adsorbed only at the wall or filling the whole 

domain. As a consequence, the fluid properties in a given domain and for a given  are 

entirely determined by the fluid state (G or L) in the two neighboring domains. At the most 4 

possibilities need to be considered. Figure 1 shows a typical set of 4 such “conditional” 

isotherms obtained in a cylindrical domain. After these calculations are performed for all 

possible domains, the fluid properties can be easily determined in the whole pore, according 

to the algorithms described below. This approach allows a decoupling between the atomistic 

level calculations performed by Grand Canonical Monte Carlo molecular simulation in each 

domain, and the large-scale calculation of the fluid state in pores of micrometric length. More 

details on the model can be found in refs [31] and [33]. With this approach we are able to study 

fluid properties in very long pores at the atomistic level, or perform extensive studies like 

counting metastable states in systems of reasonable sizes, which is impossible otherwise. In 

the rest of the paper, we consider only pores open at both ends: as a consequence, the first and 

last domains are always in contact with the bulk gas state. 
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The adsorption/desorption isotherms in a complete pore are calculated as follows: For low , 

the adsorption in each domain is single valued, and does not depend on the fluid state in the 

rest of the pore. The amount adsorbed is simply the sum over all domains. Note that in this 

case, all domains are in the gaslike state and follow the conditional isotherm with G-G 

boundaries. The chemical potential is then increased by small amounts until one domain 

reaches its limit of stability. This domain then jumps to the liquidlike branch. This has 

consequences for the two neighboring domains, which boundaries are now G-L and L-G. 

Their state has then to be reconsidered according to their G-L isotherms. They may stay in the 

gaslike state, meaning that the fluid condenses only in the initial domain, or switch to the 

liquidlike state, meaning that the meniscus created in the initial domain propagates to 

neighboring domains. In this case, the next domains need now to be reconsidered too, and so 

on until the meniscus stops, corresponding to the end of the avalanche. The amount adsorbed 

is given by the sum over all domains. The chemical potential is then further increased, and the 

same procedure is applied until saturation is reached. Desorption and scanning isotherms are 

obtained in a similar way. 

 

We now present the method used to determine all metastable states for any given realization 

of the disorder in the pore and for a given chemical potential . As previously explained, the 

fluid properties are entirely determined by the chemical potential  and the fluid state (G or L) 

in each domain. One then expects at the most 2N possible fluid states, where N is the number 

of domains. However, due to the interdependence between neighboring domains, many 

configurations are actually impossible. For instance, a domain in between a gaslike and a 

liquidlike domain, actually has only one (instead of two) possible state entirely determined by 

the chemical potential since G-L isotherms are single valued. But many other situations may 

appear, depending on the exact forms of the pre-calculated isotherms. From a physical 
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viewpoint, these configurations correspond to situations where the fluid state is unstable and 

has to evolve towards another state, by filling or emptying some domains. On the other hand, 

the configurations which are self-consistent are stable against thermal fluctuations, which are 

taken into account in the pre-calculated isotherms, and correspond to the metastable states. 

For any given , the algorithm explores all possible states, and extracts the few ones that are 

self-consistent, i.e. metastable. It is observed that any given metastable state can exist on a 

range of , which can easily be determined by slowly decreasing (increasing)  until the 

lower (upper) stability limits min (max) are reached. The corresponding () curves can be 

drawn in the - plane to represent each metastable state.  

 

The number of possible fluid states to be examined increases exponentially with system size. 

As a consequence, our algorithm cannot consider pores with more than 35 domains for few 

disorder realizations, 30 domains for 5×103 disorder realizations, 25 domains for 5×104 

disorder realizations, and 20 domains or less for 105 disorder realizations. It will however be 

shown below that the results indicate that the thermodynamic limit can be reasonably 

extrapolated from these system sizes. The last difficulty is how to perform averages over 

disorder realizations? Each realization produces its own hysteresis. How could we manage to 

get an “average” hysteresis? For a given chemical potential far from the hysteresis region, the 

fluid state is single-valued and given by the amount of fluid adsorbed. This quantity being 

additive, one expects that the “average” fluid state over disorder be precisely the averaged 

amount adsorbed. Note that the additivity hypothesis relies on the fact that for large enough 

systems, the amount adsorbed in any macroscopic region of the porous solid is not very 

different from what would be obtained if this region was isolated from the rest of the material. 

However, in the hysteresis region, the amount adsorbed is not uniquely defined, and can take 

any value between the so-called main adsorption and desorption branches. One can easily 
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average these main branches over disorder to define the “average main hysteresis loop”. 

However, characterizing the distribution of metastable states within the hysteresis and 

performing the average is a much more difficult task, to be explained now.  

 

Let us define the density of metastable states in the - plane  N;;N , where N is the 

number of domains in the pore. By definition    dN;;N  is, for a given chemical 

potential , the number of metastable states with adsorbed density in the interval d around . 

Note that this definition of  N;;N  as a density is necessary in our case (continuous 

values for ) and differs slightly from the usual definition used in Ising models where  is 

discrete. This has no consequences for the definition of the corresponding complexities (see 

Eqs. 1 and 2 below) since the differences vanish in the thermodynamic limit. We also define 

the number of metastable states at a given  as      dNN ;;; NN . The total 

number of metastable states is denoted  NN . Note that despite similar notation “N ”, 

these quantities are not identical and the parentheses will help to differentiate them. 

Furthermore, one has to keep in mind that  NN  is not the integral of  N;N  over  

because all metastable states exist over a finite range of , and thus each metastable state 

would be counted several times.  

 

The density of metastable states  N;;N  not only depends on the statistical properties of 

the disorder in the pore, but is also strongly sensitive to the particular disorder realization in 

the pore sample. It is then natural to introduce an average over disorder. As usual in 

disordered systems, it is interesting to consider both the average and typical number of 

metastable states:  N;;N and  ];;lnexp[ NN  where the bar denotes the average 
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over disorder.35,36 Since these quantities are both expected to scale exponentially with N, one 

introduces the corresponding annealed and quenched complexities:  

   N
NN

;;ln
1

lim;A  N


          (1) 

   N
NN

;;ln
1

lim;Q  N


          (2) 

As will be shown in next section, the quenched complexity is of particular interest because it 

is expected to be self-averaging (its fluctuations scale as N/1 ), which is not the case for the 

annealed complexity.  

 

 

III Isotherms and metastable states 

 

The main adsorption/desorption isotherms and all metastable states are calculated for various 

pore length and disorder realizations. Some examples are shown in Fig. 2 for N = 5, 10 and 

15. All isotherms present two reversible portions at low and high , and a hysteresis in 

between. The saturation branch is essentially identical in all cases, whereas the initial 

adsorption branch exhibits some differences which reflect the variations in the average 

fluid/wall interaction in the whole pore. These variations are expected to decrease with the 

system size. As can be seen, the hysteresis is also strongly dependent on the particular 

realization of the disorder. One can notice differences in width, height, and slope of the 

adsorption and desorption branches.  

 

The metastable states appear as portions of lines corresponding to their metastability range. 

These lines can be seen as the projection in the - plane of the local minima in the free 

energy landscape. As expected, the slopes are always positive due to increasing film thickness 
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with . These lines are almost straight and essentially parallel, meaning that despite possibly 

large differences in fluid configuration between two adjacent metastable states, the response 

of the system to a chemical potential variation is essentially the same in both cases. The small 

difference appears as a balance between the number of domains in the gaslike and the 

liquidlike state, expected to be of order 1/N. However, large variations can be observed in 

their distribution in the - plane depending on the disorder realization. Nevertheless, in all 

cases, all metastable states fall within the main hysteresis loop. It is actually observed that the 

main hysteresis constitutes the external envelope of the metastable states. This feature is 

observed in other systems and seems to be quite general.35,36.  

 

Another interesting quantity is the total number of metastable states  NN , given in each 

panel of Fig. 2. The first point to be noticed is that this number grows faster than N, but is 

significantly smaller than the total number of fluid states 2N, especially for large N. It also 

takes a wide range of values depending on the pore disorder realization. Its distribution has 

been numerically investigated for various N. As can be seen in Fig. 3 (first and second panels) 

the distributions are quite large, with long tails. As previously noticed in undulated pores,29 

the typical number of metastable states grows quite fast with the number of domains. This is 

why the distributions cannot be drawn on the same panel. The average and standard deviation 

were also calculated for 30N , and shown to be compatible with an exponential behavior. 

Furthermore the width of the distribution remains of the same order as its average value. On 

the other hand, the distributions for  NNln  are very close to Gaussians (see Fig. 3, third 

panel). The average value over disorder  NNln  is linear with N, and the standard deviation 

of  NN Nln1  behaves as 
2/1N . As a consequence, the quenched complexity appears as 

the natural self-averaging quantity to characterize the number of metastable states.  
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IV Calculation of  N;ln N and  N;ln N  

 

We now focus on the number of metastable states for a given chemical potential . Since 

numerical simulations are performed in finite systems, we define finite size annealed and 

quenched complexities for a given  as:  

   N
N

N ;ln
1

,A  N          (3) 

   N
N

N ;ln
1

,Q  N          (4) 

where N is the pore length. Their corresponding thermodynamic limit  N  are denoted 

as  A
 and  Q . Let us first focus on the particular choice  = -8.55 corresponding to 

the central region of the hysteresis (see Fig. 2). The finite size complexities have been 

calculated for N = 15, 20, 25 and 30 with respectively 105, 105, 5×104, and 5×103 disorder 

realizations (circles in Fig. 4). The data exhibit a small dependence with the system size, 

which is well described by the ansatz         1

A/Q

1

A/QA/QA/Q ln,   NbNNaN   

involving three free parameters which depend on .36 A least-squares fit to the data for  = -

8.55 yields A  = 0.2555, Aa  = 0.0313, 
Ab  = -7.538×10-3 and Q  = 0.2266, Qa  = -0.0120, 

Qb  = 0.0735 (the best fit are shown as dashed lines in Fig. 4). 

 

For the particular choice  = -8.55 an analytical calculation is possible and can be used to 

check the accuracy of the previous system-size dependence analysis (see Appendix A). The 

results are shown as red solid lines in Fig. 4. As can be seen, the data obtained by exact 

enumeration of all metastable states are in close agreement with the expected values, showing 
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the good convergence in terms of average over disorder. We are now in a position to address 

the thermodynamic limit. One can first perform the numerical calculations for the largest 

possible value of N, which gives good results due to the weak dependence with N, but the 

safest is to perform the analytical derivation (see Appendix B). The results are 

  25715.055.8A    and   22557.055.8Q   . They are given as horizontal 

straight lines in Fig. 4. These exact calculations show that the numerical finite size analysis 

was correct within 1%, and is likely to be reliable even when analytical calculations are not 

possible.  

 

This systematic enumeration of metastable states has been extended to other values of the 

chemical potential. The results are displayed in Fig. 5 (symbols). The previous theoretical 

derivation of the annealed and quenched complexities can be extended to any < -8.53 (see 

Appendices). The corresponding theoretical thermodynamic limits are given as lines in Fig. 5. 

As can be seen, the simulation results exhibit a weak dependence with system size and are 

quite reliable, even in regions where the complexities vary rapidly. The data show that both 

complexities are not zero for  between approximately -8.67 and -8.25, and exhibit a 

maximum around  = -8.58. As expected,        AQ . A remarkable feature is that both 

complexities reach zero for the same chemical potential. It corresponds to the situation where 

all domains are of the same type. The theoretical derivation shows that both complexities 

reach zero when the probability pA reaches zero at  = -8.6757: straightforward calculations 

show that at first order     11AA   p  and     1AQ ln p , for   0A p . A 

similar behavior is expected around  = -8.25. Note that these points correspond to the lower 

and upper closure points of the main hysteresis loop. The same is observed in Ising chain 

models.35  
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V Calculation of  N;;ln N and  N;;ln N  

 

As previously, we introduce the annealed and quenched complexities for finite systems. The 

annealed complexity associated to the distribution of metastable states versus  and  is 

defined as follows: 

   N
N

N ;;ln
1

,;A  N          (5) 

where the bar denotes average over disorder. This quantity has been calculated on a discrete 

grid in the - plane, for the same -values as previously, and for 24 -values between 0 and 

1. Our definition of the complexities based on the density of metastable states thus differs 

from the one used in Ising models by ln1N  where the bin width  = 1/24 in our case. 

Figure 6 shows the results for N = 25. This system size allows a good compromise between 

large N and a large number of disorder realizations (5×104). For comparison, the average over 

disorder of the main hysteresis loop for N = 25 has been superimposed in the top view. As can 

be seen, the annealed complexity presents a typical shape with maximal values within the 

region of hysteresis. It can also be noted that the region where the annealed complexity is 

positive extends well beyond the main adsorption/desorption loop. It also exhibits a spurious 

finite region where a single fluid state is expected whatever the disorder (for instance for  < -

8.7 and  > -8.2). In between these values, visual inspection shows that the hysteresis defined 

by the main loop qualitatively corresponds to    ln,; 1

A

 NN  (green to red region 

in Fig. 6), i.e. to an average number of metastable states larger than 1 per bin. How does this 

change in the thermodynamic limit? The system size dependence is illustrated in Fig. 7 for  

= -8.55. The first point to be noticed is that the system size dependence is significantly more 
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pronounced for  N,;A   than for  N;A   symbols are superimposed in Fig. 5, not in 

Fig. 7. However, as previously, it is possible to extrapolate the thermodynamic limit using the 

N-dependent ansatz 11 ln   bNNaN , where the three parameters depend on  and . 

When performed for the maxima, occurring around  = 0.53 for  = -8.55, one gets a limiting 

value   very close to the previously calculated  55.8A   . This is 

expected because  N;;N  is exponentially large in the thermodynamic limit and thus its 

integral over , giving  A
, is dominated by its largest term. A thermodynamic limit curve 

can thus be proposed (Fig. 7, dashed line) exploiting the system size dependence. In 

particular, one observes that the densities for which   0,55.8;A  N  are essentially 

stable with N. Note that, in the thermodynamic limit, the regions defined by 

   ln,; 1

A

 NN  or   0,;A  N  are identical and clearly extend well beyond the 

hysteresis defined by the main adsorption/desorption loop. This conclusion is supported by 

theoretical works.35,36   

 

The finite-size quenched complexity associated to the distribution of metastable states versus 

 and  may be introduced as follows: 

   N
N

N ;;ln
1

;;Ch

Q  N          (6) 

where the bar denotes average over disorder, and the logarithm is modified as proposed by 

Cherrier and collaborators:37 since for finite systems, the number of metastable states can 

locally be equal to zero, the logarithm diverges. It is thus arbitrarily set to zero in such 

situation. This introduces non-controllable errors in the evaluation of the quenched 

complexity. However, the results are expected to be reliable in the central region of the 

hysteresis where the density of metastable states almost never vanishes. The results are shown 
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in Fig. 8 (for N = 25) as a function of  and , for    ln;; 1Ch

Q

 NN  so that the 

typical number of metastable states is always larger than 1 per bin. The average main 

hysteresis loop for N = 25 has been superimposed in the top view. As can be seen, the largest 

values for the quenched complexity are reached within the hysteresis loop, but, as previously, 

the region determined by    ln;; 1Ch

Q

 NN  extends beyond the main 

adsorption/desorption loop. Note however a significant qualitative improvement for  < -8.68 

and  > -8.28. The system size dependence is illustrated in Fig. 9 for  = -8.55. As previously, 

a best fit can be obtained with the ansatz 11 ln   bNNaN , and the limiting value of the 

maximum for  = -8.55 is compatible with  55.8Q   . A putative thermodynamic limit 

can be drawn (Fig. 9, dashed line). The figures show that the quenched complexity reaches its 

largest values inside the hysteresis in the thermodynamic limit. However, since  N;;Ch

Q   

is not reliable when it approaches zero, it is impossible to discuss whether the quenched 

complexity exactly vanishes on the main adsorption/desorption loop in the thermodynamic 

limit. Another approach is required.  

 

To circumvent the difficulty raised previously, it has been proposed36 to introduce the 

Legendre-Fenchel transform  Ng ;;  of the finite size, disorder dependent complexity 

 NN ;;ln1 N : 

   








  



 gN
N

Ng ;;ln
1

max;; N       (7) 

where  denotes a given disorder realization. Note that this quantity is always defined for any 

real value g, even if  N;;N  is zero for some values of . To see the connection with 
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the quenched complexity, let us denote  Ng ;;  the -value which maximizes the 

quantity between parentheses in Eq. 7. One has:  

      gN
N

Ng  ;;ln
1

;; N        (8) 

Averaging over disorder, one gets: 

     NggN
N

Ng ;;;;ln
1

;;    N       (9) 

where    NgNg ;;;;   . A quenched complexity can thus be defined for a finite 

system as: 

    );;(;);;;(;;F-L

Q NgNNgN         (10) 

where );;( Ng   is implicitly defined by  Ng ;; .  Ng ;;  is expected to deviate 

from its average value  by terms of order N/1 . As a consequence,  N;;ln N  

approaches  N;;ln N  in the thermodynamic limit, and one has:  

    ;;;lim Q

F-L

Q




 N

N
        (11)

The results for  N;;F-L

Q   are shown in Fig. 10 as a function of  and , for N = 25. As 

previously, the largest values are reached inside the hysteresis loop. But, contrary to previous 

cases, the quenched complexity exactly vanishes on the main adsorption/desorption hysteresis 

loop, shown as a solid line in the second panel of Fig. 10. This is expected: it can be seen by 

inspection of Eq. 7 that the limit g  (respectively g ) selects the smallest 

(respectively largest)  for which the density of metastable states is not zero, corresponding to 

the main adsorption (respectively desorption) branches for each realization of disorder. As a 

consequence, the envelope of the projection in Fig. 10 also corresponds to the average over 

disorder of the main hysteresis loop. The agreement is quite good within the uncertainties of 
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our numerical approach: for each of the 24 -values used to perform the calculations in the 

range [-8.8;-8.1],   025;;F-L

Q  N  superimpose with the main hysteresis within few 

percent; the visible discrepancies or roughness in Fig. 10 arise as a consequence of 

interpolation between the data. In order to discuss the thermodynamic limit, the system size 

dependence is shown in Fig. 11 for  = -8.55. It is slightly more pronounced than in previous 

cases, but still well fitted with the ansatz 11 ln   bNNaN , and, as previously, the 

limiting value of the maximum for  = -8.55 is compatible with the value previously obtained 

in section IV for  55.8Q   . An extrapolated thermodynamic limit can be proposed (see 

Fig. 11, dashed line). An interesting feature is that the locations where   0;;F-L

Q  N  are 

scarcely dependent on N, especially at low adsorption, and thus can be safely extrapolated to 

large N. Therefore, the complexity for N = 25 shown in Fig. 10 is expected to give a good 

approximation of the main hysteresis loop in the thermodynamic limit. As mentioned in the 

Introduction, realistic pores of mesoporous silica are typically few micrometers long, leading 

to 102-103 domains. The previous argument shows that the complexity shown in Fig. 10 is a 

fairly good evaluation of the hysteresis for realistic systems.  

 

 

VI Systems with macroscopic transitions  

 

When the disorder is moderate, the hysteresis loop associated to the capillary condensation 

exhibits an unusual behavior. One observes vertical branches for the main adsorption or 

desorption curve, generally associated to a true out-of-equilibrium transition characterized by 

a macroscopic jump in the hysteresis.19 Metastable states are expected to be found in the 

hysteresis loop, but distributed in such a way that some regions are totally depleted.34,36,38 
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Such macroscopic transitions are observed in our system, for instance, when the Gaussian 

distribution for the heterogeneities is replaced by a flat and truncated distribution.33 We 

suspect that the underlying mechanism is quite different in both situations, for the simple 

reason that a true out-of-equilibrium transition is not expected in materials exhibiting a one-

dimensional pore network. The important point is most probably the truncation of the 

distribution. Gaussian distribution being strictly positive, all heterogeneity values between 0.7 

and 1.3 may be found in a given pore. This is not the case if one considers a distribution 

which is strictly zero for heterogeneity out of a given interval. For instance, we now consider 

a flat distribution over [0.9,1.1]. In this case, the extreme values of the heterogeneity are not 

observed at all in the pore, while they could be found in our previous example with a 

Gaussian distribution. From this point of view, the level of disorder is lower.  

 

For any realization of the disorder, a macroscopic transition is observed during adsorption (3 

examples are given in Fig. 12 for N = 25 domains), while desorption occurs in several steps. 

In all cases, the sharp adsorption is around  = -8.45, which corresponds to the gas to liquid 

transition in elementary pores with heterogeneity around its median value.31 The small 

variations around this value yield a rounding of the jump in adsorption after averaging over 

disorder. However, the larger the system size, the steeper the jump (see Fig. 13). A 

macroscopic transition is thus suspected in the thermodynamic limit. 

 

All metastable states have been determined and shown in Fig. 12. All of them fall within the 

main hysteresis loop, but does not distribute uniformly: no metastable state could be found in 

the right hand part of the hysteresis, except for the gaslike and liquidlike branches. This is 

explained by noticing that when transition occurs somewhere in the pore for  around -8.5, 

the meniscus propagates freely in the whole pore (absence of strongly “repulsive” domain to 
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stop the meniscus). The system is thus either in the gaslike or the liquidlike state. On the other 

hand, an exponentially large number of metastable states is found in the left half-region of the 

hysteresis. Their density is largest around  = 0.6, and decreases monotonously while 

approaching the gaslike and liquidlike branches.  

 

A quantitative analysis including the average over disorder has been performed by calculating 

the quenched complexity  N;;F-L

Q  . The result is shown in Fig. 14 for the largest system 

size N = 30 and 5×103 disorder realizations. A smoothly varying complexity is obtained, with 

a single maximum for any given chemical potential. As previously noticed by visual 

inspection on various disorder realizations, the quenched complexity reaches monotonously 

zero while approaching the main hysteresis loop for  < -8.52 (Fig. 14, second panel). The 

interesting behavior is for  > -8.52: the quenched complexity is not defined since no 

metastable states were observed in the 5000 disorder realizations used to perform the average, 

except for the two gaslike and liquidlike branches. In other words, in this system, the 

quenched complexity is shown to vanish strictly inside the main hysteresis loop. Before going 

farther, let us discuss the thermodynamic limit. We have performed the same finite size 

analysis as in the previous system. The maximum values reached by the quenched complexity 

slightly decrease while approaching the thermodynamic limit, but, as previously, the region 

where   0;;F-L

Q  N  is essentially independent of N. In particular, one has 

  0;;F-L

Q  N  for  > -8.52 even in the thermodynamic limit, and thus the quenched 

complexity vanishes strictly inside the main hysteresis loop. 

 

Such a behavior has been reported in the random field Ising model (RFIM),35,36 with however 

noticeable differences. For instance, in our case, the depleted region extends to all density 
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values between the gaslike and the liquidlike states, while, in the RFIM, metastable states 

could be found in regions close to the main gaslike and/or liquidlike branches (materialized 

by an ellipse in Fig. 14). The origin for this difference may arise due to the treatment of the 

interdependence between adjacent domains, or to the particular choice for the fluid/wall 

interactions and the associated distribution of heterogeneities. It is however suspected that the 

difference is more fundamental. Remember that the RFIM with the same 1-dimensional 

topology as our pores predicts a continuous curve whatever the disorder strength. The 

appearance of a jump in adsorption in our system is closely connected to the truncation of the 

distribution of heterogeneities. As previously mentioned, the region of chemical potential  > 

-8.52 corresponds to a situation where a liquid/gas meniscus can propagate freely through any 

heterogeneity in the pore, the truncation of the distribution resulting in the absence of strong 

enough heterogeneities to pin the meniscus. Furthermore, the gaslike state is metastable while 

the liquidlike state is stable. As a consequence, any state of intermediate density is unstable 

and immediately turns into liquidlike state. However, as for the RFIM, the main adsorption 

loop corresponds to the grand-canonical envelope of the metastable states, where 

  0;;F-L

Q  N ; it is reminded that along the gaslike and liquidlike branches, the quenched 

complexity equals zero in the thermodynamic limit. 

 

If the pores are closed at one end, the sharp transition to liquidlike state shifts towards lower 

value33 ( = -8.52), which corresponds precisely to the lower limit of the depleted region. This 

is in agreement with our previous interpretation: the pore end helps to nucleate the liquid/gas 

meniscus and suppresses the metastable gaslike branch above  = -8.52. In this situation, the 

main adsorption/desorption loop is still the envelope of the metastable states, except that one 

observes a sharp transition during adsorption without depletion of the hysteresis loop (i.e. 

many intermediate states can be found closely along the sharp transition). This is still different 
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from the RFIM results. It is however emphasized that our numerical study cannot exclude a 

very small depleted region around the transition. Using a finite reservoir may help to 

investigate these questions.34,39  

 

 

Conclusion  

 

We have studied numerically the density of metastable states embedded in the main 

adsorption/desorption hysteresis loop for a simple fluid confined in a single disordered tubular 

pore. Very few works can be found on such investigations, essentially in lattice gas models. 

The originality of this study is that the model is based on a molecular simulation approach of 

the adsorption of a Lennard-Jones fluid in a heterogeneous linear pore. The substrate is 

divided into domains, and the fluid adsorption properties are pre-determined for each domain 

by molecular simulation as a function of the fluid state in the neighboring domains, thus 

explicitly taking into account the effect of interconnections between domains. This approach 

completely differs from pore network models where ad-hoc rules for filling or emptying are 

postulated (pore blocking, etc.). The adsorption properties of the entire pore can be then 

calculated straightforwardly in our approach, which allows to characterize all the numerous 

metastable states. The annealed and quenched averages over the disorder originating in the 

physico-chemical heterogeneities in the pore are introduced to calculate the corresponding 

complexities. Finite size effects have been studied extensively. Interestingly, they are shown 

to be quite small concerning the total number of metastable state at a given chemical 

potential, and the data can be safely extrapolated to the thermodynamic limit. The annealed 

and quenched complexities, characterizing the density of metastable states, present more 

pronounced finite size effects; the thermodynamic limit is inferred from the expected 1/N and 
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lnN/N behavior. When possible, the numerical results have been compared to exact analytical 

calculations, validating the average over disorder and the finite size analysis. 

 

One observes that the density of metastable states grows exponentially with system size and 

presents a pronounced maximum in the central region of the hysteresis. The annealed 

complexity remains positive in a region which extends beyond the main average hysteresis 

loop, confirming that the average density of metastable states is unsuited to characterize the 

hysteresis in the thermodynamic limit. On the other hand, the quenched complexity, 

characterizing the typical number of metastable states, is shown to be strictly positive only 

inside the hysteresis and to vanish on the main grand canonical adsorption and desorption 

branches. Equivalently, the main adsorption/desorption hysteresis averaged over disorder 

corresponds to the envelope of the typical distribution of metastable states. An interesting 

point concerns the comparison of two systems with different distribution of heterogeneities, 

one Gaussian, the other one flat and truncated. The main difference is that in the second one 

the high values of disorder are strictly suppressed. In the first case, a smooth hysteresis is 

observed, and an exponentially large density of metastable states is found everywhere in the 

loop. In the second case, a macroscopic jump is observed during adsorption, and a depleted 

region with no metastable states appears in the vicinity of the transition within the hysteresis 

loop. The interpretation is as follows: The distribution of heterogeneities being truncated, the 

less attractive domains are not strong enough to impede the propagation of a meniscus. As a 

consequence, the possible states are just liquidlike and gaslike. The first one is actually the 

stable state. The gaslike state is metastable due to the truncation of the distribution: the most 

attractive regions in the pore are not strong enough to nucleate a liquid meniscus. When the 

pores are closed at one end, the depleted region and the hysteresis shrink, as a consequence of 

the facile nucleation of a meniscus in the bottom, while the transition remains sharp and 
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macroscopic. Further investigation is needed to assess whether the depleted region completely 

disappears or remains as a thin area close to the transition. Significantly larger systems are 

required to minimize finite size effects and reach the required resolution for the quenched 

complexity.  
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Appendices: 

 

These appendices present the main steps in deriving the analytic formulae for the annealed 

and quenched complexities when the domains can be separated in two types (the so-called A-

type and B-type, see below); i.e. for  < -8.53. 

 

 

A: Annealed and quenched complexities for finite size system  

 

Examination of the various possible conditional isotherms induced by disorder shows that for 

 < -8.53, all domains necessarily fall into one of two types (see Ref [31] and Fig. 1). Type A 

corresponds to domains for which 2coex    occurring when the disorder parameter h > 

0.945 (h is the modulation factor of the fluid/wall interaction).31 Such domains can be in two 

states (G or L) only if both neighbors are gaslike. Otherwise, these domains are necessarily in 

the liquidlike state. Type B corresponds to domains for which coex1   , occurring for h 

< 0.945. They can be in two states (G or L) only if both neighbors are liquidlike. Otherwise, 

these domains are necessarily in the gaslike state. For our particular choice of , any pore can 

thus be seen as a chain of A’s and B’s, and the total number of domains is N = NA + NB where 

NA and NB denote the number of domains A and B. Knowing the relation between the domain 

type and h as well as the distribution of h, one can deduce that the probability of having a 

domain A is pA = 0.625 (and pB = 0.375). Considering the properties of domains A and B, if 

two A’s or two B’s are in contact they are necessarily in the same fluid state. This can be 

generalized to any group of A’s or B’s. The pore can thus be seen as a chain of A- and B-

regions of various lengths. R

AN  and R

BN  denote the number of A-regions and B-regions, and 
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R

B

R

A

R NNN   the total number of regions. Any metastable fluid state in the pore can be 

described by a chain of 
RN  fluid states corresponding to the 

RN  regions of the pore. It is 

also noted that any B-region at one pore end is necessarily in the gaslike state. e

BN denotes the 

number of domains B belonging to B-regions which are at the pore ends. If the pore has an A-

domain at both ends, then 0e

B N . We first calculate the possible values for the number 

 N;55.8N  of metastable states (for various disorder realizations). The e

BN B-domains 

do not contribute to  N;55.8N . The relevant quantity is R

AN . We denote  R

ANN  the 

number of metastable states for a chain of R

AN  A-regions (the number of B-regions is 

necessarily R

AN -1, R

AN , or R

AN +1 depending of the nature of pore ends. Simple inspection 

shows that  0R

A NN  = 1,  1R

A NN  = 2. Let us consider the last A-region of the pore 

(for 1R

A N ). The fluid state in this region is either G or L. We denote  R

A

G NN  the number 

of metastable states which are gaslike in this region, and  R

A

L NN  the number of metastable 

states which are liquidlike in this region. One has the following relations: 

     R

A

LR

A

GR

A NNN NNN          (A1) 

     R

A

LR

A

GR

A

G 1 NNN NNN         (A2) 

     R

A

LR

A

GR

A

L 21 NNN NNN         (A3) 

and    11 R

A

LR

A

G  NN NN  = 1.  

Straightforward calculations show that  R

ANN  successively takes the values 1, 2, 5, 13 … 

or: 

 
R
A

R
A

2211

R

A

NN
N  N          (A4)
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with 10/)55(1  , 10/)55(2  , 2/)53(1   , and 2/)53(2  . This gives 

the possible values taken by  N;55.8N  depending on the disorder configuration. We 

now calculate their probability.  

 

For N domains, the probability to have R

AN  A-regions is given by: 

      




















12

0

1

BA1
1

2

1

1
;

R
A

e
B

R
A

e
B

R
AA

AAe

B

e
BA

R
A

A
R
A

R

A

NN

N

NNN

NN

NNN
N

NNN

N

N

N
NN ppP     (A5) 

where  1

1

A
R
A





N

N
 is the number of ways to split the 

AN  domains into R

AN  A-regions, and 

 1

2

e
BA

R
A





NNN

N
 is the number of ways to split the e

BA NNN   B-domains which are not at pore 

ends into R

AN -1 B-regions which are in-between the R

AN  A-regions. The parenthesis  1e

B
N  

takes into account the number of ways to append the e

BN  B-domains at both pore ends. The 

summations are performed over all possible choices for e

BN  and 
AN  compatible with R

AN  A-

regions. The probabilities  NN ;R

AP  can easily be obtained numerically, which allows to 

calculate the quenched and annealed complexities as a function of N for  = -8.55. The results 

are shown as red solid lines in Fig. 4.  

 

 

B: Annealed and quenched complexities in the thermodynamic limit  

 

The thermodynamic limit of the quenched and annealed complexities (Eqs. 3 and 4) involve 

the N  limit. We thus calculate an approximate formula for  NN ;R

AP  for large N (Eq. 

A5). Let us denote max;R

AN  the largest possible value for the number of A-regions (see 

Appendix A). max;R

AN  is N/2 if N is even, and (N+1)/2 if N is odd. For large N one has 
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2/maxR;

A NN  . Inspection of Eq. A5 shows that  NN ;R

AP  has negligible values if 

maxR;

AA NN   . We introduce the reduced quantities NNn /R

A

R

A  , NNn /e

B

e

B   , and 

NNn /AA  . One has: 

5.00 R

A  n , Nnn /1210 R

A

e

B  , and Nnnnn /11 R

A

e

BA

R

A  .     (B1) 

Since now on, all quantities negligible in the thermodynamic limit are dropped. Using Stirling 

formula: 

       )(o1ln1ln MxxxxMM

xM e
M




         (B2) 

and replacing the discrete sums by integrals, the probability  NN ;R

AP  can be written as: 

   
A

e

B
A

e

B

R

Ae

B

R

A

R

A

)(o,,,,
; dndn

NnnnppN
enNNnN BA

N 





D

P 
    (B3) 

where the integral is performed over the domain D  defined by Eq. B1 (the terms 1/N are 

neglected) and  

       e

BA

e

BAAAAA

e

B

R

A 1ln1lnln1ln,,,, nnnnnnpnpnnnnpp ABABA   

        R

A

R

A

R

A

e

BA

R

A

e

BA

R

AA

R

AA ln21ln1ln nnnnnnnnnnnn   (B4) 

The dominant term of the integral is given by the maximum of  over D .  is strictly 

decreasing with e

Bn  and thus the maximum is for e

Bn = 0, i.e. when the pore has A-domains at 

both ends. Let us now consider  A

e

B

R

A ,0,,, nnnpp BA   as a function of 
An . For 5.0R

A n  this 

function presents a maximum for *

An  verifying: 

  
  B

A

R

A

*

A

*

A

*

A

R

A

*

A

1

1

p

p

nnn

nnn





         (B5) 

For a given R

An , the l.h.s is an increasing function from 0 to infinity for *

An  running from R

An  

to R

A1 n . The solution thus exists and one has R

A

*

A

R

A 1 nnn  . Furthermore, the l.h.s. is 
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always equal to 1 for 5.0*

A n  As a consequence, for 
BA pp   (respectively 

BA pp  ) one 

has 5.0*

A n (respectively 5.0*

A n ). The maximum of   is given by: 

   *

AA

e

B

R

A

R

A

max ,0,,,,, nnnnppnpp BABA        (B6) 

For 5.0R

A n , 
An  can only take the value 0.5, thus 5.0*

A n  and the previous equation still 

holds.  

The probability  NN ;R

AP  is thus: 

    )(o,,
;

R

A
max

R

A

R

A

NnppN
eNNnN

BA

N






P       (B7) 

 R

A

max ,, npp BA , seen as a function of R

An  exhibits a maximum for *R

An  (the corresponding 

value of *nA
 is denoted **nA

) such that  

   
0

,0,,,,,

**
AA

*R
A

R
A

*R
A

R
A ;

R

A

A

e

B

R

A

R

A

R

A

max







 nnnn

BA

nn

BA

n

nnnpp

dn

nppd 
   (B8)

The first equality holds since by definition 
 

0
,0,,,

**
AA

A

A

e

B

R

A






nn

BA

n

nnnpp
. The result is  

    2*R

A

*R

AA

*R

AA1 nnnnn ****  , which gives, using Eq. B5: 
BA

*R

A ppn   and 
A

** pn A
. 

Inserting these values into Eq. B6 shows that this maximum is actually zero. Hence, 

  0,, R

A

max npp BA  and the leading term of the probability given by Eq. B7 is correctly 

normalized. Note that the probability  NN ;R

AP  is thus essentially Gaussian around 

BA

*R

A ppn  :  

 
  )(o

2;

2

BA

R

A
R

A

R

A

NppnN

eNNnN
N








P       (B9) 

with     2

BA

2R

A

R

A

max2

*R
A

R
A

/,,




 ppnnpp
nn

BA > 0.  
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Annealed complexity: 

 

The annealed complexity is given by 

       
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Turning the discrete sum into integral gives: 

   
  

R

A

1

R

A

R

A

max

1

0

R

A

R

A

)(oln,,
;

;max
A

A

nd
NnnppN

eNNN
BA

N

q

R










NP    (B11) 

The integral of the exponential is again dominated by its largest term, obtained here for 

QR;

A

R

A nn   (the corresponding value of *nA
 is denoted Q;

A

*n ) such that: 
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The first equality holds for by definition 
 

0
,0,,,

Q*;
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A

A
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B

R

A

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. The results are: 
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41
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Where )sgn( BA pp   is the sign of 
BA pp  . For 625.0A p  we find numerically 

2990711.0QR;

A n  and 5787910.0Q*;

A n , and using Eqs. B4 and B6, one gets 

  25715.055.8;A    
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Quenched complexity: 

 

The quenched complexity is given by: 

       
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Using Eqs. A4 and B7 and the fact that the integral of the exponential is dominated by its 

largest term in the thermodynamic limit (obtained for *R

A

AR;

A

R

A nnn  ), one gets.  
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Figure captions: 

 

Figure 1: Schematic representation of the typical set of 4 “conditional” isotherms 

characterizing the fluid adsorption properties in a single cylindrical domain, depending on the 

fluid state in the two neighboring domains: G is for gaslike, and L is for liquidlike. Due to 

symmetry, the (reversible) G-L and L-G isotherms are identical. Note the hysteresis in the two 

other situations, and the arrows on the irreversible vertical branches. The isotherms are 

slightly shifted for clarity.  

 

Figure 2: Black curves: main adsorption/desorption hysteresis. Red lines: all metastable states 

obtained by systematic exploration. The total number of metastable states N  is given in 

each figure. From left to right: increasing number of domains (N = 5, 10, and 15). For each N, 

3 disorder realizations are shown. Insert: enlargement of the high metastable state density 

region. 

 

Figure 3: Upper panels: Distribution of the number of states N  found in pores made of N = 

10 and 20 domains. The distributions cannot be displayed on a single figure due to scale. 

Lower panel: circles: distributions of the natural logarithm of N, for various N; the solid lines 

are Gaussian fits. All distributions were obtained for 5×103 disorder realizations. Insert: 

variance of the Gaussian fits versus N.  

 

Figure 4: System size dependence of the annealed and quenched complexities for  = -8.55. 

Circles: simulation data. The dashed lines are fits to the data, and the solid curves are the 

theoretical results (see text and Appendix A). The horizontal straight lines give the theoretical 

thermodynamic limits (see Appendix B).  
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Figure 5: Quenched and annealed complexities (Eq. 3 and 4) versus chemical potential. 

Symbols: exact enumeration. Circles: N = 15 (105 disorder realizations); squares: N = 20 (105 

disorder realizations); up triangles: N = 25 (5×104 disorder realizations); down triangles: N = 

30 (5×103 disorder realizations). Solid lines: theoretical thermodynamic limit (see text and 

Appendix B) for  < -8.53.  

 

Figure 6: Annealed complexity  N,;A   versus  and  for N = 25. The same colors are 

used in both representations. The solid line in the right panel is the average main hysteresis 

loop for N = 25. The average is performed for 5×104 disorder realizations.  

 

Figure 7: Symbols: annealed complexity versus amount adsorbed  for N = 15, 20, 25, 30 and 

= -8.55 (lines are guides to the eye). Number of disorder realizations for N = 15, 20, 25 and 

30: 105, 105, 5×104, and 5×103 respectively. Dashed line: extrapolated thermodynamic limit 

(see text).  

 

Figure 8: Quenched complexity    NNN ;;ln;; 1Ch

Q  N  versus  and  for N = 25, 

where the average is performed with the prescription that 00ln   (see text). The same colors 

are used in both representations. The solid line in the right panel is the average main 

hysteresis loop for N = 25. The average is performed for 5×104 disorder realizations.    

 

Figure 9: Quenched complexity    NNN ;;ln;; 1Ch

Q  N  versus  for = -8.55 and 

N = 15, 20, 25, and 30. The average is performed with the prescription that 00ln   (see text). 

Number of disorder realizations for N = 15, 20, 25 and 30: 105, 105, 5×104, and 5×103 

respectively. Dashed line: extrapolated thermodynamic limit (see text).  
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Figure 10: Quenched complexity  N;;F-L

Q   versus  and  for N = 25. The colors are 

identical in both representations. The solid line in the right panel is the average main 

hysteresis loop for N = 25. The average is performed for 5×104 disorder realizations.  

 

Figure 11: Quenched complexity  N;;F-L

Q   versus  for N = 15, 20, 25, 30 and = -8.55. 

Number of disorder realizations for N = 15, 20, 25 and 30: 105, 105, 5×104, and 5×103 

respectively. The dashed line is the extrapolated thermodynamic limit (see text).  

 

Figure 12: Main adsorption/desorption hysteresis (black curves) and all metastable states (red 

lines) obtained by systematic exploration. The total number of metastable states N  is given 

in each panel, corresponding to three realizations of the disorder. The number of domains is N 

= 25.  

 

Figure 13: Enlargement of the average adsorption isotherm around the macroscopic jump, for 

various system sizes: N = 10, 20 and 25 (respectively 105, 105, and 5×104 disorder 

realizations).  

 

Figure 14: Quenched complexity  N;;F-L

Q   versus  and  for N = 30. The colors are 

identical in both representations. The solid line in the right panel is the average main 

hysteresis loop for N = 30. The average is performed for 5×103 disorder realizations. The 

density of metastable states vanishes for  > -8.52, even in the vicinity of the main adsorption 

branch (ellipse).  

 

 



 39 

 

Figure 1 

 

 





L-L

G-L / L-G

G-G

L-L

G-L / L-G

G-G

 coex coex 1 1  2 2
 

 

 

 



 40 

 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 

0.0

0.1

0.2

0.3

-8.8
-8.6

-8.4
-8.2 0.0

0.2

0.4

0.6

0.8

1.0

0.0 

0.1 

0.2 

0.3 

A
(

;
;N

)

0.0

000000

-8.8 -8.6 -8.4 -8.2

0.0

0.2

0.4

0.6

0.8

1.0

 

 

 

 

 



 45 

 

Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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